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Abstract: Indirect lighting accounts for subtle but essential effects in virtual
scenes, and plays a great role in our perception of geometry. It is especially
wanted in video games, on fully dynamic scenes, where it greatly enhances
the perceived realism. In this paper, we present a screen-space hierarchical
algorithm for computing indirect lighting for animated scenes. Our algorithm
is fully compatible with deferred-shading rendering engines for video games,
and computes indirect lighting in less than 10 ms, leaving enough computation
time for other gaming tasks, such as interaction and animation. Our algorithm
works in two steps: first, we compute indirect illumination in screen-space at all
possible scales, then we filter and combine together the illumination received at
the different scales. We describe both the algorithm and its practical integration
inside a commercial video-game rendering engine.
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Eclairage Indirect Hierarchique en Espace Image
piour les Jeux Vidéos

Résumé : L’éclairage indirect prend en compte des effets lumineux subtils
dans les scenes virtuelles. Ces effets sont néanmoins tres utiles dans la percep-
tion de la géométrie, ce qui est particulierement important dans les jeux vidéos
ou il augmente considérablement le niveau de réalisme. Dans ce papier nous
présentons un methode de calcul en espace image de 1’éclairage indirect pour
des scenes animées. Notre méthode est compatible avec la technique du deferred
shading utilisée dans les jeux vidéos, et calcule 1’éclairage en moins de 10 ms.
Ceci laisse le temps au moteur de jeux d’effectuer les taches incompressibles que
sont l'intelligence artificielle, la communication réseau et l'interaction avec le
joueur. Notre méthode est basée sur un calcul multi-echelles de I’éclairage dans
un mipmap, qui est ensuite re-combiné et composé avec 'eclairage direct. Nous
décrivons également comment utiliser cette méthode dans un pipeline réel de
jeu vidéo.

Mots-clés : Eclairage Global, Temps Réel, Jeux Vidéos
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1 Introduction

Computing the indirect lighting in video games adds a lot to both gameplay
and scene realism. However, computing indirect lighting in real time is both
challenging and computationally expensive, as it requires to solve an integral
equation. There are several solutions to compute indirect lighting on the GPU
(e.g. 2,13, 13, 15, 8]). However, in order to be usable in commercial game
rendering engines, an illumination algorithm should satisfy some fairly strict
criteria:

e The whole rendering algorithm (display and illumination simulation) should
run really fast. The game engine must display every frame within the al-
located budget of 33 ms, to achieve real-time rendering, including physical
simulation, artificial intelligence, geometric interactions and data stream-
ing, none of which can be reduced. The specific budget for computing
indirect illumination is at most 5 to 10 ms.

e The video game engine should run at a constant frame rate. The algo-
rithm used for any computation must be independent from unbounded
parameters, such as the amount of polygons to display. For this reason,
image-space computations, such as deferred shading, are becoming a stan-
dard in video game engines.

e The algorithm used for computing indirect lighting must fit within the
framework used in the rest of the video game engine, keeping the modifi-
cations to a minimum. Both for software stability and efficiency.

e The pictures must absolutely be noise-free and the animations must re-
main stable and without any temporal artifacts. On the other hand, full
numerical accuracy is not necessary, and we can make drastic assumptions
to reduce the computational load.
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4 Soler & Hoel

In this paper, we present a new algorithm for computing indirect illumina-
tion inside a deferred shading framework, that addresses these requirements.
Our algorithm works in screen-space, hierarchically. First, we compute indirect
illumination at several scales, using multiple resolutions of screen space. These
contributions are then upsampled and combined together to result in indirect
lighting between all visible parts of the scene. To enhance the stability of the
algorithm, we show how to combine multiple indirect illumination components
from several cameras (cooperative screen-space illumination), and how to com-
bine indirect lighting across successive frames, with filtering to avoid noise.

