
HAL Id: inria-00397820
https://inria.hal.science/inria-00397820

Submitted on 26 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Dependency Pair Method based on Strong
Computability for Higher-Order Rewrite Systems
Keiichirou Kusakari, Yasuo Isogai, Masahiko Sakai, Frédéric Blanqui

To cite this version:
Keiichirou Kusakari, Yasuo Isogai, Masahiko Sakai, Frédéric Blanqui. Static Dependency Pair Method
based on Strong Computability for Higher-Order Rewrite Systems. IEICE Transactions on Information
and Systems, 2009. �inria-00397820�

https://inria.hal.science/inria-00397820
https://hal.archives-ouvertes.fr

IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Static Dependency Pair Method based on

Strong Computability for Higher-Order Rewrite Systems

Keiichirou KUSAKARI†a), Member, Yasuo ISOGAI†b), Nonmember,
Masahiko SAKAI†c), Member, and Frédéric BLANQUI††d), Nonmember

SUMMARY Higher-order rewrite systems (HRSs) and
simply-typed term rewriting systems (STRSs) are computational
models of functional programs. We recently proposed an ex-
tremely powerful method, the static dependency pair method,
which is based on the notion of strong computability, in order
to prove termination in STRSs. In this paper, we extend the
method to HRSs. Since HRSs include λ-abstraction but STRSs
do not, we restructure the static dependency pair method to allow
λ-abstraction, and show that the static dependency pair method
also works well on HRSs without new restrictions.
key words: Higher-Order Rewrite System, Termination, Static

Dependency Pair, Plain Function-Passing, Strong Computabil-

ity, Subterm Criterion.

1. Introduction

A term rewriting system (TRS) is a computational
model that provides operational semantics for func-
tional programs [22]. A TRS cannot, however, directly
handle higher-order functions, which are widely used
in functional programming languages. Simply-typed
term rewriting systems (STRSs) [12] and higher-order
rewrite systems (HRSs) [17] have been introduced to
extend TRSs. These rewriting systems can directly
handle higher-order functions. For example, a typical
higher-order function foldl can be represented by the
following HRS Rfoldl:







foldl(λxy.F (x, y), X, nil) → X
foldl(λxy.F (x, y), X, cons(Y, L))

→ foldl(λxy.F (x, y), F (X,Y), L)

HRSs can represent anonymous functions because
HRSs have a λ-abstraction syntax, which STRSs
do not. For instance, an anonymous function
λxy.add(x, mul(y, y)) is used in the HRS Rsqsum, which
is the union of Rfoldl and the following rules:

Manuscript received March 0, 2008.
Manuscript revised June 0, 2008.
Final manuscript received 0, 2008.

†Graduate School of Information Science, Nagoya Univ.
††INRIA & LORIA, France
a) E-mail: kusakari@is.nagoya-u.ac.jp
b) E-mail: isogai@trs.cm.is.nagoya-u.ac.jp
c) E-mail: sakai@is.nagoya-u.ac.jp
d) E-mail: frederic.blanqui@inria.fr



















add(0, Y) → Y
add(s(X), Y) → s(add(X,Y))
mul(0, Y) → 0
mul(s(X), Y) → add(mul(X,Y), Y)
sqsum(L) → foldl(λxy.add(x, mul(y, y)), 0, L)

Here, the function sqsum returns the square sum x2
1 +

x2
2 + · · ·+ x2

n from an input list [x1, x2, . . . , xn].
As a method for proving termination of TRSs, Arts

and Giesl proposed the dependency pair method for
TRSs based on recursive structure analysis [1], which
was then extended to STRSs [12], and to HRSs [18].

In higher-order settings, there are two kinds of
analysis for recursive structures. One is dynamic anal-
ysis, and the other is static analysis. The extensions
in [12] and [18] analyze dynamic recursive structures
based on function-call dependency relationships, but
not on relationships that may be extracted syntacti-
cally from function definitions. When a program runs,
some functions can be substituted for higher-order vari-
ables. Dynamic recursive structure analysis considers
dependencies through higher-order variables. Static re-
cursive structure analysis on the other hand, does not
consider such dependencies.

For example, consider the HRS Rsqsum. The dy-
namic dependency pair method in [18] extracts the fol-
lowing 9 pairs, called dynamic dependency pairs:






























































foldl♯(λxy.F (x, y), X, cons(Y, L))
→ foldl♯(λxy.F (x, y), F (X,Y), L) (a)

foldl♯(λxy.F (x, y), X, cons(Y, L)) → F (cx, cy) (b)
foldl♯(λxy.F (x, y), X, cons(Y, L)) → F (X,Y) (c)
add♯(s(X), Y) → add♯(X,Y) (d)
mul♯(s(X), Y) → add♯(mul(X,Y), Y) (e)
mul♯(s(X), Y) → mul♯(X,Y) (f)
sqsum♯(L) → foldl♯(λxy.add(x, mul(y, y)), 0, L) (g)
sqsum♯(L) → add♯(cx, mul(cy, cy)) (h)
sqsum♯(L) → mul♯(cy, cy) (i)

Here cx, cy are fresh constants corresponding to the
bound variables x and y. The dynamic dependency pair
method returns the following 15 components, called dy-
namic recursion components:















{(a)}, {(b)}, {(c)}, {(d)}, {(f)}, {(a), (b)},
{(a), (c)}, {(b), (c)}, {(b), (g)}, {(c), (g)},
{(a), (b), (c)}, {(a), (b), (g)}, {(a), (c), (g)},
{(b), (c), (g)}, {(a), (b), (c), (g)}















2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

It is intuitive that this recursive structure analysis may
be unnatural and intractable. The problem is caused
by function-call dependency relationships through the
higher-order variable F .

