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Les graphes planaires de degré maximum A > 9 sont
(A 4 1)-aréte-choisissables — une preuve courte

Résumé : Nous présentons une preuve courte d’un résultat de Borodin [2] : tout graphe
planaire de degré maximum A > 9 est (A + 1)-aréte-choisissable.

Mots-clés : aréte-coloration, coloration par liste, Conjecture de la coloration par liste,
graphes planaires
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Planar graphs with maximum degree A > 9 are
(A + 1)-edge-choosable — a short proof

Nathann Cohen*, Frédéric Havet

We give a short proof of the following theorem due to Borodin [2]. Every planar graph
with maximum degree A > 9 is (A + 1)-edge-choosable.

1 Introduction

All graphs considered in this paper are simple and finite. An edge-colouring of a graph G
is a mapping f from F(G) into a set S of colours such that incident edges have different
colours. If |S| = k then f is a k-edge-colouring. A graph is k-edge-colourable if it has a
k-edge-colouring. The chromatic index x'(G) of a graph G is the least k such that G is
k-edge-colourable.

Since edges sharing an end-vertex need different colours, x'(G) > A(G) where A(G)
denotes the maximum degree of G. The celebrated Vizing’s Theorem [13] (also shown
independently by Gupta [5]) states that x'(G) € {A(G), A(G) + 1}.

Theorem 1 (Vizing [13]) Let G be a graph. Then A(G) < X'(G) < A(G) + 1.

An edge-list-assignment of a graph G is an application L which assigns to each edge e €
E(G) a prescribed list of colours L(e). An edge-list-assignment is a k-edge-list-assignment
if each list is of size at least k. An L-edge-colouring of G is an edge-colouring such that
Yo € V(G),v € L(v). A graph G is L-edge-colourable if there exists an edge-colouring of G.
It is k-edge-choosable if it is L-colourable for every k-list-assignment L. The choice indez or
list chromatic index ch'(G) is the least k such that G is k-edge-choosable.

One of the most celebrated conjecture on graph colouring is the List Colouring Conjecture
asserting that the chromatic index is always equal to the list chromatic index.

Conjecture 2 (List Colouring Conjecture) For every graph G, x'(G) = ch/(G).

Bollobds and Harris [1] proved that ch’/(G) < cA(G) when ¢ > 11/6 for sufficiently large
A. Using probabilistic methods, Kahn [9] proved Conjecture 2 asymptotically: ch/(G) <
(14 0(1))A(G). The error term was sharpened by Haggkvist and Janssen [7]: ch/(G) <
A(G) + O(A(G)?/3/log A(G) and further on by Molloy and Reed [10]: ch/(G) < A(G) +
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O(A(G)?(log A(G))*). Galvin [6] proved the List Colouring Conjecture for bipartite
graphs. (See also Slivnik [12]).
The List-Colouring Conjecture and Vizing’s Theorem imply the following conjecture :

Conjecture 3 For any graph G, ch/(G) < A(G) + 1.

Borodin [2] settled this conjecture for planar graphs of maximum degree at least 9.

Theorem 4 (Borodin [2]) Let A > 9. Every planar graph of mazimum degree at most A
is (A 4 1)-edge-choosable.

This theorem does not imply the List Colouring Conjecture for planar graphs of large
maximum degree. Indeed, Sanders and Zhao [11] showed that planar graphs with maximum
degree A > 7 are A-edge-colourable. Vizing Edge-Colouring Conjecture [14] asserts that it
remains true for A = 6. This would be best possible as for any A € {2,3,4,5}, there are
some planar graphs with maximum degree A and chromatic index equal to A + 1 [14].

Borodin, Kostochka and Woodall [3] showed that if G is planar and A(G) > 12 then
ch/(G) < A(G), thus proving the List Colouring Conjecture for such planar graphs of maxi-
mum degree at least 12. Another proof has been given by Cole, Kowalik and Skrekovski [4]
which yields a linear time algorithm to L-edge-colour a planar graph G for any max{A(G), 12}-
list edge-assignment. Conjecture 3 is still open for planar graphs of maximum degree between
5 and 8 and it is still unknown if planar graphs of maximum degree A are A-edge-choosable
for 6 <A <11.