Our paper is organised as follows: in the next section, we review existing al-
gorithms for global illumination and indirect lighting in real-time. In section
we describe our algorithm for hierarchical screen-space indirect illumination.
Then in section[4 we discuss practical implementation issues, especially integra-
tion inside a commercial video game engine. In section [5, we show examples
validating our method both in terms of accuracy and applicability to video
gaming. Finally, in section[6] we conclude and present new directions for future
work.

2 Previous Work

Among the large number of research papers in global illumination, we will limit
ourselves to works that are close to our topic: ambient occlusion, screen-space
indirect illumination and illumination for video games.

2.1 Ambient Occlusion

Ambient Occlusion was an early attempt at simulating global illumination effects
in real time. It was originally defined as obscurance by Zhukov et al. [25] to be
the form factor between each point and the part of the environment that is not
occluded by nearby geometry as viewed from this point. In all succeeding works,
the main goal was real time rendering. In 2003, Iones proposes to pre-compute
and store obscurance in light maps [25] 5]. This work was further extended to
simulate color bleeding effects [12], using the obstacle’s reflectance to simulate
color bleeding.

Several papers present possible extensions of ambient occlusion to dynamic
scenes at the cost of additional object-space pre-computation: In 2005 Kontkan-
nen and Laine proposes to pre-compute and store per-object ambient occlusion
fields [10]. This allowed at run time a fast computation of ambient occlusion
with moving objects. This approach relies on approximations of the occluder
objects and also needs a heuristic to combine different objects for shading the
same pixel. Oat and Sander pre-compute a circular approximation of the un-
occluded field around each point of a rigid scene [17]. This allows to generate
ambient occlusion accounting for dynamic illumination. Ambient occlusion has
also been experimented for animated characters [9] and trees [4].

Since a few years, it is possible to compute ambient occlusion in image space
on GPU, thanks to the power of programmable graphics cards [6]. Ambient is
always a very local computation, as one only needs to measure the effect of ge-
ometry in the near vicinity of each point. This allows efficient implementations
such as the one proposed by Shanmugam and Arikan [21]. Epic Games pre-
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Hierarchical Screen-Space Indirect Illumination 5

sented at GDC 09 a fast and visually accurate screen-space ambient occlusion
(SSAOQ) algorithm using down sampled resolution and time coherency [23], suc-
cessfully used in their Unreal Engine 3 technology. Ritschel extends the SSAO
by reading the long distance incoming light from an environment map, and the
short distance light from nearby objects [20] hence simulating local effects such
as color bleeding.

2.2 Interactive and real-time indirect illumination

Accurate global illumination in real time is still a challenge. Existing meth-
ods approach it in several ways by precomputing data, neglecting visibility, or
limiting the number of bounces.

Coherent Surface Shadow Maps is a multi-bounces indirect illumination algo-
rithm for dynamic scenes made of several rigid objects [19]. A hemicube is swept
accross surfaces and visibility to the rest of the scene is computed. Because it
is only suitable to rigid objects and is significantly memory consumming, this
algorithm would not fit video games. Reflective Shadow Maps [1] uses the tra-
ditionnal shadow maps technique to encode which points in the scene actually
contain direct illumination. The contribution from these points is then splatted
in screen space using deferred shading. This technique only handles one bounce
of indirect lighting and neglects visibility during this step.

Implicit visibility [3] is a solution to the inherent cost of accounting for
occlusion: the space of directions is binned and links are established between
bins of different points. Only the closest source point for each bin of a receiver
point is considered, which implicitely accounts for visibility. A very similar
solution is proposed by Dachsbacher in which links possibly transport a negative
amount of energy to counterbalance normally occluded contributions [2]. These
methods however are not suitable to dynamic environments, as they both rely
on a precomputation of a hierarchical link structure, and scene geometry pre-
processing.

