
HAL Id: inria-00533054
https://inria.hal.science/inria-00533054

Submitted on 5 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XRay Views: Understanding the Internals of Classes
Gabriela Beatriz Arévalo, Stéphane Ducasse, Oscar Nierstrasz

To cite this version:
Gabriela Beatriz Arévalo, Stéphane Ducasse, Oscar Nierstrasz. XRay Views: Understanding the
Internals of Classes. International Conference on Automated Software Engineering (ASE’03), Nov
2003, Montreal, Canada. �inria-00533054�

https://inria.hal.science/inria-00533054
https://hal.archives-ouvertes.fr


XRay Views: Understanding the Internals of Classes

Gabriela Arévalo, Stéphane Ducasse, Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland
{arevalo, ducasse, oscar}@iam.unibe.ch

Abstract

Understanding the internal workings of classes is a key
prerequisite to maintaining an object-oriented software sys-
tem. Unfortunately, classical editing and browsing tools of-
fer mainly linear and textual views of classes and their im-
plementation. These views fail to expose the semantic rela-
tionships between the internal parts of a class. We propose
XRay views —a technique based on Concept Analysis—
which reveal the internal relationships between groups of
methods and attributes of a class. XRay views are com-
posed out of elementary collaborations between attributes
and methods, and help the engineer to build a mental model
of how a class works internally. In this paper we present
XRay views, and illustrate the approach by applying it on
the Smalltalk class UIBuilder.

Keywords: Class Understanding, Concept Analy-
sis, Logical Views

1. Introduction

Understanding source code is a key activity in the main-
tenance of software systems [3].

In the specific case of object oriented systems, reading
the code is harder than procedural systems [4, 10], and
therefore the maintenance is actually higher. This is due to
several reasons [5]. The first issue is that, contrary to proce-
dural languages, the method definition order in a file is not
important [4]. There is no simple and apparent top-down
call decomposition, even if some languages propose the vis-
ibility notion (private, protected, and public). Furthermore,
the run-time architecture is not apparent from the source
code, which only exposes the class hierarchy [5]. Another
important problem is the presence of late-binding leads to
“yoyo effects” when walking through a hierarchy and try-
ing to follow the call-flow [13].

Focusing on classes, considered as cornerstones of ob-
ject oriented systems, we propose a technique to support
software engineers in the task of understanding a complex

object-oriented system. Instead of requiring the engineer to
read code line-by-line to understand how a class works, we
provide logically connected “XRay views” of classes that
give the engineer an impression of the relationships between
methods, attributes, and the invocation and access patterns
of a class. In this way we support opportunistic understand-
ing [11] in which the engineer understands a class itera-
tively by exploring patterns (given by the views) and read-
ing code.

Taking into account the class as a sole unit, we are able
to provide answers to the following questions about a class:
(a) which methods access any attribute, directly or indi-
rectly, (b) which groups of methods access directly or indi-
rectly all the attributes or some subset of the attributes, (c)
which methods are only called internally, (d) which meth-
ods/attributes are heavily used and accessed, (e) how the
methods and attributes collaborate. Each of these aspects is
important for understanding the inner workings of a class,
but unfortunately they are dispersed in the source code, and
therefore cannot easily be teased out by a straightforward
reading of the source. For this reason we generate a graph
representation of the source code and run our tool, ConAn,
which applies Concept Analysis to detect different collabo-
rations to compose them in the XRay views. Concept anal-
ysis (CA) [6] is a branch of lattice theory that allows us to
identify meaningful groupings of “objects” that have com-
mon “attributes” 1. These groupings (known as concepts)
form a partial order known as concept lattice. There are sev-
eral algorithms for computing the concepts and the concept
lattice for a given context [9]. For more details, the inter-
ested reader should refer to Ganter and Wille [6]. In this pa-
per we apply this technique and limit our approach to un-
derstanding a single class, without taking into account rela-
tionships to subclasses, superclasses, or peer classes.

This paper is a short version of the approach introduced
in [2], and is structured as follows: Section 2 introduces the
definition of elements and properties used in ConAn, and
the collaborations defined to build the XRay views. Sec-

1 To avoid confusion with object-oriented terminology, we refer in this
paper instead to elements having common properties

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03) 
1527-1366/03 $ 17.00 © 2003 IEEE 



tion 3 introduces in detail one specific view and a validation
in the Smalltalk class UIBuilder. Sections 4 and 5 summa-
rizes briefly the related work, our main conclusions and fu-
ture work.