The static dependency pair method, which is based
on definition dependency relationships, can solve the
unnatural and intractable problem above. Since the
static dependency pair method can ignore terms headed
by a higher-order variable which are difficult to handle,
in this meaning the static dependency pair method is
more natural and more powerful than the dynamic de-
pendency pair method. In fact, the static dependency
pair method presented in this paper shows that Rsqsum

only has the following 3 static recursion components:
{

foldl♯(λxy.F (x, y), X, cons(Y, L))
→ foldl♯(λxy.F (x, y), F (X,Y), L)

{

add♯(s(X), Y) → add♯(X,Y)
{

mul♯(s(X), Y) → mul♯(X,Y)

The first result for the static dependency pair
method was given by Sakai and Kusakari [19]. How-
ever, this result demanded that target HRSs be ei-
ther ‘strongly linear’ or ‘non-nested’, which is a very
strong restriction. By reconstructing a dependency
pair method based on the notion of strong computabil-
ity, Kusakari and Sakai proposed the static dependency
pair method for STRSs and showed that the method is
sound for plain function-passing STRSs [13]. Note that
strong computability was introduced for proving termi-
nation in typed λ-calculus, which is a stronger condi-
tion than the property of termination [7], [21]. ‘Plain
function-passing’ means that every higher-order vari-
able occurs in an argument position on the left-hand
side. Since many non-artificial functional programs are
plain function-passing, this method has a general ver-
satility. In this paper, we extend the static depen-
dency pair method and the notion of plain function-
passing to HRSs. Since the difference between STRSs
and HRSs is the existence of anonymous functions (i.e.
λ-abstraction), extension is necessary. We show that
our static dependency pair method works well on plain
function-passing HRSs without new restrictions.

When proving termination by dependency pair
methods, non-loopingness should be shown for each re-
cursion component. The notion of the subterm criterion
[8] is frequently utilized, as is that of a reduction pair
[11], which is an abstraction of the weak-reduction or-
der [1]. The subterm criterion was slightly improved by
extending the subterms permitted by the criterion [13].
Since the subterm criterion and reduction pairs are ef-
fective in termination proofs, we also reformulate these
notions for HRSs. An effective and efficient method of
proving termination in plain function-passing HRSs is
obtained as a result. These results can be used to prove
the termination of Rsqsum, which cannot be achieved
with the dynamic dependency pair method in [18]. It
can easily be seen that each static recursion compo-

nent satisfies the subterm criterion in the underlined
positions:

{

foldl♯(λxy.F (x, y), X, cons(Y, L))

→ foldl♯(λxy.F (x, y), F (X,Y), L)
{

add♯(s(X), Y) → add♯(X,Y)
{

mul♯(s(X), Y) → mul♯(X,Y)

The termination of Rsqsum can thus be shown easily.
The remainder of this paper is organized as follows.

The next section provides preliminaries required later
in the paper. In Section 3, we introduce the notion of
strong computability, which provides a theoretical ra-
tionale for the static dependency pair method. In Sec-
tion 4, we describe the notion of plain function-passing.
In Section 5, we present the static dependency pair
method for plain function-passing HRSs, the soundness
of which is guaranteed by the notion of strong com-
putability. In Section 6, we introduce the notions of
the reduction pair and the subterm criterion in order
to prove the non-loopingness of static recursion com-
ponents. Concluding remarks are presented in Section
7.

2. Preliminaries

In this section, we give preliminaries needed later on.
We assume that the reader is familiar with notions for
TRSs and HRSs [22].

The set S of simple types is generated from the set
B of basic types by the type constructor →. A func-

tional type or a higher-order type is a simple type of
the form α → β. We denote by Vα the set of vari-
ables of type α, and denote by Σα the set of func-
tion symbols of type α. We define V =

⋃

α∈S Vα and
Σ =

⋃

α∈S Σα. We assume that the sets of variables and
function symbols are disjoint. The set T pre

α of simply-

typed preterms with simple type α is generated from
sets V ∪ Σ by λ-abstraction and λ-application. We de-
note by t↓ the η-long β-normal form of a simply-typed
preterm t. The set Tα of simply-typed terms with a

simple type α is defined as {t↓ | t ∈ T pre
α }. We de-

note type(t) = α if t ∈ Tα. We also define the set T
of simply-typed terms by

⋃

α∈S Tα, and the set TB of
basic typed terms by

⋃

α∈B Tα. We write tα to stand
for t ∈ Tα. Any term in η-long β-normal form is of the
form λx1 · · ·xm.a t1 · · · tn, where a is a variable or a
function symbol. We remark that λx1 · · ·xm.a t1 · · · tn
is denoted with λx1 · · ·xm.a(t1, . . . , tn) or λxm.a(tn) in
short. The α-equality of terms is denoted by ≡. For
a simply-typed term t ≡ λxm.a(tn), the symbol a, de-
noted by top(t), is said to be the top symbol of t, and
the set {t1, . . . , tn}, denoted by args(t), is said to be
arguments of t. The set of free variables in t denoted
by FV (t). We assume for convenience that bound vari-
ables in a term are all different, and are disjoint from
free variables. We define the set Sub(t) of subterms

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
3

of t by {t} ∪ Sub(s) if t ≡ λx.s; {t} ∪
⋃n

i=1 Sub(ti)
if t ≡ a(t1, . . . , tn). We use t ≥sub s to represent
s ∈ Sub(t), and define t >sub s by t ≥sub s and t 6≡ s.
The set of positions of a term t is the set Pos(t) of
strings over positive integers, which is inductively de-
fined as Pos(λx.t) = {ε} ∪ {1p | p ∈ Pos(t)} and
Pos(a(t1, . . . , tn)) = {ε}∪

⋃n
i=1{ip | p ∈ Pos(ti)}. The

prefix order ≺ on positions is defined by p ≺ q iff pw = q
for some w (6= ε). The subterm of t at position p is de-
noted by t|p.

A term containing a special constant �α of type
α is called a context, denoted by C[]. We use C[t]
for the term obtained from C[] by replacing �α with
tα. A substitution θ is a mapping from variables to
terms such that θ(X) has a same type of X for each
variable X . We define Dom(θ) = {X | X 6≡ θ(X)}. A
substitution is naturally extended to a mapping from
terms to terms.