Recently, true screen-space indirect illumination algorithms have been pub-
lished. Nichols and Wyman propose a multiresolution spatting method based on
careful selection and clustering of virtual indirect point light sources [13,/14]. Be-
cause screen-space methods only account for the geometry facing the user in the
screen, more accurate results can be expected for height fields. Nowrouzezahrai
proposes an extension of his screen-space soft self-shadowing technique [24] to
handle indirect illumination [15]. For this, the visibility and radiance at each
point are approximated by low order polynomials and spherical harmonic dis-
tributions. This algorithm is one of the few handling glossy reflexions, although
it is limited to low frequency lighting effects.

2.3 Global illumination for video games

Although screen-space ambient occlusion is now widely used in video games
(e.g. S.T.A.L.K.E.R Clear Sky [22], Gears of War 2, Crysis Warhead, Uncharted
2: Among theves,...), it does not approximate indirect illumination very well.
Indirect illumination at arbitrary distances is still a rare asset. This is mostly
because of the extreme CPU/GPU/Memory conditions to fill for fitting such a
rendering algorithm into a complete game pipeline. For a long time, indirect
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6 Soler & Hoel

illumination has been pre-computed and stored into object textures (e.g. in the
game Counter-Strike).

Irradiance volumes has been a first solution suitable to video games [16],
based on precomputing irradiance at regularly spaced positions using in a static
scene using spherical harmonics, and coupled with precomputed radiance trans-
fer for moving objects. This technique however was not working with dynamic
lighting and could not handle dynamic scene geometry.

In his Siggraph’09 course, Anton Kaplanyan presented a remarkable exten-
sion of this technique: the radiance volume [8], used in CryEngine 3. His
method simulates volumetric light propagation, stored in a 4 channel 3D texture
of spherical harmonic distributions fed with direct illumination. The radiance
volume technique is completed by local screen-space indirect illumination for
color bleeding, and screen-space ambient occlusion.

2.4 Contributions

We compute the indirect illumination in screen space only, using deferred shad-
ing. This makes our algorithm similar to screen-space ambient occlusion meth-
ods. However, to allow light exchanges at an arbitrary distance while keeping
short range texture look-ups, we make this algorithm hierarchical. Because our
primary application field is video games, we also give practical explanations and
feedback on the integration of our technique into a real game engine, developed
by EDEN Games (used in the game Alone in the dark).

3 Hierarchical screen-space indirect illumination

We describe in this section our algorithm for computing indirect illumination in
screen-space space. We start by examining sampling issues so that the actual
indirect illumination is properly computed whenever possible (Section[3.1), then
discuss the approximations we make and the actual GPU implementation in
Section [3.2.

3.1 Screen-space sampling of indirect illumination

In order to compute the indirect illumination at every point in the scene, one
needs according to the light transport equation, to gather the direct illumination
from all other points in the scene that are visible from that point [7]. Calling
p(z,w,w’) and L(x,w) the reflectance and direct radiance functions at x and
directions w and ', the indirect illumination at a point z in a direction w can
be computed as:

L’(x,w):/p(m,w,w’)L(m',—w’)cos@dw
Q

Point 2’ is the point seen from z in direction w’ and 6 is the angle between the
normal at x and direction —w’. This integral can be carried on all scene surfaces
instead of directions, introducing a new visibility term:

0 cos @’
Eaw) = [ plawo!) L' o) G ol ') ds
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where v(x,2’) is defined by:

(@, 2') = 1 if z and 2’ are mutually visible
UL, & 0 otherwise

For numerically computing this integral, one usually sums over a large number
N of small areas ds across the scene, so that:

cos 0; cos 0}

N
L(z,w) = Z p(z,w,w)L(x;, —w}) v(x, x;)ds; (1)

[l — |

To perform the same computation in a deferred shading setup, we need to draw
samples in image space. We thus have to re-write ds in terms of the elementary
screen-space area dP covered by each of our screen-space samples. Assuming
notations of Figure[I, we can write:

224 tan % tan %“dP cos «
WH cos 3

ds =

(2)

Camera

Screen

Sample z-plane

A

™G

Figure 1: Notations for the computation of the indirect illumination in screen
space. x is the point being computed, z; is the current sample, dP the screen
differential area and ds the scene differential area of current sample.

