

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Planar graphs with maximum degree $\Delta \ge 9$ are $(\Delta+1)$ -edge-choosable – short proof

N. Cohen — F. Havet

N° 7098

November 16, 2009

Thème COM

apport de recherche

Planar graphs with maximum degree $\Delta \geq 9$ are $(\Delta + 1)$ -edge-choosable – short proof

N. Cohen, F. Havet

Thème COM — Systèmes communicants Projets Mascotte

Abstract: We give a short proof of the following theorem due to Borodin [2]. Every planar graph with maximum degree $\Delta \geq 9$ is $(\Delta + 1)$ -edge-choosable.

Key-words: edge-colouring, list colouring, List Colouring Conjecture, planar graphs

This work was partially supported by the INRIA associated team EWIN between Mascotte and ParGO.

Les graphes planaires de degré maximum $\Delta \geq 9$ sont $(\Delta+1)$ -arête-choisissables – une preuve courte

Résumé : Nous présentons une preuve courte d'un résultat de Borodin [2] : tout graphe planaire de degré maximum $\Delta \geq 9$ est $(\Delta + 1)$ -arête-choisissable.

Mots-clés : arête-coloration, coloration par liste, Conjecture de la coloration par liste, graphes planaires

Planar graphs with maximum degree $\Delta \geq 9$ are $(\Delta + 1)$ -edge-choosable – a short proof

Nathann Cohen*, Frédéric Havet

We give a short proof of the following theorem due to Borodin [2]. Every planar graph with maximum degree $\Delta \geq 9$ is $(\Delta + 1)$ -edge-choosable.

1 Introduction

All graphs considered in this paper are simple and finite. An edge-colouring of a graph G is a mapping f from E(G) into a set S of colours such that incident edges have different colours. If |S| = k then f is a k-edge-colouring. A graph is k-edge-colourable if it has a k-edge-colouring. The chromatic index $\chi'(G)$ of a graph G is the least k such that G is k-edge-colourable.

Since edges sharing an end-vertex need different colours, $\chi'(G) \geq \Delta(G)$ where $\Delta(G)$ denotes the maximum degree of G. The celebrated Vizing's Theorem [13] (also shown independently by Gupta [5]) states that $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$.

Theorem 1 (Vizing [13]) Let G be a graph. Then $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

An edge-list-assignment of a graph G is an application L which assigns to each edge $e \in E(G)$ a prescribed list of colours L(e). An edge-list-assignment is a k-edge-list-assignment if each list is of size at least k. An L-edge-colouring of G is an edge-colouring such that $\forall v \in V(G), v \in L(v)$. A graph G is L-edge-colourable if there exists an edge-colouring of G. It is k-edge-choosable if it is L-colourable for every k-list-assignment L. The choice index or list chromatic index ch'(G) is the least k such that G is k-edge-choosable.

One of the most celebrated conjecture on graph colouring is the List Colouring Conjecture asserting that the chromatic index is always equal to the list chromatic index.

Conjecture 2 (List Colouring Conjecture) For every graph G, $\chi'(G) = ch'(G)$.

Bollobás and Harris [1] proved that $ch'(G) < c\Delta(G)$ when c > 11/6 for sufficiently large Δ . Using probabilistic methods, Kahn [9] proved Conjecture 2 asymptotically: $ch'(G) \le (1 + o(1))\Delta(G)$. The error term was sharpened by Häggkvist and Janssen [7]: $ch'(G) \le \Delta(G) + O(\Delta(G)^{2/3}\sqrt{\log\Delta(G)})$ and further on by Molloy and Reed [10]: $ch'(G) \le \Delta(G) + O(\Delta(G)^{2/3}\sqrt{\log\Delta(G)})$

 $N. \ Cohen \ {\mathfrak C} \ F. \ Havet$

 $O(\Delta(G)^{1/2}(\log \Delta(G))^4)$. Galvin [6] proved the List Colouring Conjecture for bipartite graphs. (See also Slivnik [12]).

The List-Colouring Conjecture and Vizing's Theorem imply the following conjecture:

Conjecture 3 For any graph G, $ch'(G) \leq \Delta(G) + 1$.