A rewrite rule is a pair (l, r) of terms, denoted by
l → r, such that top(l) ∈ Σ, type(l) = type(r) ∈ B and
FV (l) ⊇ FV (r)†. A higher-order rewrite system (HRS)
is a set of rules. The reduction relation −→

R
of an HRS

R is defined by s −→
R

t iff s ≡ C[lθ↓] and t ≡ C[rθ↓] for
some rule l → r ∈ R, context C[] and substitution θ.
The transitive-reflexive closure of −→

R
is denoted by ∗−→

R
.

Proposition 2.1 [15] If s ∗−→
R

t then sθ↓ ∗−→
R

tθ↓.

A term t is said to be terminating or strongly

normalizing in an HRS R, denoted by SN(R, t), if
there is no infinite sequence of R steps starting from
t. We simply denote SN(R) if SN(R, t) holds for any
term t. We also define TSN (R) = {t | SN(R, t)},
T¬SN (R) = T \ TSN (R), and T args

SN (R) = {t | ∀u ∈
args(t).SN(R, u)}.

All top symbols of the left-hand sides of rules in an
HRS R, denoted by DR, are called defined, whereas all
other function symbols, denoted by CR, are construc-

tors. We define the marked term t♯ by a♯(t1, . . . , tn) if t
has a form a(t1, . . . , tn) with a ∈ DR; otherwise t♯ ≡ t.
Here a♯ is called a marked symbol.

3. Strong Computability

In this section, we define the notion of strong com-
putability, introduced for proving termination in typed
λ-calculus, which is a stronger condition than the prop-
erty of termination [7], [21]. This notion provides a
theoretical rationale for the static dependency pair
method.

Definition 3.1 (Strong Computability) A term t

†In order to guarantee the decidability of higher-order
pattern-matching, Nipkow restricts rewrite rules by the no-
tion of pattern [17]. Such a restriction, however, is not
necessary to our study.

is said to be strongly computable in an HRS R if
SC(R, t) holds, which is inductively defined on simple
types as follows:

• in case of type(t) ∈ B, SC(R, t) is defined as
SN(R, t),

• in case of type(t) = α → β, SC(R, t) is defined as
∀u ∈ Tα.(SC(R, u) ⇒ SC(R, (tu)↓)).

We also define TSC(R) = {t | SC(R, t)}, T¬SC(R) =
T \ TSC(R), and T args

SC (R) = {t | ∀u ∈
args(t).SC(R, u)}.

Here we give the basic properties for strong com-
putability, needed later on.

Lemma 3.2 For any HRS R, the following properties
hold:

(1) For any (t0 t1 · · · tn)↓ ∈ T , if SC(R, ti) holds for
all ti, then SC(R, (t0 t1 · · · tn)↓).

(2) For any tα1→···→αn→α, if ¬SC(R, t), then there
exist strongly computable terms uαi

i (1 ≤ i ≤ n)
such that ¬SC(R, (t u1 · · · un)↓).

(3) SC(R, s) and s ∗−→
R

t implies SC(R, t), for all s, t.
(4) The η-long β-normal form z↓ of any variable zα is

strongly computable, for all types α.
(5) SC(R, tα) implies SN(R, tα), for all types α.

Proof. The properties (1) and (2) are easily shown by
induction on n.

(3) We prove the claim by induction on type(t). The
case type(t) ∈ B is trivial. Suppose that type(s) =
type(t) = α → β. Let s ≡ λx.s′, t ≡ λx.t′,
and uα be an arbitrary strongly computable term.
Since type(l) ∈ B for every l → r ∈ R, we
have s′ ∗−→

R
t′. From Proposition 2.1, we have

(su)↓ ≡ s′{x := u} ∗−→
R

t′{x := u} ≡ (tu)↓. Since
(su)↓ is strongly computable, SC(R, (tu)↓) follows
from the induction hypothesis. Hence t is strongly
computable.

(4,5) We prove claims by simultaneous induction on
α. The case α ∈ B is trivial. Suppose that α =
α1 → · · · → αn → β and β ∈ B.
Induction step of (4): Assume that z↓ is not
strongly computable for some z ∈ Vα. From (2),
there exist strongly computable terms uα1

1 , . . . , uαn

n

and (z(u1, . . . , un))↓ ≡ z(u1, . . . , un) is not
strongly computable. From the induction hy-
pothesis (5), each ui is terminating, hence so is
z(u1, . . . , un). Since z(u1, . . . , un) is of basic types,
z(u1, . . . , un) is strongly computable. This is a
contradiction.
Induction step of (5): From the induction hypoth-
esis (4), y↓ is strongly computable for any y ∈ Vα1

,
hence so is (ty)↓. From the induction hypothesis
(5), (ty)↓ is terminating, hence so is t. �

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

4. Plain Function-Passing

The static dependency pair method defined in the next
section cannot be applied to HRSs in general. For ex-
ample, consider the HRS R = {foo(bar(λx.F (x))) →
F (bar(λx.F (x)))}. Since the defined symbol foo does
not occur on the right hand side, no static recur-
sive structure exists. However, R is not terminating:
foo(bar(λx.foo(x))) −→

R
foo(bar(λx.foo(x))) −→

R
· · ·.

The static dependency pair method therefore requires
a suitable restriction. In [19], we introduced the no-
tions of ‘strongly linear’ and ‘non-nested’ HRSs. How-
ever, these restrictions are too tight. For STRSs we
presented the notion of plain function-passing, which
covers practical level programs [13]. Intuitively, plain
function-passing means that higher-order free variables
on the left-hand side are passed to the right-hand side
directly. In this section, we extend the notion of plain
function-passing to HRSs.

Definition 4.1 Let R be an HRS and l → r ∈ R.
We define the set safe(l) of safe subterms of l as the
following:

args(l)∪
⋃

l′∈args(l)

{u ∈ safeB(l
′, FV (l)) | FV (l) ⊇ FV (u)},

where safeB(λxm.a(tn), X) is defined as {a(tn)} if a ∈
X ; otherwise {a(tn)} ∪

⋃n
i=1 safeB(ti, X).

We note that safe(l) ⊆ Sub(l) and any t ∈
safeB(l

′, FV (l)) is of basic types.

Example 4.2 Consider HRS Rfoldl displayed in the
introduction. Suppose that

l ≡ foldl(λxy.F (x, y), Y, cons(X,L)).

