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Compressed sensing for radio interferometry:
prior-enhanced Basis Pursuit imaging techniques

Yves Wiaux, Laurent Jacques, Gilles Puy, Anna M. M. Scaife, and Pierre Vandergheynst

Abstract—We propose and assess the performance of new
imaging techniques for radio interferometry that rely on the
versatility of the compressed sensing framework to account
for prior information on the signals. The present manuscript
represents a summary of recent work [1].

I. RADIO INTERFEROMETRY

Visibility measurement: Radio interferometry is a power-
ful technique for aperture synthesis in astronomy [2]. Thanks
to interferometric techniques, radio telescope arrays synthesize
the aperture of a unique telescope of the same size as the
maximum projected baseline, i.e. the maximum projected
distance between two telescopes on the plane perpendicular
to the pointing direction of the instrument. The portion of
the celestial sphere accessible to the instrument around the
pointing direction tracked during observation defines the orig-
inal signal or image to be recovered. We consider a standard
interferometer with a so-called illumination function limiting
the field of view to a small and finite patch of the celestial
sphere identified to a planar patch:P ⊂ R2. The signal and
the illumination function thus respectively appear as functions
I(~p) andA(~p) of a vector~p ∈ P with an origin at the pointing
direction of the array.

At each instant of observation, each telescope pair identified
by an indexb measures a complex visibilityyb ∈ C corre-
sponding to the value of the Fourier transform of the image
multiplied by the illumination functionAI at a single spatial
frequency~ub. One has

yb = ÂI (~ub) with ~ub =
~B⊥

b

λ
, (1)

where the vector~B⊥
b ∈ R2 is the projected baseline between

the two telescopes andλ the wavelength of emission. In the
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course of an observation, the projected baselines change thanks
to the Earth’s rotation and run over an elliptical path in the
Fourier plane of the original image. The total numberm/2
of spatial frequencies probed by all pairs of telescopes of the
array during the observation provides some Fourier coverage
characterizing the interferometer. Any interferometer isthus
simply identified by a binary mask in Fourier equal to1 for
each spatial frequency probed and0 otherwise. The visibilities
measured may be denoted as a vector ofm/2 complex Fourier
coefficientsy ∈ Cm/2 = {yb}1≤b≤m/2, inevitably affected by
complex noise valuesn ∈ C

m/2 = {nb}1≤b≤m/2 of astro-
physical or instrumental origin. The signal and the illumination
function being real, the measured visibilities may equivalently
be denoted as a vector ofm real Fourier coefficients consisting
of the real and imaginary parts of the complex measures in one
half of the Fourier plane, also affected by real noise values.

Inverse problem: The original signal and the illumination
function can be identified by their Nyquist-Shannon sampling
on a discrete uniform grid ofN points~pi in real space with
1 ≤ i ≤ N . They are equivalently identified by theirN
real Fourier coefficients on one half of the discrete uniform
grid of N spatial frequencies~ui with 1 ≤ i ≤ N . In
this discrete setting, the Fourier coverage associated with an
interferometer is usually incomplete in the sense that the
number of real measurements is always smaller than the
number of unknowns:m < N . An ill-posed inverse problem
is thus defined for the reconstruction of the sampled signal
x ∈ RN = {xi = I(~pi)}1≤i≤N , from the measured visibilities
y ∈ Rm = {yr}1≤r≤m associated with a sensing matrix
Φ

ri
for radio interferometry and affected by a given noise

n ∈ Rm = {nr}1≤r≤m, as:

y = Φ
ri
x + n with Φ

ri
= MFD. (2)

In this relation, the matrixD ∈ RN×N = {Dii′}1≤i,i′≤N is
the diagonal matrix implementing the illumination function,
and the matrixF ∈ RN×N = {Fii′}1≤i,i′≤N implements the
discrete Fourier transform providing the real Fourier coeffi-
cients. The matrixM ∈ Rm×N = {Mri}1≤r≤m;1≤i≤N is the
rectangular binary matrix implementing the mask identifying
the interferometer.

