Combining Coq and Gappa for Certifying Floating-Point Programs
Résumé
Formal verification of numerical programs is notoriously difficult. On the one hand, there exist automatic tools specialized in floating-point arithmetic, such as Gappa, but they target very restrictive logics. On the other hand, there are interactive theorem provers based on the LCF approach, such as Coq, that handle a general-purpose logic but that lack proof automation for floating-point properties. To alleviate these issues, we have implemented a mechanism for calling Gappa from a Coq interactive proof. This paper presents this combination and shows on several examples how this approach offers a significant speedup in the process of verifying floating-point programs.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...