For each argument u ∈ args(l), safeB(u, FV (l)) is the
following:

safeB(λxy.F (x, y), FV (l)) = {F (x, y)}

safeB(Y, FV (l)) = {Y }

safeB(cons(X,L), FV (l)) = {cons(X,L), X, L}

Since FV (F (x, y)) 6⊆ FV (l), safe subterms safe(l) is
the following:

safe(l) = args(l) ∪ {Y, cons(X,L), X, L}

= {λxy.F (x, y), Y, cons(X,L), X, L}

We prepare a technical lemma to show the sound-
ness of the static dependency pair method.

Lemma 4.3 Let R be an HRS, l → r ∈ R and θ be a
substitution. Then lθ↓ ∈ T args

SC (R) implies SC(R, sθ↓)
for any s ∈ safe(l).

Proof. The case s ∈ args(l) is trivial because sθ↓ ∈
args(lθ↓) follows from top(l) ∈ Σ. Suppose that
s ∈ safeB(l

′, FV (l)) and FV (s) ⊆ FV (l) for some
l′ ∈ args(l). Then we have SN(R, l′θ↓) from Lemma
3.2(5). Since type(s) ∈ B from the definition of safeB,
it suffices to show SN(R, sθ↓). We prove by induc-
tion on definition of safeB that s ∈ safeB(t, FV (l))
and SN(R, tθ↓) implies SN(R, sθ↓), for all t ≡
λx1 · · ·xm.a(t1, . . . , tn) ∈ Sub(l′).

The case t ≡ λx1 · · ·xm.s is trivial because tθ↓ ≡
λx1 · · ·xm.(sθ↓). Suppose that s ∈ safeB(tj , FV (l))
for some j. Without loss of generality, we can as-
sume that a /∈ Dom(θ) because a /∈ FV (l). Then
tθ↓ ≡ λxm.a(tnθ↓). Hence, SN(R, tjθ↓) holds. From
the induction hypothesis, we have SN(R, sθ↓). �

Definition 4.4 (Plain Function-Passing) An HRS
R is said to be plain function-passing (PFP) if for
any l → r ∈ R and Z(r1, . . . , rn) ∈ Sub(r) such
that Z ∈ FV (r), there exists k (≤ n) such that
Z(r1, . . . , rk)↓ ∈ safe(l). We often abbreviate plain
function-passing HRS to PFP-HRS.

Example 4.5 Referencing to Example 4.2. Since
F↓ ≡ λxy.F (x, y) ∈ safe(l), HRS Rfoldl is PFP.

Example 4.6 Let R be the following non-terminating
HRS:

{

foo(bar(λx.F (x))) → F (bar(λx.F (x)))

Then R is not PFP because:

F↓ /∈ {bar(λx.F (x))} = safe(foo(bar(λx.F (x)))).

Example 4.7 Let R be the following terminating
HRS:







mapfun(nilF, X) → nil

mapfun(consF(λx.F (x), L), X)
→ cons(F (X), mapfun(L,X))

Then R is not PFP because:

F↓ /∈ {consF(λx.F (x), L), L,X}

= safe(mapfun(consF(λx.F (x), L), X))

In any PFP-HRS R, for any subterm Z(r1, . . . , rn)
headed by a higher-order variable in the right hand
side of a rule l → r, there exists a prefix Z(r1, . . . , rk)
such that Z(r1, . . . , rk)↓ ∈ safe(l). Thanks to Lem-
mas 3.2(1) and 4.3, this property guarantees that
Z(r1, . . . , rn)θ↓ is strongly computable whenever lθ↓ ∈
T args

SC (R) and riθ↓ ∈ TSC(R) (i = 1, . . . , n). This
beneficial property eliminates a dependency analysis
through higher-order variables from static recursive
structure analysis (cf. Lemma 5.11), and contributes in
obtaining the soundness of the static dependency pair
method (cf. Theorem 5.12).

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
5

In the definition of PFP, the case n = 0 must
be considered. That is, any first-order variable in
V ar(r) should belong to safe(l). Otherwise Lemma
4.3 does not hold. For example, consider the HRS
R = {foo(F (X)) → X} and the substitution θ =
{F := λx.0}. Then X does not occur in foo(0) ≡
foo(F (X))θ↓, and we must exclude R from plain
function-passing.

Note that every first-order rewrite system is plain
function-passing.

A termination condition for higher-order rewrite
rules having a specific form of plain function-passing
was investigated under Jouannaud and Okada’s gen-
eral schema [9], [10]. The restriction that higher-order
variables occur as arguments is weakened by using the
notion of computability closure [3]–[5]. We leave a sim-
ilar extension of the present work with computability
closure for the future.

5. Static Dependency Pair Method

In this section we present the static dependency pair
method for PFP-HRSs. The recursive structures de-
rived by the static dependency pair method accord with
a programmer’s intuition. Since many existing pro-
grams are written so as to terminate, this method is
of benefit in proving that they do indeed terminate.

First, we describe candidate terms, improving on
the notion of candidate terms in [18]. Candidate terms
are a variant of subterms, and bound variables never
become free in candidate terms. This feature is useful
for showing the soundness of our method (cf. Lemma
5.11).

Definition 5.1 (Candidate Term) The set of can-

didate terms of t ≡ λxm. a(tn), denoted by Cand(t), is
defined as follows:

Cand(t) = {t} ∪
n
⋃

i=1

Cand(λx1 · · ·xm.ti)

We consider the case of foo, bar ∈ DR and t ≡
λx.foo(bar, x). Then we have

Cand(t) = {λx.foo(bar, x), λx.bar, λx.x}.

Note that the definition in [18] gave Cand(t) =
{foo(bar, cx), bar}, where cx is a fresh constant cor-
responding to the bound variable x.

Next, we introduce the notion of static dependency
pairs by using candidate terms. This notion forms the
basis for the static dependency pair method.