We restrict our considerations to independent Gaussian
noise with varianceσ2

r = σ2(yr). From the single point of
view of this statistical noise, the likelihoodL associated with
a candidate reconstructionx∗ of the signalx is defined as the
probability of the datay given the modelx∗, or equivalently
the probability of the noise residualn∗ = y − Φ

ri
x∗. Under

the Gaussian noise assumption the negative logarithm of the
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likelihood is a chi-square distribution withm degrees of free-
dom: χ2(x∗; Φ

ri
, y) =

∑m
r=1(n

∗
r)

2/σ2
r . The level of residual

noisen∗ should be reduced by findingx∗ minimizing thisχ2.
Typically, the constraint on the reconstruction imposed bythe
measurements may be defined as a boundχ2 ≤ ǫ2, with ǫ2

corresponding to some(100α)th percentile of the chi-square
distribution, i.e.p(χ2 ≤ ǫ2) = α for someα ≤ 1. The inverse
problem being ill-posed, many signals may formally satisfy
the measurement constraints. In general, the problem may only
find a unique solution through a regularization scheme which
should encompass enough prior information on the original
signal.

Standard CLEAN: The most standard and otherwise
already very effective image reconstruction algorithm from
visibility measurements is called CLEAN. It approaches the
image reconstruction in terms of the corresponding decon-
volution problem in real space. In standard vocabulary, the
inverse transform of the Fourier measurements with all non-
observed visibilities set to zero is called the dirty image.
The inverse transform of the binary mask identifying the
interferometer is called the dirty beam. CLEAN [3] and even
multi-scale versions [4] may actually simply be formulated
in terms of the well-known matching pursuit (MP) procedure.
The corresponding MP algorithm simply uses a circulant
dictionary for which the projection on atoms corresponds to
the convolution with the dirty beam. A loop gain factorγ
is generally introduced in the procedure which defines the
fraction of the dirty beam considered at each iteration. Values
γ of the order of a few tenths are usually used which allow
for a more cautious consideration of the sidelobes of the
dirty beam. In a statistical sense, the stopping criterion for
the iteration procedure should be set in terms of aχ2 bound.
However, the procedure is known to be slow and the algorithm
is often stopped after an arbitrary number of iterations.

CLEAN assumes that the original signal is a sum of Dirac
spikes. A hypothesis of sparsity or compressibility of the
original signal in real space is thus implicitly made which
regularizes the inverse problem. However CLEAN does not
explicitly impose sparsity or compressibility. This gap is
bridged by the imaging techniques defined in the framework
of the compressed sensing theory.

II. COMPRESSED SENSING

Sparsity and inverse problem: In the framework of com-
pressed sensing [5, 6] the signals probed are firstly assumed
to be sparse or compressible in some basis. Technically,
we consider a real signal identified by its Nyquist-Shannon
sampling asx ∈ R

N = {xi}1≤i≤N . A real basisΨ ∈
RN×T = {Ψiw}1≤i≤N ;1≤w≤T is defined, which may be either
orthogonal, withT = N , or redundant, withT > N . The
decompositionα ∈ RT = {αw}1≤w≤T of the signal defined
by x = Ψα, is sparse or compressible in the sense that it only
contains a small numberK ≪ N of non-zero or significant co-
efficients respectively. The signal is then assumed to be probed
by m real linear measurementsy ∈ Rm = {yr}1≤r≤m in some
real sensing basisΦ ∈ R

m×N = {Φri}1≤r≤m;1≤i≤N and
possibly affected by independent and identically distributed

noisen ∈ Rm = {nr}1≤r≤m:

y = Θα + n with Θ = ΦΨ ∈ R
m×T . (3)

This numberm of constraints is typically assumed to be
smaller than the dimensionN of the vector defining the signal,
so that the inverse problem is ill-posed.

