N
N

N

HAL

open science

Spectrum-preserving texture advection for animated
fluids
Qizhi Yu, Fabrice Neyret, Eric Bruneton, Nicolas Holzschuch

» To cite this version:

Qizhi Yu, Fabrice Neyret, Eric Bruneton, Nicolas Holzschuch. Spectrum-preserving texture advection
for animated fluids. [Research Report] RR-6810, INRIA. 2009. inria-00355827v5

HAL 1d: inria-00355827
https://inria.hal.science/inria-00355827v5
Submitted on 18 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00355827v5
https://hal.archives-ouvertes.fr

inria-00355827, version 4 - 10 May 2009

%I 1NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

Spectrum-preserving texture advection
for animated fluids

Qizhi Yu — Fabrice Neyret — Eric Bruneton — Nicolas Holzschuc

N° 6810
Janvier 2009

Théme COG

apport
de recherche

ISRN INRIA/RR--6810--FR+ENG

ISSN 0249-6399

http://hal.inria.fr/inria-00355827/fr/
http://hal.archives-ouvertes.fr

inria-00355827, version 4 - 10 May 2009

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;"I N RIA GRENOBLE - RHONE-ALPES

ET EN AUTOMATIQUE

Spectrum-preserving texture advection
for animated fluids

Qizhi Yu *, Fabrice Neyret T, Eric Brunetori , Nicolas Holzschuch

Theme COG — Systemes coghnitifs
Equipes-Projets Evasion

Rapport de recherche n° 6810 — Janvier 2009 — 17 pages

Abstract: Texturing an animated fluid is a useful way to augment theatisomplex-
ity of pictures without increasing the simulation time. Beturing flowing fluids is a
complexissue, as it creates conflicting requirements: we tekeep the texture prop-
erties (features, spectrum) while conforming to the unyiegl flow — which distorts
the attached texture. In this paper, we present a new methraexturing animated
fluids. Our method ensures that the moving texture alwayevislthe velocity field
of the fluid, while maintaining key properties of the oriditexture. Our algorithm
runs in real-time; our experiments show that it is well sdiiter a wide range of input
texture, including, but not limited to, noise textures.

Key-words: Texturing animation, Animated fluids, Spryticles, PadglLagrangian
methods

* Laboratoire Jean Kuntzmann et INRIA Grenoble
TCNRS

Centre de recherche INRIA Grenoble — Rhéne-Alpes

655, avenue de I'Europe, 38334 Montbonnot Saint Ismier
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

inria-00355827, version 4 - 10 May 2009

Advection de texture pour fluides anines,
préservant le spectre

Résune : Texturer un fluide animé est une faon pratique d’augmenteomplexité
visuelle des images sans augmenter le temps de simulatiars. tékturer des fluides
animés est un problme complexe a cause de buts condriagiécton souhaite conserver
les propriétés de la texture (éléements caractériesq spectre) tout en respectant le
mouvement du fluide — qui déforme la texture. Dans cet articlus présentons une
nouvelle méthode pour texturer des fluides animés. Noéthade fournit une texture
animée qui suit a chaque instant le champ de vitesse dwefltodt en prservant les
propriétés principales de la texture originelle. Notigoathme fonctionne en temps-
réel; nos expriences montrent qu'il est bien adapt pouratehreux types de textures
d’entrée, y compris les textures de bruit.

Mots-clés : Animation de texture, Fluides animés, Spryticles, Paltis, Méthodes
Langrangiennes

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids 3

1 Introduction

Animated fluids are frequently used in Computer Graphicgtivr in virtual worlds,
special effects or video games. As it is difficult to model tloenplete behavior of the
fluid, animators and designers resort to texture mappingrier surface details, such
as foam, normal mapping and smaller waves. But mapping areegh a flowing fluid,
such as a river, creates conflicting requirements. On ond,ha@ want the texture
to follow the flow exactly, so that the fluid movements are dieaisible. On the
other hand, we want the texture to keep its original propsrtAs the fluid movements
introduce large and cumulating distortions, shearing amediching the original texture,
solving both requirements is a difficult task.

In this paper, we present a new technique for the advectitextires on a flowing
fluid. Our technique takes as input a flowing fluid, whose \igyofield is known,
and a texture (procedural or image). We produce as outputiamated texture whose
features follow exactly the velocity field, while keeping/eeal key properties of the
input texture, including its local appearance.

Our algorithm works as follows: we start by placing sampletipkes along the
flow. These particles are advected by the flow. A grid is atddlo each particle, and
this grid is also advected and deformed by the flow. Each gritiapped to a fixed
area of the input texture. To maintain texture propertiestigles are eliminated when
the distortion of their grid becomes too large. We maintag@oastant particle density
over the flow, killing or generating new particles when nekdé a final step, we
reconstruct the texture by blending together these tecttyiiels. The method is simple
enough that it runs in real-time on standard GPUs.