Definition 5.2 (Static Dependency Pair) Let R
be an HRS. A pair 〈l♯, a♯(r1, . . . , rn)〉, denoted by
l♯ → a♯(r1, . . . , rn), is said to be a static dependency

pair in R if there exists l → r ∈ R such that

• λx1 · · ·xm.a(r1, . . . , rn) ∈ Cand(r),

• a ∈ DR, and
• a(r1, . . . , rk)↓ /∈ safe(l) for all k (≤ n).

We denote by SDP (R) the set of static dependency
pairs in R.

Notice that static dependency pairs have no terms
headed by a higher-order variable nor terms of a func-
tional type.

Example 5.3 For the HRS Rsqsum displayed in the in-
troduction, the set SDP (Rsqsum) consists of the follow-
ing seven pairs:














































foldl♯(λxy.F (x, y), X, cons(Y, L))
→ foldl♯(λxy.F (x, y), F (X,Y), L)

add♯(s(X), Y) → add♯(X,Y)
mul♯(s(X), Y) → add♯(mul(X,Y), Y)
mul♯(s(X), Y) → mul♯(X,Y)
sqsum♯(L) → foldl♯(λxy.add(x, mul(y, y)), 0, L)
sqsum♯(L) → add♯(x, mul(y, y))
sqsum♯(L) → mul♯(y, y)

Notice that we use the extra variables x, y in the sixth
and seventh dependency pairs.

Each static dependency pair expresses nothing but
the local dependency of functions based on dependency
relationships displayed in rules. To analyze the global
dependency of functions, in other words, to analyze
the static recursive structure, we introduce notions of a
static dependency chain and a static dependency graph.

Definition 5.4 (Static Dependency Chain) LetR

be an HRS. A sequence u♯
0 → v♯0, u

♯
1 → v♯1, · · · of static

dependency pairs in R is said to be a static depen-

dency chain in R if there exist θ0, θ1, . . . such that
v♯iθi↓

∗−→
R

u♯
i+1θi+1↓ and uiθi↓, viθi↓ ∈ T args

SC (R) for any
i.

Definition 5.5 (Static Dependency Graph) The
static dependency graph of R is a directed graph, in
which nodes are SDP (R) and there exists an arc from
u♯ → v♯ to u′♯ → v′♯ if u♯ → v♯, u′♯ → v′♯ is a static
dependency chain.

Example 5.6 The static dependency graph of the
HRS Rsqsum (cf. Example 5.3) is shown in Fig. 1.

Unfortunately, the connectability of the static de-
pendency pairs is undecidable. Hence, we need suitable
approximation techniques. In TRSs, such techniques
were studied [16]. One of simple approximated depen-
dency graphs is the graph in which an arc from u♯ → v♯

to u′♯ → v′♯ exists if v♯ and u′♯ have the same top
symbol. Note that for the HRS Rsqsum this approxima-
tion gives the precise static dependency graph shown
in Fig. 1.

We now introduce the notions of static recursion

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

mul♯(s(X), Y) → mul♯(X, Y)

6
?

sqsum♯(L) → mul♯(y, y)�

?

sqsum♯(L) → add♯(x, mul(y, y))

?
mul♯(s(X), Y) → add♯(mul(X, Y), Y) - add♯(s(X), Y) → add♯(X, Y)

6
sqsum♯(L) → foldl♯(λxy.add(x, mul(y, y)), 0, L)

?
foldl♯(λxy.F (x, y), X, cons(Y,L)) → foldl♯(λxy.F (x, y), F (X, Y), L)

?

Fig. 1 static dependency graph of Rsqsum

components and non-loopingness. As usual, the ter-
mination of HRS can be proved by proving the non-
loopingness of each recursion component. These proofs
are similar to the other dependency pair methods.

Definition 5.7 (Static Recursion Component)
Let R be an HRS. A static recursion component in R
is a set of nodes in a strongly connected subgraph of
the static dependency graph of R. Using SRC(R) we
denote the set of static recursion components in R.

Example 5.8 The static dependency graph of Rsqsum

(Fig. 1) has three strongly connected subgraphs. Thus,
the set SRC(Rsqsum) consists of the following three com-
ponents:
{

foldl♯(λxy.F (x, y), X, cons(Y, L))
→ foldl♯(λxy.F (x, y), F (X,Y), L)

{

add♯(s(X), Y) → add♯(X,Y)
{

mul♯(s(X), Y) → mul♯(X,Y)

Definition 5.9 (Non-Looping) A static recursion
component C in an HRS R is said to be non-looping

if there exists no infinite static dependency chain in
which only pairs in C occur and every u♯ → v♯ ∈ C
occurs infinitely many times.

In the remainder of this section, we show the
soundness of the static dependency pair method on
PFP-HRSs. That is, we show that if any static re-
cursion component of PFP-HRS R is non-looping, then
R is terminating. We need two lemmas.

Lemma 5.10 Let R be a non-terminating HRS. Then
TB ∩ T¬SC(R) ∩ T args

SC (R) 6= ∅.

Proof. Since R is not terminating, T¬SC(R) 6= ∅ fol-
lows from Lemma 3.2(5). Let t ≡ λx1 · · ·xm.a(t1, . . . , tn)
be a minimal size term in T¬SC(R). From Lemma
3.2(2), there exist u1, . . . , um ∈ TSC(R) such that
¬SC(R, t′) where t′ ≡ (t u1 · · · um)↓. Suppose
that σ = {xj := uj | 1 ≤ j ≤ m}. Then t′ ≡
(aσ t1σ · · · tnσ)↓. Since the size of t′i ≡ λx1 · · ·xm.ti
is less than the size of t, we have SC(R, t′i) by the

minimality of t. Since tiσ↓ ≡ (t′i u1 · · · um)↓, we
have SC(R, tiσ↓) by Lemma 3.2(1). Assume that
a ∈ {x1, . . . , xm}. Since aσ↓ ≡ uj ∈ TSC(R), SC(R, t′)
follows from Lemma 3.2(1). This is a contradiction.
Hence, we have a /∈ {x1, . . . , xm}. Therefore we have
t′ ≡ a(t1σ↓, . . . , tnσ↓) ∈ TB ∩ T¬SC(R) ∩ T args

SC (R). �

Lemma 5.11 Let R be a PFP-HRS. For any t ∈ TB ∩
T¬SC(R)∩T args

SC (R), there exist l♯ → v♯ ∈ SDP (R) and
a substitution θ such that t♯ ∗−→

R
(lθ↓)♯ and lθ↓, vθ↓ ∈

TB ∩ T¬SC(R) ∩ T args

SC (R).