Basis Pursuit: A constrained optimization problem called
the Basis Pursuit denoise (BPǫ) problem may be defined for
reconstruction ofx. It explicitly imposes the sparsity or com-
pressibility of the reconstruction by requiring the minimization
of the ℓ1 norm ofα′ under a constraint on theℓ2 norm of the
residual noise:

min
α′∈RT

||α′||1 subject to||y − Θα′||2 ≤ ǫ, (4)

again withǫ2 corresponding to some percentile of a chi-square
distribution with m degrees of freedom. Theℓ1 norm of a
vectorα′ may be seen from a Bayesian point of view as the
negative logarithm of a Laplacian prior distribution on each
of its independent components. Its minimization promotes
the sparsity or compressibility ofα′. The ℓ2 norm of the
residual noisey−Θα′ is equivalent to the minimization of the
χ2 associated with the Gaussian independent and identically
distributed noise. This BPǫ problem is solved by application
of non-linear convex optimization algorithms [7, 8]. If the
solution is denotedα∗ then the corresponding synthesis-based
signal reconstruction reads asx∗ = Ψα∗. In the absence of
noise, the minimization problem is simply called Basis Pursuit
(BP).

Compressed sensing shows that if the matrixΘ satisfies
some restricted isometry property (RIP), then the solution
x∗ of the BPǫ problem provides an accurate and stable
reconstruction of a signalx that is sparse or compressible
with K significant coefficients.

Versatility: Alternative minimization problems may also
be defined for the recovery, even though no corresponding
recovery results are generally available. This flexibilityin
the definition of the optimization problem is an important
manifestation of the versatility of the compressed sensing
theory, and of the convex optimization scheme. It opens the
door to the definition a whole variety of powerful image
reconstruction techniques that may take advantage of some
available prior knowledge of the sparse or compressible signal
under scrutiny.

The issue of the design of the sensing matrixΦ ensuring the
RIP is fundamental. One can actually show that incoherence of
Φ with the sparsity or compressibility basisΨ and randomness
of the measurements will ensure that the RIP is satisfied with
overwhelming probability, provided that the number of mea-
surements is large enough but still of the order of the sparsity
consideredK ≪ N . As an example of interest for radio
interferometry, the measurements may arise from a uniform
random selection of Fourier frequencies. In this case, the RIP
is satisfied ifK ≤ Cm/(µ2 ln4 N) for some constantC, and
whereµ identifies the mutual coherence between the Fourier
basis and the sparsity or compressibility basis. Consequently,
if compressed sensing had been developed before the advent
of radio interferometry, one could probably not have thought



3

 

 

0 0.05 0.1 0.15 0.2 0.25
5 10 15 20 25 30

0

10

20

30

40

50

Coverage (%)
S

N
R

 (
dB

) CLEAN

BP

BP+

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4
5 10 15 20 25 30

1.5

2

2.5

3

3.5

4

4.5

Coverage (%)

S
N

R
 (

dB
)

CLEAN
BP
SBP

Figure 1. Sample original signals multiplied by the illumination function,
and SNR graphs over30 simulations for the various reconstruction techniques
probed, as a function of the Fourier coverage. Top panels: compact object
intensity field. Bottom panels: magnitude of gradient of a string signal in the
CMB.

of a much better design of measurements for sparse and
compressible signals in an imaging perspective.