Borodin [2] settled this conjecture for planar graphs of maximum degree at least 9.

Theorem 4 (Borodin [2]) Let $\Delta \geq 9$. Every planar graph of maximum degree at most Δ is $(\Delta + 1)$ -edge-choosable.

This theorem does not imply the List Colouring Conjecture for planar graphs of large maximum degree. Indeed, Sanders and Zhao [11] showed that planar graphs with maximum degree $\Delta \geq 7$ are Δ -edge-colourable. Vizing Edge-Colouring Conjecture [14] asserts that it remains true for $\Delta = 6$. This would be best possible as for any $\Delta \in \{2, 3, 4, 5\}$, there are some planar graphs with maximum degree Δ and chromatic index equal to $\Delta + 1$ [14].

Borodin, Kostochka and Woodall [3] showed that if G is planar and $\Delta(G) \geq 12$ then $ch'(G) \leq \Delta(G)$, thus proving the List Colouring Conjecture for such planar graphs of maximum degree at least 12. Another proof has been given by Cole, Kowalik and Škrekovski [4] which yields a linear time algorithm to L-edge-colour a planar graph G for any $\max\{\Delta(G), 12\}$ -list edge-assignment. Conjecture 3 is still open for planar graphs of maximum degree between 5 and 8 and it is still unknown if planar graphs of maximum degree Δ are Δ -edge-choosable for $6 \leq \Delta \leq 11$.

In this paper, we give a short proof of Theorem 4.

2 Proof of Theorem 4

Our proof uses the discharging method.

A vertex of degree d (respectively at least d, respectively at most d) is said to be a d-vertex (respectively a $(\geq d)$ -vertex, respectively a $(\leq d)$ -vertex). The notion of a d-face (respectively a $(\leq d)$ -face, respectively a $(\geq d)$ -face) is defined analogously regarding the size of a face.

Consider a minimal counter-example G to the theorem. Let L be a $(\Delta+1)$ -list edge-assignment so that G is not L-edge-colourable. G has no edge uv such that $d(u)+d(v) \leq \Delta+2$, otherwise any L-colouring of $G\setminus uv$ could be extended to one of G by giving to e a colour distinct from the ones of its Δ adjacent edges. In particular, $\delta(G)\geq 3$ and for any $i\geq 3$ the neighbours of a i-vertex have degree at least $\Delta+3-i$.

Let V_3 be the set of 3-vertices and V_{Δ} the set of vertices of degree Δ .

Claim 4.1 $|V_{\Delta}| > 2|V_3|$.

Proof. Let F the set of edges with an end-vertex of degree 3 (and so the other end-vertex of degree Δ) and H the bipartite subgraph $(V_3 \cup V_{\Delta}, F)$ of G.

Let us first show that H is a forest. Suppose by way of contradiction that H has cycle C. Then C is even because H is bipartite. By minimality of G, $G \setminus E(C)$ has an L-edge-colouring. Now every edge of C has at least two available colours since it is adjacent to $\Delta + 1$ edges and $\Delta - 1$ coloured ones. Since the even cycles are 2-edge-choosable, one can extend the L-edge-colouring to G, which is a contradiction. Then, as any $v \in V_3$ is of degree 3 in H (implying $|E(H)| = 3|V_3|$), we can write $|V_{\Delta}| + |V_3| > 3|V_3|$.

Let us assign a charge of its degree to every vertex and face. It follows easily from Euler's Formula that $\Sigma = \sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8$. Let us now discharge along the following rules:

- (R1) Every Δ -vertex gives 1/2 to a common pot from which each 3-vertex receives 1;
- (R2) Every (≥ 8)-vertex gives 1/2 to each of its incidents 3-faces;
- (R3) Every d-vertex with $d \in \{5, 6, 7\}$ gives $\frac{d-4}{d}$ to each of its incident 3-faces.

Let us show that after the final charge f of every vertex or face is non-negative as well as the charge of the common pot which contradicts $\Sigma < 0$.

- As $|V_{\Delta}| > 2|V_3|$ by Claim 4.1, the charge of the common pot is positive.
- \bullet Let x be a d-vertex.