Proof. From t ∈ T args

SC (R) and Lemma 3.2(5), we
have t ∈ T args

SN (R). From t ∈ TB ∩ T¬SC(R), we
have ¬SN(R, t). Hence, there exist l → r ∈ R and
a substitution θ′ such that t♯ ∗−→

R
(lθ′↓)♯, lθ′↓, rθ′↓ ∈

T¬SN (R), and Dom(θ′) ⊆ FV (l). Since type(l) =
type(r) ∈ B, we have lθ′↓, rθ′↓ ∈ T¬SC(R). Moreover,
lθ′↓ ∈ T args

SC (R) follows from Lemma 3.2(3). Since r ∈
Cand(r) and ¬SC(R, rθ′↓), we have {r′ ∈ Cand(r) |
¬SC(R, r′θ′↓)} 6= ∅. Let v′ ≡ λx1 · · ·xm.a(r1, . . . , rn)
be a minimal size term in this set.

From Lemma 3.2(2), there exist strongly com-
putable terms u1, . . . , um such that (v′θ′ u1 · · · um)↓
is not strongly computable. Let v and θ be v ≡
a(r1, . . . , rn) and θ = θ′ ∪{xi := ui | 1 ≤ i ≤ m}. Since
vθ↓ ≡ (v′θ′ u1 · · · um)↓, we have vθ↓ ∈ TB ∩ T¬SC(R).
Since lθ↓ ≡ lθ′↓ from xi /∈ FV (l), we have lθ↓ ∈ TB ∩
T¬SC(R) ∩ T args

SC (R). Since λx1 · · ·xm.ri ∈ Cand(r),
SC(R, (λx1 · · ·xm.ri)θ

′↓) follows from the minimality
of v′. Hence, each riθ↓ ≡ ((λx1 · · ·xm.ri)θ

′ u1 · · · um)↓
is strongly computable from Lemma 3.2(1).

We prove the remaining claims that vθ↓ ∈
T args

SC (R) and l♯ → v♯ ∈ SDP (R).

• Assume that a ∈ {xi | 1 ≤ i ≤ m}. Then
SC(R, vθ↓) follows from SC(R, aθ↓) and Lemma
3.2(1). This is a contradiction.

• Assume that a ∈ FV (r). Since R is PFP, there
exists k (≤ n) such that a(r1, . . . , rk)↓ ∈ safe(l).
From Lemma 4.3, SC(R, a(r1, . . . , rk)θ↓) holds.
From Lemma 3.2(1), SC(R, vθ↓) holds. This is
a contradiction.

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
7

• Assume that a ∈ CR. Then ∀i.SN(R, riθ↓) fol-
lows from Lemma 3.2(5). From a ∈ CR, we have
SN(R, vθ↓). From v ∈ TB, we have SC(R, vθ↓).
This is a contradiction.

• Assume that a ∈ DR and there exists k (≤ n)
such that a(r1, . . . , rk)↓ ∈ safe(l). From Lemma
4.3, SC(R, a(r1, . . . , rk)θ↓) holds. From Lemma
3.2(1), SC(R, vθ↓) holds. This is a contradiction.

As shown above, we have a ∈ DR and a(r1, . . . , rk)↓ /∈
safe(l) for all k (≤ n). Hence l♯ → v♯ ∈ SDP (R).
Moreover, vθ↓ ∈ T args

SC (R) holds because vθ↓ ≡
a(r1θ↓, . . . , rnθ↓) and SC(R, riθ↓) for any i. �

By using the two lemmas above, we can show the
soundness of the static dependency pair method.

Theorem 5.12 Let R be a PFP-HRS. If there exists
no infinite static dependency chain then R is terminat-
ing.

Proof. Assume that ¬SN(R). From Lemma 5.10,
there exists t ∈ TB ∩T¬SC(R) ∩T args

SC (R). By apply-
ing Lemma 5.11 repeatedly, we obtain an infinite static
dependency chain, which leads to a contradiction. �

Corollary 5.13 Let R be a PFP-HRS such that there
exists no infinite path† in the static dependency graph.
If all static recursion components are non-looping, then
R is terminating.

Note that no infinite path condition in this corol-
lary is always satisfied for finite PFP-HRSs, since nodes
are finite in the static dependency graph.

6. Non-Loopingness

In section 5 we showed that a PFP-HRS terminates
if every static recursion component is non-looping. In
order to show non-loopingness, the notion of the sub-
term criterion [8], [13] is frequently utilized, as is that
of a reduction pair [11], which is an abstraction of the
weak-reduction order††[1]. These techniques are also ef-
fective in termination proofs for HRSs. We begin with
reduction pairs.

Definition 6.1 (Reduction Pair) Let & be a quasi-
order and > be a strict order. The pair (&, >) is said
to be a reduction pair if the following properties hold:

• > is well-founded and closed under substitution,
• & is closed under contexts and substitutions, and
• & ·> ⊆ > or > ·& ⊆ >.

†Each node cannot appear more than once in a path.
††A quasi-order & is said to be a weak reduction order if

the pair (&,�) of & and its strict part � is a reduction pair.

Lemma 6.2 Let R be an HRS and C ∈ SRC(R). If
there exists a reduction pair (&, >) such that R ⊆ &,
C ⊆ & ∪>, and C ∩> 6= ∅, then C is non-looping.

Proof. Obvious. �

Next we introduce the subterm criterion for HRSs.
In [8], Hirokawa and Middeldorp proved that the sub-
term criterion guarantees the non-loopingness in TRSs.
The key of the proof is that the relation −→

R
∪ >sub is

well-founded on terminating terms. Since the property
also holds in higher-order rewriting, we directly ported
the criterion to STRSs [13]. We also slightly improved
the subterm criterion by extending the codomain of a
function π from positive integers to sequences of posi-
tive integers [13]. In the following, we extend the im-
proved subterm criterion onto HRSs, that is to handle
λ-abstraction.

