
HAL Id: inria-00537472
https://inria.hal.science/inria-00537472

Submitted on 18 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advected Textures
Fabrice Neyret

To cite this version:
Fabrice Neyret. Advected Textures. ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, Jul 2003, San diego, United States. pp.147-153. �inria-00537472�

https://inria.hal.science/inria-00537472
https://hal.archives-ouvertes.fr

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

Advected Textures

Fabrice Neyret
Fabrice.Neyret@imag.fr

iMAGIS-GRAVIR† / IMAG-INRIA

Abstract
Game and special effects artists like to rely on textures (image or procedural) to specify the details of surface
aspect. In this paper, we address the problem of applying textures to animated fluids. The purpose is to allow
artists to increase the details of flowing water, foam, lava, mud, flames, cloud layers, etc.
Our first contribution is a new algorithm for advecting textures, which compromises between two contradictory
requirements: continuity in space and time and preservation of statistical texture properties. It consist of combin-
ing layers of advected (periodically regenerated) parameterizations according to a criterion based on the local
accumulated deformation. To correctly achieve this combination, we introduce a way of blending procedural tex-
tures while avoiding classical interpolation artifacts. Lastly, we propose a scheme to add and control small scale
texture animation amplifying the low resolution simulation. Our results illustrate how these three contributions
solve the major visual flaws of textured fluids.

1. Introduction

Fluids phenomena such as rivers, lava, mud, flames or clouds
are more and more present in games and special effects. Nu-
merous Computational Fluid Dynamics -oriented contribu-
tions have been proposed so far to simulate fluids. However,
relying on this approach for generating detailed flows is not
convenient since it suffers severe drawbacks when used at
high resolution: simulation requires huge computation and
storage while offering very little control to the artist. Nu-
merous interesting arguments for not using CFD in CG sys-
tematically are given in Lamorlette et al 4. Moreover, the
physics of small scale phenomena can be different to the one
at large scale (see footnote I), or parameters can be unknown
which is frequent for natural objects (e.g., mud, lava, foam,
cloud layer...). Conversely, artists want to control the visual
aspect of the details, e.g., using textures. Thus, a natural so-
lution is to simulate a low resolution fluid, then to let it ad-
vect (i.e., carry) a user-defined texture.

Advecting textures usually consists of advecting a pa-

† GRAVIR is a joint lab of CNRS, INRIA, Institut National
Polytechnique de Grenoble and Université Joseph Fourier.
http://www-imagis.imag.fr/Membres/Fabrice.Neyret/

rameterization. This suffers from several drawbacks since it
should fulfill contradictory criteria: space and time conti-
nuity of the result should be ensured while statistical prop-
erties of the texture should be preservedI within a range.
Moreover, fluids exhibit motion and swirl at every scale.
Thus the texture should not be simply passively advected:
It should amplify the low resolution animation the same
way it enhances its spatial appearance (i.e., increase the res-
olution) as seen in the flame example on the teaser image
and on the video.

In this paper, we propose a workflow for advecting tex-
tures fulfilling these three requirements. For simplicity, we
illustrate it mostly in 2D but the method also applies in 3D.

I The physical base for this conservation of the pattern is that small
scale active phenomena often oppose large scale advection and dif-
fusion, restoring or recreating the characteristic pattern. For exam-
ple the shape of crust chunks in lava corresponds to mechanical and
thermal local constraints. The shape of individual clouds in a cloud
layer is connected to Benard-cell like local circulation. Vortices are
permanently recreated in a turbulent flow. Same for foam, etc.
We certainly don’t want to simulate this small scale physically.
Moreover, the artist knows the global aspect this should have – or
he wants this to have.

c© The Eurographics Association 2003.

Neyret / Advected Textures

1.1. Previous Work

We will not review here the previous work on Computa-
tional Fluid Dynamics for CG. In terms of performances,
the fastest algorithm is the Stable Fluids 11, 12 approach, al-
lowing real-time simulation at low resolution by suppressing
the time-step constraint. However, it still has a N logN com-
plexity (where N is the number of grid vertices) and requires
a huge amount of memory so that it can become impractical
at high resolutions, especially in 3D.