In this expression, f, and f, are the horizontal and vertical field of view,
W and H the width and height of the screen in pixels, and z the depth of the
projected pixel. The left term in Equation 2]is the area of one pixel projected
at depth z on a surface parallel to the screen. The right term corrects this area
when the receiving surface is not parallel to the screen. Reporting Equation [2
in Equation [1] gives us the indirect illumination of a point x when sampled
in screen-space (we adopt notations p;,v;, L; for the reflectance, visibility and
illumination terms of equation T):

N
cosf;cosf, z24tan fj, tan f,dP; cos a

L/ _ ZL 7 7 i 7 v 7 3

(z,w)=> p P WH Py (3)

i=1 ?

Equation [3 cannot however directly be used in the computation: It is well
known in the global illumination community that the point-to-differential area
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8 Soler & Hoel

form-factor component of Equation [3]is a source of variance, since this term is
not bounded as r; = ||@ — x;|| gets close to zero. This is indeed what we ob-
served (See Figure[5) in our first experiments. We propose instead the following
workaround: In Equation (3] we replace the point to differential area form factor
by a closed formula that normally stands for discs [18]:

cos 6'ds N R?
r2 24 R2

1
with  R?= —cos@'ds (4)
m

In the discrete summation, this approximation is only valid for small values of
area ds, but considerably reduces the variance due to the denominator in the
leftwise expression. We validate in Figure[5 the gain in using this formulation
(Observe that the giant spikes in the red curve (eq[3) are not present in the
green (eqld)). In practice, because it is applied in screen space, the resulting
illumination will be heavily biased — e.g. when only small portions of the entire
scene are visible. However, we found important to get the result as close a
possible to the actual illumination when the geometric configuration allows it,
and noise-free in any case.

3.2 GPU Hierarchical screen-space computation

Using Equation 3 in a shader would eventually result in an unacceptable com-
promise between too much locality and too large a cost. Indeed, long distance
light interactions would need costly long distance texture lookups. We thus
turn toward a hierarchical implementation of Equation[3: the depth, normals
and materials buffers are mipmapped and successively sent to a unique local
shader. The contribution from all mipmaps are then up-sampled and added
together (see Figure[3 for a view of the full pipeline). Before that, we discuss
the approximations we made in our GPU implementation.

Approximations

We assume diffuse reflectances everywhere. Applying Equation [3] in a de-
ferred shader with glossy materials is not an intrinsic limitation of our method,
although it certainly would need to modify the sampling in image space to
importance-sample the BRDF. We assume in this paper, for the sake of sim-
plicity that p is an RGB albedo.

Because not all surfaces contributing to the indirect illumination at point x
appear on the screen, screen-space sampling the indirect illumination is neces-
sarily approximate. This approximation can certainly be bad if only a small part
of directly illuminated areas of the scene actually appear on screen. Similarly,
properly accounting for the visibility between samples is not possible, since no
parallax information is present in the screen. In such a case, completely omitting
visibility appears to be an appropriate choice as compared to more accurate but
costly estimates that would eventually produce inconsistencies across frames.
We thus suppose that v(z, z;) = 1 everywhere.

Indirect lighting shader

In each mipmap level, the shader draws samples in a constant crown defined
by two radii » and 2r (See Figure[2). This choice ensures that by combining
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Hierarchical Screen-Space Indirect Illumination 9

contributions from all mipmap levels, the entire screen eventually gets sampled
without cracks nor overlaps, provided that for the first mipmap level, the full
disc is also sampled. The optimal value for r is the thus smallest possible value
so that the entire screen is eventually sampled when combining contributions
from all mipmap levels. Keeping a constant number of samples across mipmap
levels also automatically adapts the sampling density in the resulting image so
that farther regions gets sampled less. Because at step k£ the shader works on

a mipmap at scale 2, the collected energy must be further scaled by a factor
22k,

Region sampled at mipmap levels k > 0

) Region sampled at mipmap level 0
r

Figure 2: Placement of samples in the shader. In all mipmaps except the first
(largest) one, the same region is sampled. This region is a crown delimited by
two circles of radii r and 2r. Applying this sampling to all mipmaps effectively
samples the entire image while only performing short-distance lookups. In the
first mipmap, we sample the remaining inside circle for completing the image
sampling.