2. Applying Concept Analysis to Class Under-
standing

Complex software systems are composed of entities,
such as classes, methods, modules, and subsystems, and dif-
ferent kinds of relationships that hold between them. CA
can help us to detect patterns in these relationships, but
first we must encode the software information at hand in
terms of elements and properties. Depending on exactly
what kinds of patterns we are interested in, we may apply
CA in radically different ways.

In this paper we apply CA to identify concepts that corre-
spond to the collaborations within a single class. We there-
fore choose as elements the methods and attributes of a
class, and as properties the access and invocation relation-
ships between them. Note that we use the term collabora-
tion to express a relationship between a set of methods and
a set of attributes.

Elements and Properties of Classes: Suppose a class has a
set of methods M and a set of attributes A. The basic prop-
erties we use are extracted from the source code as follows:

• m reads x means that the method m ∈ M directly
reads the value of attribute x ∈ A

• m writes x means that the method m ∈ M directly up-
dates the value of attribute x ∈ A

• m calls n means that the method m calls the method n
explicitly via a self-call.

We also define a number of derived properties, e.g.:

• m accesses x if either m reads x or m writes x (i.e.,
accesses = reads ∪ writes )

In Figure 1 we see a graphical representation of a class
with methods M = {m,n, o, p, q, r, s, t} and attributes
A = {a, b, c, d}. Here we have o calls m, m calls n,
n accesses a, and so on.

These properties express direct relationships be-
tween entities. We are also interested in indirect relation-
ships, for example, m accesses a indirectly (which we
write “m accesses∗ a”). Indirect relationships are impor-
tant in revealing collaborations between methods and at-
tributes, and are helpful in assessing the impact of changes.
We therefore define as well the following derived proper-
ties:

• m calls∗ n if m calls m′ and either m′ calls n or
m′ calls∗ n (i.e., calls∗ = ∪i≥2 calls i)

q

a db

n

m

p

ts

r

attributes

methods

c

o

calls directly
calls indirectly

accesses directly
accesses indirectly

Figure 1. Attributes accesses and methods
invocations and the groups they form

• m reads∗ x if m calls m′ or m calls∗ m′, and
m′ reads x (i.e., reads∗ = ∪i≥1 calls i · reads )

• m writes∗ x if m calls m′ or m calls∗ m′, and
m′ writes x (i.e., writes∗ = ∪i≥1 calls i · writes )

• m accesses∗ x if m reads∗ x or m writes∗ x (i.e.,
accesses∗ = reads∗ ∪ writes∗ )

In the example, we see that o calls∗ n and n reads a, and
consequently o reads∗ a.

We apply CA to our example class to reveal some con-
cepts, e.g. ({m, o}, {accesses∗ a}), ({p}, {accesses a, b})
Collaborations: Since we are interested in collaborations
occurring between sets of methods and attributes, we ex-
tend our properties to sets in the obvious way. Suppose that
F and G are arbitrary subsets of the set of elements E. We
define:

• F R G means that each entity in F is related with each
one in G, i.e., ∀e ∈ F, e′ ∈ G, e R e′.

• F R G means that the entities in F are related exclu-
sively with those in G, i.e., ∀e ∈ E, e′ ∈ G, e R e′,⇒
e ∈ F and conversely, ∀e ∈ E, e′ ∈ F, e′ R e ⇒ e ∈
G.

Interpretation: We introduce now the collaborations based
on which XRay views are built. Note that in each case we
are interested in all of the participants of a given collabo-
ration. We will only list those that will be used later in the
paper. The complete list of collaborations is listed in [2].

Direct Accessors: Direct accessors, readers or writ-
ers M ⊆ M of an attribute a are defined by a
non-exclusive relationship: M accesses {a}. This col-
laboration provides us with a simple classifica-
tion of the methods according to which attributes they
use. In our example, {n, p} accesses {a}.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03) 
1527-1366/03 $ 17.00 © 2003 IEEE 



Exclusive Direct Accessors: A method m is an exclusive
direct accessor of a when m is the only method to ac-
cess a directly. We express it as: M accesses {a}. In
our example, we see that {r} accesses {d}.