Three classes of approaches exist in the literature to put tex-
tures in motion:

• Simple advection of the parametric space:
For 2D fluids and 3D mist, Ebert 2, 1 procedurally deforms
the space on which the procedural texture is computed.
(u,v) texture coordinates are simply advected instead of
densityII. The drawback is that the noise texture stretches
along time since the parameterization is more and more
deformed. Thus the statistical properties of the noise are
not preserved. Moreover, the amount of stretch evolves in
time even on a steady flow.
Musgrave’s fire balls model 6 follows a similar approach
without suffering stretching. In his specific case the abso-
lute deformation of the domain is local (at the expense of
realism) and the objects have limited spatial extension.
For scientific visualization purposes, Max and Becker 5

rely on the blending of three textures that are periodically
regenerated in time. This principle is also used by Stam 11

for faking high resolution smoke by combining density
textures with the low resolution flow. This regeneration
prevents the stretching from increasing on steady flows.
However, the amount of stretching depends on the regen-
eration rate (called latency). Tuning this rate is an issue
since it should be tuned differently depending on the loca-
tion. We discuss this problem further in section 1.3. More-
over, blending introduces classical image interpolation ar-
tifacts such as ghosting effects and contrast loss which al-
ter the statistical properties of the texture.

• Relying on particles instead of parameterization to con-
trol the location of texture patterns: DreamWorks intro-
duced Spriticles for the feature movie Quest for Eldorado.
PDI attached spherical hypertextures to particles to make
turbulent flames for Shrek 7. A model for combining lo-
cal parameterization and continuity constraints was pro-
posed for lava flows 14. In the first and last cases, conti-
nuity is still an issue, which limits the use of these tech-
niques to choppy aspects of fluid surfaces. Note that each
of these three methods also propose a small scale ani-
mation (i.e., at higher resolution than the particle sam-
pling): cartoon-animated texture for the first one and time-
dependent procedural texture for the two others.

II Note that the Stam et al idea of inverse warping of rays for ren-
dering distorted blobs in 13 is quite equivalent.

• Introducing time as a fourth dimension in the procedu-
ral texture parameters: This is commonly done in CG in-
dustry to get animated cloud, sky or mist based on Perlin
noise 8. Since statistical time properties of swirling flows
differ from statistical space properties, a flownoise model
with embedded time properties has been introduced 10.
However, these procedural methods embedding time only
address the amplification of animation details. To address
global advection (i.e., long range motion) one has to rely
on either of the two classes of approaches mentioned
above.

1.2. Requirements for Quality Advected Textures

There are two requirements for good-looking advection:

- Continuity in space (no cracks) and time (no popping,
steady result on steady flows).

- Control of the spatial statistical properties (i.e., the max-
imum stretch allowed), as justified in footnote I.

Methods of the first class mentioned above only ensure the
first requirement while methods of the second class only en-
sure the second. Thus, correct advection is currently an open
problem.

Two more requirements concern the temporal properties:

- Blending operations when combining textures should not
alter the statistical space properties. Classical flaws are
ghosting effects due to the addition of images in which
a remarkable feature doesn’t show at the same place and
contrast loss due to averaging.

- In addition to their advection, the visual details brought
by the texture should be animated at small scale. This
small scale animation should be related to the flow activ-
ity (i.e., peaceful or turbulent).

Despite morphing techniques 15 addressing feature preser-
vation during the transition between images exist, no such
technique has been developed for animated textures. The pa-
rameters of procedural textures can be interpolated, but this
would not make sense for texture coordinates (see Figure 1).
Thus blending issues are not addressed by existing methods.

Figure 1: From left to right: canonical mapping, swirled mapping,
linear interpolation of the two mappings. This illustrates that in-
terpolating between parameterizations can yield arbitrary results.
Moreover, the weight shift along time induces unwanted motion.

c© The Eurographics Association 2003.

Neyret / Advected Textures

x =

x =

x =

+

x

color fieldvelocity field

|ε|

di

l*

 α’i Ti=T(ui,vi) α’i Ti

64x64 texture T 512x512

T*

result 512x512

64x64

Figure 2: Our advection scheme using N = 3 layers: Low resolution density (or color) field and velocity field are provided, as well as a
texture (either image or procedural – here Perlin noise is precomputed into an image). We compute the instant deformation (norm of the strain
tensor ‖ε‖). We use it to update the accumulated deformation d i of each layer. Knowing the target deformation d∗, we get the ideal (decimal)
layer number l∗ (false colors red, green and blue stand for 1,2 and 3). The fractional part is used to weight the corresponding layer, thus
yielding three masks selecting the appropriate pixels. By multiplying with the corresponding advected texture T i, we get three adapted texture
components that are blended to get the final texture. The resulting image is obtained by multiplying this texture by the density field. Note that
each T i results from the blending of three phase-shifted textures T i

j (not displayed here). Similarly each d i results from the sum of the three d i
j .