Continuous combination of all level contributions

We filter and blend illumination contributions from all mipmap levels using a
joint bilateral up-sampling filter [11]: mipmaps levels of indirect illumination
are computed starting from the smallest, and added into a buffer. At the end
of each step, this buffer is up-sampled to the size of the next mipmap. This
way, the illumination at level k is filtered several times in the final result. This
produces smooth gradients in the final indirect lighting results, low noise and
no edge artifact. In Figure[4 of the results section, we show an example where
one can easily see the contribution of each mipmap level separately.

An important property is that we don’t need to perform the computation
starting at the full screen resolution, provided that the illumination mipmapped
results are properly up-sampled to the final image resolution. This gives us
an additional parameter to act on the speed of the algorithm (We use half
and quarter start resolutions mainly), at the expense of image-space frequency
content. Figure[8 shows the effect fo variing this parameter.
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10 Soler & Hoel

Geometry

Normals

—r—
)
7z

Direct illumination

Previous frame’

G-Buffers Hierarchical Indirect Lighting Hierarchical Blending Final compositing

Figure 3: Complete pipeline for our screen-space indirect illumination algo-
rithm. First, the direct illumination, normals and depth buffers coming from
the rendering loop are mipmapped. Then each set of mipmap is sent to the in-
direct lighting shader, and the resulting indirect illumination contributions are
up-sampled and added together. At each frame, the newly computed values are
averaged with the values of the previous frame (for compatibility tested warped
pixels only). The obtained illumination is multiplied by the albedo buffer and
added to the direct illumination.

3.3 Temporal coherence

Because of the discrete nature of the computation, the indirect illumination
computed using the previous method can only be computed very fast at the
price of artefacts, mainly due to the variance of the Monte-Carlo integration
when too few samples are used. Fortunately, it is possible to drastically reduce
this variance, at no extra cost by blending the currently computed indirect
illumination I; with that of the previous frame I; 1, after warping it to fit the
current camera parameters.

Fi = aW(Iifl) + (]. — Q)IZ

In this expression W represents the function that reaches for current pixel the
position of this pixel as seen with the camera settings of the previous frame.
Once found, the depth and normal of this transformed position is compared
to the depth and normal of the corresponding pixel in frame i — 1, to lower
the chances of blurring irrelevant pixels together. This, in essence, performs
a convolution over the set of illumination values computed at a constant 3D
location over time. The larger the parameter a, the farther in time is the
influence of previous computations. This means that pixels laying on fast moving
objects must use a smaller value of parameter a to avoid ghosting effects due
to averaging irrelevant pixels. New pixels revealed by camera pannings and
rotations, that weren’t on the screen in the previous frame, also have an a
depending on the camera speed, to smoothly blend illumination values.

4 Integration in a game rendering pipeline

In order to validate our technique in an industry constrained game engine,
we have implemented our technique in the engine which is used in the game
Alone In The Dark ”Near Death Investigation”. We believe this rendering
engine is typical of modern game rendering pipelines based on deferred shading.

INRIA



Hierarchical Screen-Space Indirect Illumination 11

Integrating our indirect illumination algorithm in this engine therefore proves
both its feasibility and usefulness.