If d=3 then x receives at least 1/3 from each of its neighbours (they must have degree Δ), so $f(x)\geq 0$. If d=4, the charge of x does not change so $f(x)=d\geq 0$. If $d\in \{5,6,7\}$, then x sends at most $\frac{d-4}{d}$ to each of its incident face so $f(x)\geq d(1-\frac{d-4}{d})-4\geq 0$. If $8\leq d\leq \Delta-1$, then x sends at most 1/2 to each of its incident faces so $f(x)\geq d-4-d/2\geq 0$. If $d=\Delta$, then the most x can send is $d\times 1/2+d/2\times 1/3$ since a 3-face contains at most one 3-vertex. So $f(x)\geq d-4-d/2-d/6\geq 4$ because $d\geq 12$.

• Let x be a d-face.

If $d \ge 4$ then its charge does not change so $f(x) = d(x) - 4 \ge 0$. Suppose now that d = 3. If x contains a (≤ 4) -vertex then the two other neighbours have degree at least $\Delta - 1 \ge 8$ so it receives 1/2 from each of those two. So $f(x) = 3 - 4 + 2 \times 1/2 = 0$. If x contains a 5-vertex then its two other vertices have degree at least $\Delta - 2 \ge 7$. So it receives at $\frac{1}{5}$ from its 5-vertex and at least $\frac{3}{7}$ from the other two vertices. So $f(x) \ge 3 - 4 + 1/5 + 2 \times 3/7 > 0$. Otherwise, all the vertices incident to x are (≥ 6) -vertices. Hence $f(x) \ge 3 - 4 + 3 \times 1/3 = 0$.

References

- [1] B. Bollobás and A. J. Harris. List colorings of graphs. *Graphs and Combin.* 1:115-127, 1985.
- [2] O. V. Borodin. A generalization of Kotzig's theorem and prescribed edge coloring of planar graphs. *Mat. Zametki* 48:22-28, 1990,. (In Russian).
- [3] O. V. Borodin, A. V. Kostochka and D.R. Woodall. List edge and list total colourings of multigraphs. *J. Combin. Theory Ser. B* 71(2):184–204, 1997.

 $N. \ Cohen \ {\it \& F. \ Havet}$

[4] R. Cole, L. Kowalik, R. Škrekovski. A generalization of Kotzig's theorem and its application. SIAM J. Discrete Math 21(1):93–106, 2007.

- [5] R. P. Gupta. The chromatic index and the degree of a graph. *Not. Amer. Math. Soc.* 13:719, 1966.
- [6] F. Galvin. The list chromatic index of a bipartite multigraph. J. of Combin. Theory, Ser. B 63:153–158, 1995.
- [7] R. Häggkvist and J. C. M. Janssen. New bounds on the list-chromatic index of the complete graph and other simple graph. *Combin. Probab. Comput.* 6:295–313, 1997.
- [8] M. Juvan, B. Mohar and R. Škrekovski. Graphs of degree 4 are 5-edge-choosable. J. Graph Theory 32:250–262, 1999.
- [9] J. Kahn. Asymptotically good list colorings. J. Combin. Theory Ser. A 59: 31–39, 1992.
- [10] M. Molloy and B. Reed. Near-optimal list colorings. Proceedings of the Ninth International Conference "Random Structures and Algorithms" (Poznan, 1999). Random Structures Algorithms 17(3-4):376–402, 2000.
- [11] D. P. Sanders and Y. Zhao. Planar graphs of maximum degree seven are class I. J. Combin. Theory Ser. B 83(2):201–212, 2001.
- [12] T. Slivnik. Short proof of Galvin's theorem on the list chromatic index of bipartite multigraph. *Comb. Prob. Comp.* 5:91–94, 1996.
- [13] V. G. Vizing. On an estimate of the chromatic class of a p-graph. *Metody Diskret*. *Analyz*. 3:25–30, 1964.
- [14] V. G. Vizing. Critical graphs with given chromatic index. *Metody Diskret. Analiz* 5:9–17, 1965. [In Russian]

Unité de recherche INRIA Sophia Antipolis 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)