1.3. Flaws of Classical Regenerated Textures

Regenerating a texture (image or procedural) consists of re-
setting texture coordinates to window coordinates after a
given life time (or latency) τ. To ensure time-continuity, the
texture is affected with a weight factor α fading to zero at the
beginning and end of the life time, e.g., 1

2
(

1− cos(2π t
τ)

)

.
Blending three 2π

3 phase-shifted textures ensures a constant
weight 5. It works visually well for pseudo-periodicIII tex-
tures due to an optical illusion: when following a fading spot
in motion, the observer identifies it with surrounding spots
rather than with the spot reseted to the initial location. This
requires that the spot has traveled more than a pseudo-period
(consider a factor of 10 in practice).

Thus the latency must neither be too high (to prevent large

III Note that one cannot expect this to work for any texture: the
same way than seamless pattern mapping on surfaces is well-posed
for some categories of patterns (e.g., isotropic) and ill-posed for oth-
ers (e.g., strongly oriented), invisible blending between two arbitrary
regions of a texture is possible only for reasonable texture contents
(namely, self-similar and isotropic at large scale).

stretching) nor too low (to preserve the illusion of motion).
The ideal value depends on the velocity and the deformation,
so it should be adapted to the fluid state. The problem is that
at this stage there is a single global latency value while there
is a range of velocity values along the simulated space (see
Figure 3). A major contribution of our paper is to propose a
solution to this problem.

1.4. Overview of Our Approach

Our three contributions consists of locally adapting the tex-
ture latency which we describe in section 2, blending the
procedural noise in frequency space which we describe
in section 3, and defining a control mechanism for small
scale animation which we describe in section 4. Results are
presented in section 5.

These three steps define a complete animated fluid textur-
ing scheme relying on procedural textures. If image textures
are used instead (e.g., for basic hardware-accelerated render-
ing), the first step still applies.

c© The Eurographics Association 2003.

Neyret / Advected Textures

2. Adapted Advection (see Figure 2)

We rely on a fluid simulation on a low resolution grid and
we advect texture coordinates as well as density similarly to
Stam 11, 12.

We consider a set of N layers {T i, i = 1..N}, where
each layer is made of three regenerated texture param-
eterizations {(ui

j,v
i
j), j = 1..3}. Assuming linear blend-

ing is used (we will release this in section 3) we have
T i = ∑ 3

j=1 αi
j.T (ui

j,v
i
j) where T() is the texture map, and

αi
j = 1

3

(

1− cos
(

2π t−t0i
j

τi

))

. Each layer has its own

latency τi (i.e., life duration of each texture), thus is adapted
to a range of velocity. The idea is to choose at each location,
the layer T∗ that is most adapted to the local deformation.
Similar to MIP-mapping, we chose and blend the two lay-
ers that most closely bracket the desired value, thus ensuring
continuity in space and time.

To forge our criterion, we maintain a per-vertex measure
of the accumulated deformation d i

j of each texture ji (this
data has to be advected with the fluid as well). We define the
accumulated deformation d i of the layer i as the sum of the
accumulated deformation of its three texture parameteriza-
tions ji. Note that although this value increases for a texture
ji according to its age, the average on the three phase-shifted
textures is quasi-constant for a steady flow.

The user provides a target amount of deformation d∗

balancing between motion illusion quality and maximum
stretching allowed. We obtain the ideal (decimal) layer num-
ber l∗ to be used through back-interpolation: for i such that
di < d∗ and d∗ < di+1, l∗ = d∗−di

di+1
−di .

Then, we proceed with our ‘temporal tri-linear MIP-
mapping’ by blending the layers i and i + 1 with weights
1− f and f respectively, where f is the fractional part
of l∗. Thus the final texture (assuming linear blending) is
T∗ = (1− f)T i + f T i+1 . This texture value should then
be multiplied by the local density (or color) interpolated
from the grid values (this is handled by OpenGL if hardware
textures are used).