Definition 6.3 (Subterm Criterion) Let R be an
HRS and C ∈ SRC(R). We say that C satisfies the
subterm criterion if there exists a function π from DR

to non-empty sequences of positive integers such that

(α) u|π(top(u)) >sub v|π(top(v)) for some u♯ → v♯ ∈ C,
and

(β) the following conditions hold for any u♯ → v♯ ∈ C:

• u|π(top(u)) ≥sub v|π(top(v)),
• ∀p ≺ π(top(u)).top(u|p) /∈ FV (u), and
• ∀q ≺ π(top(v)).q = ε∨top(v|q) /∈ FV (v)∪DR.

Lemma 6.4 Let R be an HRS and C ∈ SRC(R). If
C satisfies the subterm criterion then C is non-looping.

Proof. Assume that pairs in C generate an infinite
chain u♯

0 → v♯0, u
♯
1 → v♯1, u

♯
2 → v♯2, · · · in which every

u♯ → v♯ ∈ C occurs infinitely many times, and let
θ0, θ1, . . . be substitutions such that v♯iθi↓

∗−→
R

u♯
i+1θi+1↓

and uiθi↓, viθi↓ ∈ T args

SC (R) for each i. From Lemma
3.2(5), uiθi↓, viθi↓ ∈ T args

SN (R). Denote π(top(ui)) by pi
for each i. Since v♯iθi↓

∗−→
R

u♯
i+1θi+1↓, we have top(vi) =

top(ui+1). Hence, from the condition (β) of the subterm
criterion, we have

(u0θ0↓)|p0
≥sub (v0θ0↓)|p1

∗−→
R

(u1θ1↓)|p1
≥sub · · · .

From the condition (α) of the subterm criterion, the
sequence above contains infinitely many >sub. Hence
there exists an infinite sequence starting with (u0θ0↓)|j
with respect to −→

R
∪ >sub, where j is the positive in-

teger such that j � p0. This is a contradiction with
u0θ0↓ ∈ T args

SN (R). �

Finally, we present a powerful method for proving
termination of PFP-HRSs.

Theorem 6.5 Let R be a PFP-HRS such that there

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

exists no infinite path in the static dependency graph.
If any static recursion component C ∈ SRC(R) satisfies
one of the following properties, then R is terminating.

• C satisfies the subterm criterion.
• There exists a reduction pair (&, >) such that R ⊆
&, C ⊆ & ∪>, and C ∩> 6= ∅.

Proof. From Corollary 5.13 and Lemma 6.2, 6.4. �

As seen in the theorem, proving non-loopingness
by the subterm criterion depends only on a recursion
component, unlike proving one by a reduction pair.
Thus the approach by the subterm criterion is more
efficient than the approach by reduction pairs.

Example 6.6 We show the termination of PFP-HRS
Rsqsum displayed in the introduction. Let π(foldl) =
3, π(add) = 1, and π(mul) = 1. Then all C ∈
SRC(Rsqsum) (cf. Example 5.8) satisfy the subterm cri-
terion in the underlined positions below:
{

foldl♯(λxy.F (x, y), X, cons(Y, L))

→ foldl♯(λxy.F (x, y), F (X,Y), L)
{

add♯(s(X), Y) → add♯(X,Y)
{

mul♯(s(X), Y) → mul♯(X,Y)

Hence the termination can be shown by Theorem 6.5.

7. Concluding Remarks

In this paper, we extended the static dependency pair
method based on strong computability for STRSs [13]
to that for HRSs. The following topics remain for future
work.

• Argument filtering method for HRSs: Since it is
generally difficult to design reduction pairs, the ar-
gument filtering method was proposed for the de-
pendency pair method of TRSs [1], and extended
to STRSs [12]. However, there is no known argu-
ment filtering method for HRSs. The argument
filtering method in [12] can only be applied to left-
firmness systems, in which every variable of the
left-hand sides occurs at a leaf position. It may be
possible to adapt the argument filtering method for
HRSs without the left-firmness restriction because
the counterexample shown in [12] is no longer a
counterexample for HRSs.

• Notion of usable rules for HRSs: The notion of us-
able rules was introduced for TRSs by Hirokawa
and Middeldorp [8], and by Thiemann, Giesl, and
Schneider-Kamp [23] to reduce constraints when
trying to prove non-loopingness by means of re-
duction pairs. These proofs are based on Urbain’s
proof of an incremental approach to the depen-
dency pair method [24]. It will be of benefit to
develop the notion of usable rules for HRSs.

• Extending upon the class of plain function-passing:

We have only shown the soundness of the static
dependency pair method for the class of plain
function-passing systems. The notions of pattern
computable closure [4] and safe function-passing
[14] are promising techniques by which this may
be extended.

Acknowledgments

This research was partially supported by MEXT KAK-
ENHI #20500008, #18500011, #20300010, and by the
Kayamori Foundation of Informational Science Ad-
vancement.

References

[1] Arts,T. and Giesl,J., Termination of Term Rewriting Using
Dependency Pairs, Theoretical Computer Science, Vol.236,
pp.133–178, 2000.

[2] Blanqui,F., Termination and Confluence of Higher-Order
Rewrite Systems, In Proc. of the 11th Int. Conf. on Rewrit-

ing Techniques and Applications, LNCS 1833 (RTA2000),
pp.47–61, 2000.

[3] Blanqui,F., Jouannaud,J.-P., and Okada,M., Inductive-
data-type Systems, Theoretical Computer Science, Vol.272,
pp.41–68, 2002.

[4] Blanqui,F., Higher-Order Dependency Pairs, In Proc. of

8th Int. Workshop on Termination (WST2006), pp.22–26,
2006.

[5] Blanqui,F., Computability Closure: Ten Years Later, In Es-

says Dedicated to Jean-Pierre Jouannaud on the Occasion

of His 60th Birthday, LNCS 4600 (Rewriting, Computation
and Proof), pp.68–88, 2007.