In this paper, we give a short proof of Theorem 4.

2 Proof of Theorem 4

Our proof uses the discharging method.

A vertex of degree d (respectively at least d, respectively at most d) is said to be a
d-vertex (respectively a (> d)-vertex, respectively a (< d)-vertex). The notion of a d-face
(respectively a (< d)-face, respectively a (> d)-face) is defined analogously regarding the
size of a face.

Consider a minimal counter-example G to the theorem. Let L be a (A + 1)-list edge-
assignment so that G is not L-edge-colourable. G has no edge uv such that d(u) + d(v) <
A + 2, otherwise any L-colouring of G \ uv could be extended to one of G by giving to e a
colour distinct from the ones of its A adjacent edges. In particular, §(G) > 3 and for any
i > 3 the neighbours of a i-vertex have degree at least A + 3 — 4.

Let V3 be the set of 3-vertices and Va the set of vertices of degree A.

Claim 4.1 |Va| > 2|V5].

Proof. Let F the set of edges with an end-vertex of degree 3 (and so the other end-vertex
of degree A) and H the bipartite subgraph (V3 U Va, F) of G.
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Let us first show that H is a forest. Suppose by way of contradiction that H has cycle
C. Then C is even because H is bipartite. By minimality of G, G\ E(C) has an L-edge-
colouring. Now every edge of C has at least two available colours since it is adjacent to
A + 1 edges and A — 1 coloured ones. Since the even cycles are 2-edge-choosable, one can
extend the L-edge-colouring to GG, which is a contradiction. Then, as any v € V3 is of degree
3in H (implying |E(H)| = 3|V3|), we can write [Va| + |V3| > 3|V3]. O

Let us assign a charge of its degree to every vertex and face. It follows easily from Euler’s
Formula that ¥ = 37 v (g)(d(v) —4) + 3 ;cp(q)(d(f) —4) = —8. Let us now discharge
along the following rules:

(R1) Every A-vertex gives 1/2 to a common pot from which each 3-vertex receives 1;
(R2) Every (> 8)-vertex gives 1/2 to each of its incidents 3-faces;
R3) Every d-vertex with d € {5,6,7} gives 5% to each of its incident 3-faces.

d

Let us show that after the final charge f of every vertex or face is non-negative as well as
the charge of the common pot which contradicts ¥ < 0.

e As |Va| > 2|V5| by Claim 4.1, the charge of the common pot is positive.

e Let = be a d-vertex.

If d = 3 then x receives at least 1/3 from each of its neighbours (they must have degree A),
so f(z) > 0. If d = 4, the charge of z does not change so f(z) =d > 0. If d € {5,6, 7}, then
2 sends at most % to each of its incident face so f(z) > d(l—dff)—zl >0. If8<d< A1,
then z sends at most 1/2 to each of its incident faces so f(x) >d—4—d/2 > 0. If d = A,
then the most x can send is d x 1/2+d/2 x 1/3 since a 3-face contains at most one 3-vertex.
So f(r) >d—4—d/2—d/6 > 4 because d > 12.

e Let = be a d-face.

If d > 4 then its charge does not change so f(x) = d(z) —4 > 0. Suppose now that d = 3.
If « contains a (< 4)-vertex then the two other neighbours have degree at least A —1 > 8
so it receives 1/2 from each of those two. So f(z) =3 —-4+4+2x 1/2 =0. If x contains a
5-vertex then its two other vertices have degree at least A —2 > 7. So it receives at % from
its 5-vertex and at least 2 from the other two vertices. So f(z) >3 —4+1/54+2x3/7 > 0.
Otherwise, all the vertices incident to z are (> 6)-vertices. Hence f(x) > 3—4+3x1/3 =0.
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