Topology-Aware Navigation in Large Networks - Archive ouverte HAL Access content directly
Conference Papers Year : 2009

Topology-Aware Navigation in Large Networks

Fanny Chevalier
Emmanuel Pietriga
Jean-Daniel Fekete


Applications supporting navigation in large networks are used every days by millions of people. They include road map navigators, flight route visualization systems, and network visualization systems using node-link diagrams. These applications currently provide generic interaction methods for navigation: pan-and-zoom and sometimes bird's eye views. This article explores the idea of exploiting the connection information provided by the network to help navigate these large spaces. We visually augment two traditional navigation methods, and develop two special-purpose techniques. The first new technique, called "Link Sliding", provides guided panning when continuously dragging along a visible link. The second technique, called "Bring & Go", brings adjacent nodes nearby when pointing to a node. We compare the performance of these techniques in both an adjacency exploration task and a node revisiting task. This comparison illustrates the various advantages of content-aware network navigation techniques. A significant speed advantage is found for the Bring & Go technique over other methods.
Fichier principal
Vignette du fichier
chi2009_toponav.pdf (1.55 Mo) Télécharger le fichier
Vignette du fichier
fig4.jpg (74.04 Ko) Télécharger le fichier
Vignette du fichier
fig2.jpg (41.38 Ko) Télécharger le fichier
Vignette du fichier
fig3.jpg (35.23 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Format : Figure, Image
Format : Figure, Image

Dates and versions

inria-00373679 , version 1 (06-04-2009)



Tomer Moscovich, Fanny Chevalier, Nathalie Henry, Emmanuel Pietriga, Jean-Daniel Fekete. Topology-Aware Navigation in Large Networks. SIGCHI conference on Human Factors in computing systems, ACM, Apr 2009, Boston, United States. pp.2319--2328, ⟨10.1145/1518701.1519056⟩. ⟨inria-00373679⟩
1057 View
864 Download



Gmail Facebook Twitter LinkedIn More