To ease the notations we note α′i the factor of T i (i.e., f , 1- f
or 0) so that we can write T ∗ = ∑i α′iT i .
We also note α′i

j = α′iαi
j so that T∗ = ∑i, j α′i

j T (ui
j,v

i
j) .

But keep in mind that we are blending 6 textures (2 layers
each made of 3 regenerated textures) and not 3N at each ver-
texIV.

IV We rely on per-vertex adaptation criterion to allow implementa-
tion on a simple hardware. This can occasionally lead to the combi-
nation of more than 6 textures in a given pixel. However, note that
this criterion can easily be used per pixel if necessary on software
and fragment program implementations.

2.1. Measure of the Deformation

In continuum mechanics, deformation is measured by the
strain tensor ε = 1

2 (G + Gt) where G is the velocity gradi-
ent matrix (∂vi

∂x j
)i, j (taking the symmetric part of the gradient

matrix allows us to cancel the effect of solid rotations). If
a scalar measure is required, the norm ‖ε‖ =

√

∑i, j ε2
i, j is

used.

As stated above, for each texture j of each layer i we
maintain the accumulated local deformation d i

j(x,y) since
its last regeneration. This is the time integral of the instant
deformation ‖ε‖ for a given fluid parcel (so this data has to
be advected with the fluid as well). At each time step and
for each vertex we compute ‖ε‖(x,y) and update the values:
di

j(x,y) + = ‖ε‖(x,y)dt .

Note that integrating a norm prevents any reverse motion
to cancel a previous deformation. This case does not occur
with turbulent fluids. However, if such effect was to be si-
multated, one would simply have to store and update the in-
tegral of the tensor itself, then to evaluate the norm to be
compared with d∗.

Global: (d∗ and τi are user defined, others are internal)

d∗ the target amount of deformation.
τi the latency of layer i.

t0i
j the time of the last regeneration of texture ji.

(in fact we store and update t − t0i
j).

αi
j the weight of texture ji

(stored to avoid the cosine evaluation at every vertex)

Local: (to be advected with the fluid)

(ui
j,v

i
j) the texture parameterization ji.
di

j the local accumulated deformation of texture ji.
l∗ the decimal ideal layer number for at this vertex.

Table 1: Summary of the introduced parameters

Figure 3: Left: texture streched in fast regions due to low latency.
Right, top: ghosting artifact on procedural noise with classical
blending of 3 textures. Right, bottom: our blending without artifact.

c© The Eurographics Association 2003.

Neyret / Advected Textures

3. Blending Procedural Textures

At this stage, we have defined how to passively advect tex-
tures along the flow. This implies the blending of 6 textures
(in general). As stated in the introduction, computing the
simple blending of textures (i.e., doing the weighted sum)
produces artifacts such as ghosting effects and contrast fad-
ing: non-corresponding pattern features are super-imposed
and rendered with a weight less than 1 (see Figure 3). If an
explicit texture map is used, there is no easy way to do bet-
ter. However, we can improve this in the case of procedural
noise such as Perlin noise (or hypertextures 9 in 3D):

noise {bk} Σ t shad
+

1-α

α

noise {bk} Σ t shad

noise {bk}

noise {bk}

Σ t shad1-α

α
+

Figure 4: Classical vs our blending of 2 procedural samples.

Since pseudo-random noise base functions b() share the
same pseudo-period and are uncorrelated, their linear com-
bination is a correct base function as well. So is the resulting
linear turbulentV noise value obtained by adding the base
function of harmonic frequencies. Things turn bad when a
non-linear transform is used when combining the harmonic
components. Typically, a nice and frequently used turbulent
function is t(x) = ∑ n

k=0
1
2k |2b(2kx)−1|: the absolute value

produces a discontinuity of the derivative that fits well with
the look of fluffy clouds, choppy waves or landscapes carved
with valleys. This non-linear feature will yield the same
blending artifacts as mentioned above. To avoid this, we sep-
arate Perlin-based procedural shaders into two parts: all the
base functions 1