Exclusive Indirect Accessors: We consider a method to
be an exclusive indirect accessor when it calls a di-
rect accessor method of a specific attribute. It is repre-
sented as an exclusive relationship: M accesses∗ {a}.
This collaboration helps us to distinguish those meth-
ods that define the behaviour of a class without using
at all the state from those that use the state of the class.
In our example, we have {s, t} accesses∗ {d}.

Collaborating Attributes: This collaboration expresses
which attributes are used exclusively by a set of meth-
ods, and we express it as: M accesses A. In the
example, we have the sets of attributes accessed ex-
clusively by sets of methods are all of size 1:
{q} reads {c} and {r} accesses {d}.

Stateful Core Methods: This collaboration is a special case
of collaborating attributes and expresses which meth-
ods access all the state of a class. We express it as:
M accesses A. This collaboration is interesting be-
cause it provides a guideline if all the attributes are
collaborating in the core of the class, and providing a
functionality to the class through a set of methods. In
the example, there are no methods accessing the en-
tire state of the class.

3. XRay Views

An XRay view is a group of collaborations that ex-
poses specific aspects of a class. Based on the collabora-
tions specified above, we have defined three XRay views:
STATE USAGE, EXTERNAL/INTERNAL CALLS, and BE-
HAVIOURAL SKELETON. These three views address dif-
ferent, but logically related aspects of the behaviour of a
class. Because of the limited space of the paper, we pro-
vide a small explanation of all of them, but we only detail
the definitions and case study of the view STATE USAGE.
The three views are explained in detail in [2]. STATE US-
AGE focuses on the way in which the state of a class is ac-
cessed by the methods, and exposes, for example, how co-
hesive the class is. EXTERNAL/INTERNAL CALLS catego-
rizes methods according to whether they are internally or
externally used, while BEHAVIOURAL SKELETON focuses
on the way methods invoke each other internally. In order to
illustrate our approach, we present the analysis of the class
UIBuilder of the VisualWorks framework. It is a complex
class that is used to build user interfaces (windows and their
subcomponents) according to declarative specifications pro-
vided by its clients. We chose this class because it is com-
plex enough in terms of number of instance variables (18)

and methods (122) and communication between their meth-
ods, and it helps us to show characteristic results of XRay
view application. As its name shows it is a Builder Design
Patterns [1].

For the view, we ran our analysis tool, ConAn, on the
chosen class, we examined the resulting view by looking
at and combining the groups presented in the “Used and
Shown Collaborations” section of the view definition, and
we validated our findings by reading the source code oppor-
tunistically.

XRay View: STATE USAGE

Description: Clusters attributes and methods according to
the way methods access the attributes.

Used and Shown Collaborations: Exclusive Direct Acces-
sors, Exclusive Indirect Accessors, Collaborating Attributes,
and Stateful Core Methods.

Rationale: Objects bundle both public and private be-
haviour and state. In order to understand the design of
a class, it is important to gain insight into how the be-
haviour accesses the state, and what dependencies exist
between groups of methods and attributes.

Validation with UIBuilder: Firstly, we find getters and set-
ters for each attribute. If we consider only the methods
that access directly the attributes, we can classify the at-
tributes into three groups: (a) attributes that are accessed
only through their getter and setter (policy, stack, cache-
WhileEditing, and decorator); (b) attributes that are accessed
through their getter and setter, and an additional method
(labels, values); (c) attributes that are accessed by several
methods. The view EXTERNAL/INTERNAL CALLS helps us
to refine our understanding of these differences.

We also learned that most accessors are readers, and
there are only very few writers. Most of the writer meth-
ods are setters. This means that most of the attributes either
are initialized when instances are created or are initialized
and modified outside the class scope.

If we consider the collaborations among the attributes
taking into account only the direct accessors, we find that
there are very few groups of collaborating attributes: (wrap-
per, component), (bindings, window), (stack, composite),
(policy, window), (source, bindings), (component, decorator,
wrapper). The methods access groups of attributes only by
reading them. 9 over 18 attributes are used with other ones.
This means that there are 9 attributes that are used alone in
different methods, so this fact reveals that the class is group-
ing several functionalities and could be split using the set of
non-collaborating and collaborating attributes. This kind of
hypothesis can be refined using the BEHAVIOURAL SKELE-
TON view.