III. PRIOR-ENHANCED BP IMAGING TECHNIQUES

Experimental set up: We consider two kinds of astrophys-
ical signalsI that are sparse in some basis, and for which
prior information is available. For each kind of signal,30
simulations are considered. Observations of both kinds of sig-
nals are simulated for five hypothetical radio interferometers
unaffected by instrumental noise. The field of view observed
by the interferometers is limited by a Gaussian illumination
function A with a full width at half maximum (FWHM) of
40 arcminutes. The original signals considered are defined as
sampled imagesx with N = 256 × 256 pixels on a total
field of view of 1.8◦×1.8◦. As has already been emphasized,
realistic visibility distributions for any interferometer will be
elliptical, but the structure of the Fourier sampling is extremely
dependent of the specific configuration of the telescope array
under consideration. In order to draw general conclusions,the
distributions considered here are identified by uniform random
selections of visibilities. The five interferometers considered
identified by an indexc with 1 ≤ c ≤ 5 only differ by
their Fourier coverage. This coverage is defined by them/2
randomly distributed frequencies probed in one half of the
Fourier plane, corresponding tom real Fourier coefficients as:
m/N = 5c/100.

Positivity prior and BP+: The first kind of signal consists
of a compact object intensity field in which the astrophys-
ical objects are represented as a superposition of elongated
Gaussians of various scales in some arbitrary intensity units
(see Figure 1). Each simulation consists of100 Gaussians
with random positions and orientations, random amplitudes
in the range[0, 1] in the chosen intensity units, and random

but small scales identified by standard deviations along each
basis direction in the range[1, 4] in number of pixels. Given
their structure, such signals are probably optimally modelled
by sparse approximations in some wavelet basis. But as the
maximum possible incoherence with Fourier space is reached
from real space, we chose the sparsity or compressibility
basis to be the Dirac basis, i.e.Ψ = IN1/2×N1/2 . For further
simplification of the problem we consider the inverse problem
for reconstruction of the original signal multiplied by the
illumination function x̄. The important prior information in
this case is the positivity of the signal.

As no noise is considered, a BP problem is considered in
a standard compressed sensing approach. However, the prior
knowledge of the positivity of the signal also allows one to
pose an enhanced BP+ problem as:

min
x̄′∈RN

||x̄′||1 subject toy = Φ̄
ri
x̄′ and x̄′ ≥ 0. (5)

No theoretical recovery result was yet provided for such a
problem in the described framework of compressed sensing.
But the performance of this approach for the problem consid-
ered is assessed on the basis of the simulations. The positivity
prior is easily incorporated into a convex optimization solver
based on proximal operator theory [9]. The Douglas-Rachford
splitting method [7] guarantees that such an additional convex
constraint is inserted naturally in an efficient iterative proce-
dure finding the global minimum of the BP+ problem. For
simplicity, the stopping criterion of the iterative process is here
set in terms of the number of iterations:1e+ 04.

The mean signal-to-noise ratio (SNR) and corresponding
one standard deviation (1σ) error bars over the30 simulations
are reported in Figure 1 for the CLEAN reconstruction of
x̄ with γ = 0.1, and for the BP and BP+ reconstructions
of x̄, as a function of the Fourier coverage identifying the
interferometric configurations. One must acknowledge the fact
that BP and CLEAN provide relatively similar qualities of
reconstruction. However, the BP reconstruction is actually
achieved much more rapidly than the CLEAN reconstruction,
both in terms of number of iterations and computation time.
The BP+ reconstruction exhibits a significantly better SNR
than the BP and CLEAN reconstructions. The main outcome
of this analysis thus resides in the fact that the inclusion
of the positivity prior on the signal significantly improves
reconstruction.

Statistical prior and SBPǫ: The second kind of signal
is of particular interest for cosmology. It consists of tem-
perature steps inµK induced by topological defects called
cosmic strings in the zero-mean perturbations of the cosmic
microwave background (CMB) radiation. The string network
of interest can be mapped as the magnitude of the gradient
of the string signal itself (Figure 1). The CMB signal as a
whole is a realization of a statistical process. The perturbations
considered may be modelled as a linear superposition of the
non-Gaussian string signalx and of a Gaussian component
g seen as noise with known power spectrum [10]. Our30
simulations of the CMB signal are built as a superposition of
a unique realistic string signal simulation of fixed amplitude
borrowed from [11] with30 simulations of the Gaussian
correlated noise.
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The essential prior information in this case resides in the
fact that the statistical distribution of a string signal may be
well modelled by generalized Gaussian distributions (GGD)in
wavelet space [10] from16 independent realistic simulations
of a string signal. We thus consider a sparsity basis identified to
a redundant steerable wavelet basis with6 scalesj (1 ≤ j ≤ 6)
including low pass and high pass axisymmetric filters, and
four intermediate scales defining steerable wavelets with6
basis orientationsq (1 ≤ q ≤ 6): Ψ = Ψ