2k b(2kui
j) are evaluated for each texture pa-

rameterization ui
j and blended classically so that we obtain a

blended spectrum { 1
2k b∗k (), k = 0..N}. Then the shader that

computes the visual attribute from this spectrum is applied
(including the chosen turbulent sum t() and the user-defined
shader shad() based on this turbulence). I.e., instead of com-
puting the linear blending as defined in section 2:

∑i, j α′i
j shad(t i

j()) with t i
j() = ∑n

k=0
1
2k f (b(2kui

j))
(with f (b) = |2b−1| in the example above),

we compute instead: (See Figure 4)

shad(t∗()) with
t∗() = ∑n

k=0
1
2k f (b∗k) and b∗k = ∑i, j α′i

j b(2kui
j)

Note that this scheme also saves computation since the po-
tentially complex shader shad() is now evaluated only once
per pixel or voxel.

V A procedural texture based on Perlin noise usually consists of a
shader shad() transforming one or several noise signals into color,
transparency or bump. The noise signal itself is the result of a pro-
cess: an interesting turbulent noise t() is produced from a fractal
combination of a simple base noise b().

4. Animating Small Scales

Passively advecting the texture is generally not sufficient:
Since the texture increases the apparent spatial resolution,
we need to make this new detailed visual information swirl
at this scale the same way the low resolution scales move.
I.e., we need to make the small scales alive. As stated in the
introduction, this is classically achieved by adding an extra
dimension to the noise so that it is evaluated both in space
and time. Alas the time statistical properties of fluids are
very different from their spatial statistical properties and thus
poorly represented by pseudo-random noise. Flownoise 10

has been introduced to provide a better swirling behavior to
Perlin noise. The key idea is to apply a user-defined rota-
tion along time to the base gradient vectors of regular Perlin
noiseVI. The problem is then to tune these rotation parame-
ters along space and scales.

Our idea is inspired by the 1941 theory of Kolmogorov 3

(after a previous remark by Richardson that “large eddies
break into smaller eddies and so on to viscosity”): an energy
cascade in the Fourier domain can be observed and quanti-
fied showing that energy travels from the large to the small
scales. Thus the rotation at a small scale is related to the
vorticity at a larger scale with a delay. However, the Kol-
mogorov cascade applies on an inertial range (i.e., homoge-
neous distribution in space) while we want to apply it on a
fluid with heterogeneous activity. We assume that the iner-
tial range condition is valid within each grid cell, but that
the fluid activity can change from cell to cell.

To model the local vorticity spectrums corresponding to
the energy cascade, we store and maintain at each vertex the
vorticity ωi to be applied at each procedural scale below the
grid cells size (e.g., 4 values if the grid is 322 or 323 and
the final image is 512× 512). These ωi are used as rotation
parameters for the flownoise. Note that this data has to be
advected with the fluid as well.

At each time step and for each vertex, we simulate the
energy transfer through scales by applying the relaxation

ωk := βkωk +(1−βk)ωk−1 where βk = 2−
dt
τk (τk is the

characteristic delay of transfer between scale k − 1 and k)
and ω0 is the vorticity corresponding to the grid wavelength.
Energy cascade theory suggests that τk = γkτ0 , so that the
cascade is defined by the two numbers γ and τ0. But we con-
sider that the tuning of these 4 transfer delays τk should be
left to the user since it allows him to control the ‘activity’ of
the fluid.

V I The base noise used for Perlin noise is defined by
b(x) = ∑i χ(x− xi)gi(x− xi) with gi(~d) = ~gi.~d the gradient func-
tion associated to the node i of the virtual cell surrounding x, and
χ(~d) a drop-off kernel. The components of the gradient vector ~gi are
random values.

For flownoise the base noise function applied with a rotation R(t)
is defined the same way, with gi(~d) = ROT (~gi,R(t)).~d . The rotation
speed usually depends on the scale.

c© The Eurographics Association 2003.

Neyret / Advected Textures

4.1. Evaluating ω0

In principle ω0 = ω̂(2
h) where ω̂ is the Fourier transform of

the vorticity and h the grid cell size. However, we assumed
that the inertial range condition only applies within a cell,
so we should measure the energy frequencies only within a
neighborhood and not through the whole domain.