Integration into the game lighting pipeline The indirect illumination
being computed after the lighting pass, it has to be composed later with the
resulting image. The deferred lighting pass computes the whole lighting of the
scene, including specular reflections, that shouldn’t be used when computing
indirect illumination like we said in section[3.2. So we had to output an inter-
mediate render target with lit scene without specular lighting in order to have
a correct lighting source. To avoid splitting the deferred illumination shader
in two parts, we used multiple render targets (a.k.a. MRT) to output the ad-
ditional target. Then we compute the hierarchical indirect illumination and
compose the final image, using this simple formula:

Cfinal = Cdirect lighting + Cindirect lighting * Albedo

Where Cgirect 1ighting stands for the direct illumination, and Cipdirect tighting 1S
the indirect illumination we compute. Albedo is the material color or texture
where the indirect lighting is applied.

Hierarchical maps generation Because we use the deferred buffers at dif-
ferent resolutions, we had to generate the down-sampled versions of the full
screen color, normal and position buffers (i.e. the z component encoded in
view space). When down sampling, we keep the sample that matches closest
of the four z positions in the parent level of the sampled point to keep details
of nearest objects and make down sampling artefacts less visible. Generating
these hierarchies have negligible cost compared to the GPU cost of the whole
screen-space indirect illumination.

Memory cost Position and color render targets costs us up to 33% more
memory than with a classic deferred renderer (depending on the number of
mipmap levels we use, we currently keep 4 mips from full 720p resolution). We
also had to allocate a full screen RGB render target for the source lighting of
the bleeding color (the direct lighting without specular term). Intermediate
render targets used during the indirect lighting system comes from a pool of
render targets that are recycled when possible, so they usualy don’t add any
supplemental memory cost. Temporal coherence also costs a lot of memory,
because we must keep the last position map and the last indirect lighting map.
Fortunately, temporal coherence is very fast (negligible regarding the cost of our
main shader) and leads us to very smooth results.

Shader compilation We tried to compile the shader both with static branch-
ing version and dynamic branching of the shader. The static (with unrolled
loops) version is quite faster than the dynamic branching one, but generates a
much bigger shader code. This becomes a limitation when pushing the number
of samples to upper limits: when using 64 samples per level, the indirect illu-
mination shader compiles with approximately 4318 instructions (194 texture,
4121 arithmetic) and we didn’t manage to build a 80 samples version without
running out of constants or making the shader compiler hanging up. At these
resolutions we were forced to use the dynamic version. In such a case, the
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12 Soler & Hoel

shader is more expensive to execute, so we aggressively decrease pixel cost by
using down-sampled resolutions, which also leads to better GPU texture cache
coherence.

Dynamic objects and characters A basic implementation of temporal co-
herence assumes your world is static, which is obviously not the case in a real
game. To correctly handle dynamic objects, we update all pixels as if they
were static (like suggested in [23]), and have an additional pass when dy-
namic objects overwrite their indirect lighting with the good values, since the
world matrix of the object has changed since last frame. Because we use down-
sampled resolutions, we cannot use the hardware depth buffer and we must use
the down-sampled position map to do depth testing to update good pixels.

For dynamic objects, we transform each vertex twice using current frame and
last frame world space position matrices to be able to re-project it accurately
in the previous frame.

When using skinned characters, the skinning should also be performed twice,
first with the current frame’s skinning, and then with the previous frame skin-
ning matrices. This requires additional storage and may drastically increase
the number of constants sent to the shader. This would force us making the
skinning twice, leading to very bad performance, and may overflow the number
of vertex constants available (e.g. 224 float constants in shader model 3.0).
We instead update skinned objects as if they were simple dynamic solid ob-
jects, supposing that their pose hasn’t changed since last frame. We also ensure
that the characters reflectance is always zero, so they don’t modify erroneously
their environment indirect lighting, and just receive a coarser, yet artifact free,
approximation of the indirect lighting they should really receive.

The Half pixel hell When using 3D API like Direct3D, there is a well-
known issue when mapping directly pixels to texels, you have to offset your
texture coordinates with a half pixel to fetch the center of of the texel. Because
we're using down-sampled resolutions, we had to be particularly careful when
computing the offset. We had to divide the offset size each time we divided the
resolution. Indeed, a bad offset calculation leads to visible artefacts, especially
when sampling the position map at low resolutions.

