Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets - Archive ouverte HAL
Article Dans Une Revue The Journal of Computational Finance Année : 2014

Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets

Résumé

We consider the discretized version of a (continuous-time) two-factor model introduced by Benth and coauthors for the electricity markets. For this model, the underlying is the exponent of a sum of independent random variables. We provide and test an algorithm, which is based on the celebrated Foellmer-Schweizer decomposition for solving the mean-variance hedging problem. In particular, we establish that decomposition explicitely, for a large class of vanilla contingent claims. Interest is devoted in the choice of rebalancing dates and its impact on the hedging error, regarding the payoff regularity and the non stationarity of the log-price process.
Fichier principal
Vignette du fichier
GoutteOudjaneRussoJCFOct11.pdf (398.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

inria-00473032 , version 1 (13-04-2010)
inria-00473032 , version 2 (17-05-2012)

Identifiants

Citer

Stéphane Goutte, Nadia Oudjane, Francesco Russo. Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets. The Journal of Computational Finance, 2014, 17 (2), pp.71-111. ⟨10.21314/JCF.2013.261⟩. ⟨inria-00473032v2⟩
351 Consultations
682 Téléchargements

Altmetric

Partager

More