Our initial idea was to evaluate ω0 using a selective high
pass filter on ω. But we observed that numerical dissipation
as well as discretization of the operators make this value un-
reliable. So we simply assume that ω0 is proportional to the
norm of the vorticity ω at this vertex. If large scale eddies do
exist in a simulation, a non-selective high pass filter could
be used such as ω̄n − ω̄ where ω̄n is the average of ω in a 2n

neighborhood and ω̄ is the global average.

Global: (βk is user defined, others are internal)

βk the transfer coefficients between scales k−1 and k
(which are procedural scales, i.e., sub-cell).

Local: (to be advected with the fluid)

ωk the local vorticity for scale k.

Table 2: Summary of the introduced parameters

5. Results

We have implemented the presented workflow upon the
stable fluid solver based on FFT 12. We relied on 3 layers
(i.e., 9 textures) for all our examples. For classical texture
maps or precalculated procedural noise we can take advan-
tage of standard hardware-accelerated OpenGL, thus our im-
plementation is real time in these cases. Note that only linear
blending can then be used. For procedural textures – which
requires per-pixel calculations – our software renderer re-
quires 1 to 20 seconds per frame depending on the complex-
ity of the shader and of the image (the ability of the newcom-
ing graphics boards to compute complex fragment shaders
should ease this task).

The various parameters our method adds to the simula-
tion share the same low resolution as the grid (and are ad-
vected like the density field). Only the given image texture
(if any) and the final images are high resolution, thus very
little memory is needed. Moreover, using procedural noise
allows us to predict whether material will appear or not in a
grid cell. Thus the high resolution evaluations are done only
in useful regions. This implies that the rendering cost grows
less than linearly with respect to the number of grid vertices.
Conversely, increasing the resolution of the simulated grid
yields linear increase of the storage and super-linear increase
of the computation time.

The animations joined to the paper (check the CDROM
and our web site) illustrates the effects of advected texture
with low or high constant latency, and with locally adapted

latency. Some rely on image textures (the two first examples,
i.e., the color flow of Fig 5a and the paste of Fig 5b), while
the others rely on procedural Perlin noise (the clouds layer
and the fireball) using the flownoise extension 10.

We have generated many different kinds of images and
animations as shown in the teaser image, in Figure 5, and on
the video (note that the atmospheric animations do not pre-
tend any plausibility!). The resolution grid was 64×64, but
most images were taken in a 16×16 region of interest. The
final resolution is generally 512×512. We also did early ex-
periment in 3D, thus showing that our scheme applies to 3D
as well: the last sequence of the video shows how our method
can amplify both the shape and animation in a 8× 8× 8 re-
gion of a 3D flow. The rendering is then the most demand-
ing part since volumetric hypertexture rendering 9 is required
(please don’t pay attention to the poor rendering quality of
our hardware-based volume shader prototype). Note that in
3D, vorticity is a vector. We used random orientations for
this test, but this issue deserves deeper investigation.

The combination of our new parameters with the fluid pa-
rameters and the procedural texture parameters opens a very
wide field of tuning for experimentation.

6. Conclusion

This paper has presented a complete solution for animating
a texture advected by a fluid. We rely on 3 steps that were
unsolved in previous approaches:

- Advecting the texture without stretching it by introduc-
ing a local adaptive scheme triggered by the accumulated
local deformation.

- Blending the base textures without interpolation artifact
(ghosting effect), at least for Perlin procedural texture.

- Handling animation below the size of the simulation grid
relying on flownoise, and controling it to ensure co-
herency with the simulated fluid activity.

Our results show that visually pleasing advected texture can
be obtained. This allows us to fake very high resolution
fluids based on correct low resolution CFD. Moreover, the
user can phenomenologically control the aspect of details
similarly to the usual scheme for surfaces. A purely phys-
ical approach would have required to model and solve the
small scale phenomena: both tasks are generally very dif-
ficult since natural objects (e.g., foam, lava...) combine nu-
merous phenomena (some not understood or with unknown
parameter values), and require solving non-linear equations
at very high resolution.

For future work, we would like to adapt the entire scheme
to the new generation of graphics hardware offering frag-
ment programmability, and to further explore the application
of textured fluids to 3D such as cloud simulation. In such a
case, most of the space is empty which should be taken into
account for deep optimization. We are also interested in ex-
tending our blending approach to other procedural noises,
e.g., Worley noise 16.

c© The Eurographics Association 2003.