s
. By statistical

isotropy, the GGD priorsπj for a wavelet coefficientα′
w only

depend on the scalej, where w is to be thought of as a
multi-index identifying a coefficient at given scalej, position
i, and orientationq. Assuming independence of the wavelet
coefficients, the total prior probability distribution reads as
π(α) ∝ exp−||α||s, for a “s” norm ||α||s ≡

∑
w |αw/uj|

vj

for specific values of scale parametersuj and shape parameters
vj , not reported here. Most modelledvj values are smaller
than1, hence identifying even more compressible distributions
than Laplacian distributions would be. In full generality we
consider the general inverse problem for reconstruction ofthe
original signal non-multiplied by the illumination function x.

Even in the absence of instrumental noise the measured
visibilities are affected by a noise term representing values of
the Fourier transform of the astrophysical noiseg multiplied
by the illumination function. The corresponding noise variance
σ2

r on yr with 1 ≤ r ≤ m, is identified from the values
of the known power spectrum ofg. A whitening matrix
W

cmb
∈ Rm×m = {(W

cmb
)rr′ = σ−1

r δrr′}1≤r,r′≤m can
be introduced on the measured visibilitiesy, so that the
corresponding visibilities̃y = W

cmb
y are simply affected by

independent and identically distributed noise, as required to
pose a BPǫ problem.

A BPǫ problem is thus considered. However, the prior
statistical knowledge on the signal also allows one to pose
an enhanced Statistical Basis Pursuit denoise (SBPǫ) problem.
It is defined as the minimization of the negative logarithm
of the prior on the signal, i.e. the s norm of the vector of
its wavelet coefficients, under the constraint imposed by the
measurements:

min
α′∈RT

||α′||s subject to||ỹ − W
cmb

Φ
ri
Ψ

s
α′||2 ≤ ǫ. (6)

No theoretical recovery result was yet provided for such a
problem in the framework of compressed sensing. Again, the
performance of this approach for the problem considered is
assessed on the basis of the simulations. Most shape parame-
tersvj being smaller than1, the norm defined is not convex.
We thus reconstruct the signal through a re-weightedℓ1 norm
minimization [12]. In this regard, we use the SPGL1 toolbox
[8]. The value ofǫ2 in the BPǫ and SBPǫ problems is taken to
be the99th percentile of theχ2 with m degrees of freedom
governing the noise level estimator. This value also servesas
the stopping criterion for the CLEAN reconstruction.

The mean SNR of the magnitude of the gradient and
corresponding one standard deviation (1σ) error bars over
the 30 simulations are reported in Figure 1 for the CLEAN
reconstruction withγ = 0.1, and for the BPǫ and SBPǫ
reconstructions re-multiplied by the illumination function, as a

function of the Fourier coverage identifying the interferometric
configurations. One must still acknowledge the fact that BPǫ

and CLEAN provide relatively similar qualities of reconstruc-
tion, but the BPǫ reconstruction is achieved much more rapidly.
The SBPǫ reconstruction exhibits a significantly better SNR
than the BP and CLEAN reconstructions. The main outcome
of the analysis is that the inclusion of the prior statistical
knowledge on the signal significantly improves reconstruction.

IV. CONCLUSION

Compressed sensing offers a versatile framework for image
reconstruction in radio interferometry. Our results show that
the inclusion of prior information on the signals in the associ-
ated minimization problems significantly improves the quality
of reconstruction relatively to the standard algorithm CLEAN.
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