5 Results

Validation In order to validate the model we use for computing the indirect
lighting, we present in Figurel5/a comparison between the first bounce of indirect
lighting computed with path tracing and with our GPU technique. For this we
fed our shader with a direct illumination image also computed with path tracing.
This way we can measure the convergence of our method with respect to a
reference solution. For this test, we used » = 40, 4 mipmap levels, 64 samples
per mipmap, and no temporal filtering. Image resolution is 720 x 720. Note that
in practice, because we neglect visibility and compute the indirect illumination
using only the direct illumination displayed on the screen, the results may be
heavily biased. This test shows the smooth blending of illumination mipmap
levels and the advantage of Equation 4]over Equation [3.

INRIA



Hierarchical Screen-Space Indirect Illumination 13

In Figure [4 we show the effect of the different mipmap levels that gather
the indirect illumination, for a scene lit by a direct spotlight turned toward the
ground. By successively allowing only the k" mipmap level to contribute in the
pipeline, we generated images that show which part of the indirect illumination
each mipmap fills into the final image. This also illustrates that bilateral up-
sampling does not introduce any bias and allows a smooth combination of the
different illumination levels.

Direct illumination Indirect level 1 only) Indirect level 2 only)

Indirect (level 3 only) Indirect (level 4 only) Final image

Figure 4: Using our technique, the indirect illumination is computed at various
scales in screen space, to account for all-ranges indirect illumination. From
left to right, top to bottom: the direct illumination component from a vertical
spotlight, the indirect illumination computed by level 1 to 4, and the combined
result of our shader. In levels 2 and 3, one can see the shape of the sampling area
covered by the shader. Illumination from the different levels blend smoothly and
continuously.

Computation times Figure 6 (left) shows GPU computation times for the
differents steps of our method, with different quality settings. Each experiment
was done on two different architectures: a nVidia GeForce 8300 GTS and a
nVidia GTX260, rendering at a resolution of 1280 x 720. The sampling radius
for the shader is r = 20 pixels, and the kernel of the up-sampling filter is 3 x 3
pixels. This table shows that we are able to reach performances that match
video games constraints.

The varying parameters are the starting resolution (half or quarter resolu-
tion), the number of mipmap levels, and the number of samples used at each
level. We observe that, for a same cost, we get a better quality by starting from
a lower resolution but using more samples (entry 2 and 4). Local indirect illu-
mination has less details but noise and variance is much more noticeable while
animated, and better effect range (see Figure[8). Note that the temporal filter-
ing cost is independent from these parameters (it only depends on the rendering
resolution). The last entry shows that adding one indirect lighting level only
adds a very small computation overhead (j 1%) whereas it greatly increases the
effect range in the final result (see Figure[4).
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On the right side of Figure[6] we show detailed GPU computation times for
the different mipmap levels of indirect lighting. Note that more than 70% of
computation time is spent in the first level, although it only contributes for the
most local indirect illumination.

(a) Original SSIL formula. (b) SSIL with point-to-disc imati © path-tracing image

Figure 5: Sanity check of formulas used in Equation [3 and [4] for computing
the 1st bounce indirect illumination with our hierarchical deferred shading al-
gorithm. While introducing a different kind of approximation, using the point-
to-disc approximation of the point-to-differential area form factor drastically
reduces the noise. On the right are slices of image intensity along the line
indicated by the arrow for all three images.