Neyret / Advected Textures

Figure 5: Various kind of generated images (see also the teaser image). The two on left rely on hardware textures. The two on right are
procedurally generated. Note that the maximum stretching is controlled (on the rightest it is high on purpose).

Acknowledgments

We wish to thank Jos Stam for discussions on fluids and
fluid deformation and François Faure for a discussion on
the meaning of the strain tensor components in mechanics.
Thanks are also due to Marie-Paule Cani and Laks Raghu-
pathi for rereading and to Lionel Reveret, Jean-Dominique
Gascuel and Gilles Debunne for last-minute video editing.

References

1. David Ebert, Kent Musgrave, Darwyn Peachey, Ken
Perlin, and Worley. Texturing and Modeling: A Proce-
dural Approach. Academic Press, October 1994. ISBN
0-12-228760-6.

2. David S. Ebert and Richard E. Parent. Rendering
and animation of gaseous phenomena by combining
fast volume and scanline A-buffer techniques. In For-
est Baskett, editor, Computer Graphics (SIGGRAPH
’90 Proceedings), volume 24, pages 357–366, August
1990.

3. A.N. Kolmogorov. The local structure of turbulence
in incompressible viscous fluid for very large Reynolds
number. Doklady Akad. Nauk SSSR, pages 9–13, 1941.

4. Arnauld Lamorlette and Nick Foster. Structural model-
ing of natural flames. ACM Transactions on Graphics,
21(3):729–735, July 2002.

5. Nelson Max and Barry Becker. Flow visualization us-
ing moving textures. In NASA Conference Publica-
tion 3321-Series, editor, Proceedings of the ICAS/LaRC
Symposium on Visualizing Time-Varying Data, pages
77–87, 1996.

6. Ken Musgrave. Great balls of fire. Technical report,
Digital Domain, 1997.
http://www.kenmusgrave.com/balls_o_fire.ps.

7. PDI. ’Shrek’: The story behind the screen. In Sig-
graph Course Notes CD-ROM, Course #19, pages 59–
66. ACM-Press, 2001.
http://terra.cs.nps.navy.mil/DistanceEducation/online.
siggraph.org/2001/Courses/cd1/cnav/cnavc19.html.

8. Ken Perlin. An image synthesizer. In B. A. Barsky,
editor, Computer Graphics (SIGGRAPH ’85 Proceed-
ings), volume 19(3), pages 287–296, July 1985.

9. Ken Perlin and Eric M. Hoffert. Hypertexture. In
Jeffrey Lane, editor, Computer Graphics (SIGGRAPH
’89 Proceedings), volume 23(3), pages 253–262, July
1989.

10. Ken Perlin and Fabrice Neyret. Flow noise. Siggraph
Technical Sketches and Applications, page 187, Aug
2001. http://mrl.nyu.edu/˜perlin/flownoise-talk/
http://www-imagis.imag.fr/Publications/2001/PN01/.

11. Jos Stam. Stable fluids. In Proceedings of SIGGRAPH
99, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 121–128, Los Angeles, California,
August 1999. ACM SIGGRAPH / Addison Wesley
Longman. ISBN 0-20148-560-5.

12. Jos Stam. A simple fluid solver based on the fft. Journal
of Graphics Tools, 6(2):43–52, 2001.

13. Jos Stam and Eugene Fiume. Depicting fire and other
gaseous phenomena using diffusion processes. Pro-
ceedings of SIGGRAPH 95, pages 129–136, August
1995. ISBN 0-201-84776-0. Held in Los Angeles, Cal-
ifornia.

14. Dan Stora, Pierre-Olivier Agliati, Marie-Paule Cani,
Fabrice Neyret, and Jean-Dominique Gascuel. Animat-
ing lava flows. In Graphics Interface (GI’99) Proceed-
ings, pages 203–210, Jun 1999.
http://www-imagis.imag.fr/LAVA/.

15. G. Wolberg. Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA, 1990. ISBN 0-81868-
944-7.

16. Steven P. Worley. A cellular texturing basis function.
In Holly Rushmeier, editor, SIGGRAPH 96 Conference
Proceedings, pages 291–294. ACM SIGGRAPH, Ad-
dison Wesley, August 1996.

c© The Eurographics Association 2003.