[6] Dershowitz,N., Orderings for Term-Rewriting Systems,
Theoretical Computer Science, Vol.17(3), pp.270–301,
1982.

[7] Girard,J.-Y., Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Ph.D. thesis,

University of Paris VII, 1972.
[8] Hirokawa,N., and Middeldorp,A., Dependency Pairs Revis-

ited, In Proc. of the 15th Int. Conf. on Rewriting Tech-

niques and Applications, LNCS 3091 (RTA04), pp.249–268,
2004.

[9] Jouannaud,J.-P., Okada,M., A Computation Model for Ex-
ecutable Higher-Order Algebraic Specification Languages,
In Proc. of the 6th IEEE Symposium on Logic in Computer

Science, pp.350–361, 1991.
[10] Jouannaud,J.-P., Okada,M., Abstract Data Type Systems,

Theoretical Computer Science, Vol.173, No.2, pp.349–391,
1997.

[11] Kusakari,K., Nakamura,M., and Toyama,Y., Argument Fil-
tering Transformation, In Proc. of Int. Conf. on Princi-

ples and Practice of Declarative Programming, LNCS 1702
(PPDP’99), pp.47–61, 1999.

[12] Kusakari,K., On Proving Termination of Term Rewriting
Systems with Higher-Order Variables, IPSJ Transactions

on Programming, Vol.42, No.SIG 7 (PRO 11), pp.35–45,
2001.

[13] Kusakari,K. and Sakai,M., Enhancing Dependency Pair
Method using Strong Computability in Simply-Typed Term
Rewriting Systems, Applicable Algebra in Engineering,

Communication and Computing, Vol.18, No.5, pp.407–431,
2007.

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
9

[14] Kusakari,K. and Sakai,M., Static Dependency Pair Method
for Simply-Typed Term Rewriting and Related Techniques,
IEICE Transactions on Information and Systems, Vol.E92-
D, No.2, pp.235–247, 2009.

[15] Mayr,R., Nipkow,N., Higher-Order Rewrite Systems and
their Confluence, Theoretical Computer Science, Vol.192,
No.2, pp.3–29, 1998.

[16] Middeldorp,A., Approximations for strategies and termi-
nation, In Proc. of the 2nd Int. Workshop on Reduc-

tion Strategies in Rewriting and Programming, Vol.70(6) of
Electronic Notes in Theoretical Computer Science, 2002.

[17] Nipkow,N., Higher-order Critical Pairs, In Proc. 6th Annual

IEEE Symposium on Logic in Computer Science, pp.342–
349, 1991.

[18] Sakai,M., Watanabe,Y., and Sakabe,T., An Extension of
the Dependency Pair Method for Proving Termination of
Higher-Order Rewrite Systems, IEICE Transactions on In-

formation and Systems, Vol.E84-D, No.8, pp.1025–1032,
2001.

[19] Sakai,M. and Kusakari,K., On Dependency Pair Method
for Proving Termination of Higher-Order Rewrite Systems,
IEICE Transactions on Information and Systems, Vol.E88-
D, No.3, pp.583–593, 2005.

[20] Sakurai,T., Kusakari,K., Sakai,M., Sakabe,T., and Nishida,N.,
Usable Rules and Labeling Product-Typed Terms for De-
pendency Pair Method in Simply-Typed Term Rewriting
Systems, IEICE Transactions on Information and Systems,
Vol.J90-D, No.4, pp.978–989, 2007. (in Japanese)

[21] Tait,T.T., Intensional Interpretation of Functionals of Fi-
nite Type. Journal of Symbolic Logic 32, pp.198–212, 1967.

[22] Terese, Term Rewriting Systems, Cambridge Tracts in The-
oretical Computer Science, Vol.55, Cambridge University

Press, 2003.
[23] Thiemann,R., Giesl,J., and Schneider-Kamp,P., Improved

Modular Termination Proofs Using Dependency Pairs. In:
Proc. of the 2nd Int. Joint Conf. on Automated Reasoning,
LNAI 3097 (IJCAR2004), pp.75–90, 2004.

[24] Urbain,X., Modular & Incremental Automated Termina-
tion Proofs. Journal of Automated Reasoning, 32(4) pp
315–355, 2004.

KUSAKARI Keiichirou received
B.E. from Tokyo Institute of Technology
in 1994, received M.E. and the Ph.D. de-
gree from Japan Advanced Institute of
Science and Technology in 1996 and 2000.
From 2000, he was a research associate
at Tohoku University. He transferred to
Nagoya University’s Graduate School of
Information Science in 2003 as an assis-
tant professor and became an associate
professor in 2006. His research interests

include term rewriting systems, program theory, and automated
theorem proving. He is a member of IPSJ and JSSST.

ISOGAI Yasuo received the B.E.
and M.E. degrees from Nagoya Univer-
sity in 2006 and 2008, respectively. He
engaged in research on term rewriting sys-
tems. He is going to work at Hitachi Ltd.
from April 2008.

SAKAI Masahiko completed grad-
uate course of Nagoya University in 1989
and became Assistant Professor, where he
obtained a D.E. degree in 1992. From
April 1993 to March 1997, he was As-
sociate Professor in JAIST. In 1996 he
stayed at SUNY at Stony Brook for six
months as Visiting Research Professor.
From April 1997, he was Associate Profes-
sor in Nagoya University. Since December
2002, he has been Professor. He is inter-

ested in term rewriting system, verification of specification and
software generation. He received the Best Paper Award from
IEICE in 1992. He is a member of JSSST.

Frédéric Blanqui received his PhD
degree in September 2001 at the Univer-
sity of Paris 11 (Orsay, France). He did
a postdoc at Cambridge University (UK)
from October 2001 to August 2002, and at
Ecole Polytechnique (Palaiseau, France)
from September 2002 to August 2003.
Since October 2003, he is permanent full-
time INRIA researcher at LORIA (Nancy,
France). He is interested in rewriting the-
ory, type theory, termination, functional

programming and proof assistants. He received the Kleene Award
for the best student paper at LICS’01, and the French SPECIF
2001 Award for his PhD.