Resolution | Quarter Quarter Half Half Half
Mipmap levels 4 4 4 4 )
Samples per level 64 256 256 64 64

Architectures | (a) | (b) | (a) (b) (a) | (b) | (a) 0 | (a) (b)

HSSIL | 7.1 | 2.3 | 26.8 8.9 | 1024 | 29.9 | 26.6 7.8 | 26.8 7.85

Upsampling | 5.7 | 1.7 | 5.7 1.7 7.1 2.1 7.1 2.1 7.2 2.1

Compositing | 1.1 | 0.6 1.1 0.6 1.1 0.6 1.1 0.6 1.1 0.6

Total | 13.9 | 4.6 | 33.6 | 11.2 | 110.6 | 32.6 | 34.8 | 10.5 | 35.1 | 10.55

Figure 6: Computation times in milliseconds for different parameter sets, mea-
sured using (a) NVidia 8800GTS and (b) NVidia GTX260 cards, for a display
resolution of 1280 x 720 pixels. The sampling radius is » = 20 and the up-
sampling kernel size is 3 x 3.

Discussion A common problem which is inherent to screen space computation
is that only visible geometry could participate to indirect lighting computation,
and can sometimes result in noticeable popping or disappearing of indirect light-
ing when a bright object becomes visible. We implemented a partial solution
to this problem: we extend our pipeline to compute the indirect illumination
using additional cameras, and blend (with a max) the contributions of different
cameras to each pixel that passes the depth and normal test we use in temporal
coherence. However, unlike blending frames over time, this operation has a large
cost because it needs to re-render the scene from as many different viewpoints.
We don’t think it can already be considered as a viable solution for existing
gaming architectures. We therefore did not use it in any other screenshot than
Figurel9 where we show an example of improving the indirect illumination using
additional cameras.
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Figure 7: Computation times in milliseconds for different mipmap levels, for
half resolution, 64 samples per level on the 8800 GTS card. Other parameters
are those of Figure 6!

Depending on the architecture, a variable amount of GPU resources may
be allocated to the computation of indirect lighting. Fortunately our algorithm
allows a wide range compromise between accuracy and speed. One can easily
increase the framerate by reducing the number of samples per level. Another
efficient cost reduction technique is to apply the indirect illumination shader
only starting from half or quarter resolution mipmaps.

6 Conclusion and future work

We have presented an algorithm for computing indirect illumination; our algo-
rithm performs all computations in screen space, and computes indirect lighting
hierarchically: illumination from distant points is computed with less precision
then illumination from nearby points. In addition, we showed that temporal
filtering drastically removes flickering, at a very low additional cost. Our algo-
rithm is really fast: for typical settings, we are able to compute indirect illumi-
nation in approximately 10 ms. Because there are no precomputations and we
rely only on screen-based information, our algorithm was easily combined with
a deferred shading pipeline, in a typical industry-strength video-game engine.
Our tests show that our algorithm is both very fast and robust. It consumes
little ressources, and can be used in production. In an industrial context, our
algorithm can be used to replace light maps and other methods used to simulate
indirect lighting, thus speeding up the process of developing a new game.
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Direct illumination only Direct + indirect (our technique)

Incident indirect Incident indirect Incident indirect
Half res., 64 samples Half res., 256 samples Quarter res., 64 samples

Direct illumination only Direct 4 indirect (our technique)

Figure 8: Screen-shots of the game Alone In the Dark, into which we have
plugged our technique for computing the indirect illumination. The central row
shows the incident indirect illumination computed with 3 different setups cor-
responding to the computation times of Figure[6. As illustrated by the bottom
row, using 64 samples starting from the mipmap level of quarter resolution is
sufficient to produce a satisfactory result, in 14 ms on a nVidia GForce 8800
GTS card. Note how much, on the top-right image, does the indirect illumi-
nation add realism and immersion, revealing regions of the scene not directly
illuminated.
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Single camera 2 additional side cameras

Figure 9: A typical situation where computing the indirect lighting using mul-
tiple cameras may prove useful. At left: with a single camera, the contribution
from the illuminated side of the plant basket cannot be captured. At right:
the illuminated side appears in one of the side views, which allows to compute
its contribution and add it to the final image. However, we are not using this
technique in the game engine because of its cost.
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In future work, we want to address the case of non-diffuse BRDFs, as well

as visibility issues in indirect lighting. Using arbitrary BRDFs would require
combining importance sampling with screen-spaced sampling, a difficult step.
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