When we look at indirect accesses to attributes we ob-
tain some new groups of collaborating attributes but these

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03) 
1527-1366/03 $ 17.00 © 2003 IEEE 



new groups only include two new attributes that were not
identified by the direct access attribute groups. From this
observation we can learn that there is a group of 11 core at-
tributes that are used in the same group of methods.

In this specific case, we do not have any stateful core
methods, which is not surprising as the class has a lot of at-
tributes.

4. Related Work

Within the CA application to understand software sys-
tems, we find several approaches. Dekel uses CA to visu-
alize the structure of classes and to select an effective or-
der for reading the methods [4]. Godin and Mili [7] applied
concept analysis to maintain, understand and detect incon-
sistencies in the Smalltalk Collection hierarchy. In C++ and
Java, Snelting and Tip [12] analysed a class hierarchy by
making the relationship between methods and variables ex-
plicit. Similarly, Huchard [8] applied concept analysis to
improve the generalization/specialization of classes in a hi-
erarchy.

5. Conclusions and Future Work

In this paper we have applied concept analysis to help in
the understanding of object-oriented classes. The identified
concepts are the collaborations between groups of methods
and attributes of a single class. We only introduced the view
STATE USAGE which helps to understand how the state of
the class is used. Two other views are defined and intro-
duced in [2]. Each of them expose specific aspects of a
class in terms of groups of collaborations. We have limited
our validation in this paper to the Smalltalk class UIBuilder,
but also the classes Scanner and OrderedCollection were
analyzed in [2]. In our validadtion, we use ConAn, a tool
we have developed to automatically generate collaborations
that compose the XRay views.

In our first experiences we can observe the following:

• each XRay view has a clear focus, and identifies a set
of methods exhibiting some key properties

• the views do not stand on their own, but complement
and reinforce each other

• although the generation of collaborations and the
views is fully automatic, their interpretation entails it-
erative application of views and opportunistic code
reading

• the current approach does not take inheritance into ac-
count, which can be a limitation to understanding

Our next steps are to explore the definitions of new kinds
of views, and apply them to larger classes. We also intend
to explore ways of analysing classes in the context of their

class hierarchies, and also considering the possible relation-
ships and collaborations with other class -not necessarily
presented in the class hierarchies.

Acknowledgments We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the
project “Tools and Techniques for Decomposing and Com-
posing Software” (SNF Project No. 2000-067855.02), and
Recast: Evolution of Object-Oriented Applications (SNF
2000-061655.00/1). We thank Michele Lanza for his re-
views.

References

[1] S. R. Alpert, K. Brown, and B. Woolf. The Design Patterns
Smalltalk Companion. Addison Wesley, 1998.

[2] G. Arévalo. Understanding classes using x-ray views. In
Proceedings of 2nd. MASPEGHI (ASE 2003), 2003.

[3] V. Basili. Evolving and packaging reading technologies.
Journal Systems and Software, 38(1):3–12, 1997.

[4] U. Dekel. Applications of concept lattices to code inspec-
tion and review. Technical report, Department of Computer
Science, Technion, 2002.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[6] B. Ganter and R. Wille. Formal Concept Analysis: Mathe-
matical Foundations. Springer Verlag, 1999.

[7] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and
T.-T. Chau. Design of class hierarchies based on concept
(galois) lattices. Theory and Application of Object Systems,
4(2):117–134, 1998.

[8] M. Huchard, H. Dicky, and H. Leblanc. Galois lattice as
a framework to specify algorithms building class hierar-
chies. Theoretical Informatics and Applications, 34:521–
548, 2000.

[9] S. Kuznetsov and S. Obëdkov. Comparing performance
of algorithms for generating concept lattices. In Proc. Int.
Workshop on Concept Lattices-based KDD, 2001.

[10] M. Lanza and S. Ducasse. A categorization of classes
based on the visualization of their internal structure: the class
blueprint. In Proceedings of OOPSLA 2001, pages 300–311,
2001.

[11] D. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental
models and software maintenance. In Soloway and Iyengar,
editors, Empirical Studies of Programmers, First Workshop,
pages 80–98, 1996.

[12] G. Snelting and F. Tip. Reengineering class hierarchies using
concept analysis. In ACM Trans. Programming Languages
and Systems, 1998.

[13] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03) 
1527-1366/03 $ 17.00 © 2003 IEEE 


