Planar graphs with maximum degree Delta\geq 9 are (\Delta+1)-edge-choosable -- short proof - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2009

Planar graphs with maximum degree Delta\geq 9 are (\Delta+1)-edge-choosable -- short proof

Abstract

We give a short proof of the following theorem due to Borodin~\cite{Bor90}. Every planar graph with maximum degree $\Delta\geq 9$ is $(\Delta+1)$-edge-choosable.
Fichier principal
Vignette du fichier
RR-7098.pdf (122.79 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

inria-00432389 , version 1 (16-11-2009)

Identifiers

  • HAL Id : inria-00432389 , version 1

Cite

Nathann Cohen, Frédéric Havet. Planar graphs with maximum degree Delta\geq 9 are (\Delta+1)-edge-choosable -- short proof. [Research Report] RR-7098, INRIA. 2009. ⟨inria-00432389⟩
188 View
217 Download

Share

Gmail Mastodon Facebook X LinkedIn More