Obviously, our algorithm does not apply to all possible infaxtures. It requires
that we can blend together different areas of the input texdnd yet create a satisfying
result. We expect our algorithm to perform poorly on hightystured textures; how-
ever, we found that it works well with a large range of inputttees, including noise
textures, foam, bubbles... These textures corresponethitial of features we expect
to see on an animated fluid.

To measure the quality of animated textures, we suggest tivaria: the Fourier
spectrum and the optical flow; both are computed on the owtfpartir algorithm. Our
experiments show that the optical flow of the animated textaatches exactly the
input velocity field, while keeping the Fourier spectrumtod input texture.

Our paper is organized as follows: in the next section, wéeveprevious work
on detail advection methods for animated fluids. We thengmtesur algorithm (Sec-
tion 3). In Section 4, we present our results and compare thexisting work. Finally,
in Section 5, we conclude and present avenues for future.work

2 Previous work

Particle systems proposed by [14, 15] is an efficient way tbdedails to scenes and an-
imation (fire, explosions, vegetation...). Since thentiplas have been generalized in
animation, e.g. [16, 18]. Moving particles with attachedtss, orspryticles are now
ubiquitous in Computer Graphics applications such as gaméspecial effects [23, 3].
Stam and Fiume [21] render “warped blobs” to account for itktaturbulence
effects in a moving fluid: blob particles are carried by thevfliike particles. At
rendering time, rays intersecting a blob are back-progeictéme to the initial density
distribution to be marched. More recently, Narairal. [11] place blocks of velocity

RR n° 6810

inria-00355827, version 4 - 10 May 2009

4 Yu, Neyret, Bruneton & Holzschuch

noise attached to particles in a flow, to create turbulenfeetst Yuet al. [24] add
texture sprites attached to particles in a moving fluid, ®ate textured rivers. Our
algorithm shares many key points with these works; the miffierdnce is that they are
advecting rigid particles, usually spheres or disks, wiviéeare advecting deformable
grids. This enables us to reconstruct a smooth homogeneovesment after blending
particles, without secondary motion or sliding effects.

The texture advection idea was first introduced by Mgal. [9, 8]. Since then, this
technigue has been used for visualization [22] and for 2DDfl@id animation [20].
The most recent work on this topic was [12]. This approachiezs used for special
effects in motion pictures, and our algorithm has been lgrigspired from these pa-
pers. The main difference is that these papers rely on amigal®rmalism, while we
rely on a Lagrangian formalism. The Eulerian approach mézeusthere must be a
parameterization for the whole domain, making local adapialifficult and wasting
calculation and storage for empty areas.

Our algorithm can be seen as a combination of these two agipesa particles
(Lagrangian) and texture advection (Eulerian), givinghestienefits of both.

Animated texture synthesis methods [6, 5, 4] have the sam4 i texture and
an animated flow) and output (an animated texture) as ouritign The main dif-
ference with our work is the nature of the input textures, tredfeatures we chose to
conserve. These algorithms use neighbor-based simitaiigrion in example images,
and loosely conform to the input flow. We focus on minimizingdl distortions and we
enforce a strict conformance to the flow, but our current sehdoesn’t establish a re-
lationship between the content of neighboring sprites. @be that both approaches
have their benefits, depending on the target applicatiors isuvell adapted to noise
textures (and procedural textures using them as input}cantages with weak or local
structures. Furthermore, the simplicity and locality of approach allow us to have a
real-time implementation, with no pre-computations, caneg to several minutes per
frame for [4], making it a better choice for interactive dapations.

3 Our algorithm

Our algorithm takes as input an animated velocity field andhzage or procedural
texture. It generates as output an animated texture by inlgridgether as small set
of deformable textured gridadvected with the input flow. We start with a random
Poisson disk distribution giarticles(see Figure 1). We then create grids centered on
these particles. Initially the grids are regular, have e size, and are associated
with a random area of the input texture. Then, at each tinge ste

* We advect the grid vertices with the flow, and we set the nesitjoo of each
particle to the centroid of its advected grid.

< We maintain a uniform distribution of particles by Killirepd creating particles
when necessary. We also Kkill particles whose grid is tooodistl (see Sec-
tion 3.1). We create regular grids for the new particlespgisandom areas of
the input texture.

* We compute spatial and temporal blending weights for tligsgiThe goal is to
avoid seams and popping in the animated texture when pegtick killed and
created (see Section 3.2). In particular grids are stileatkd and blended after
their particle’s death while they fade out.

INRIA

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids 5

Input flow
Input texture

Output
iyl animated
texture

Figure 1. Overview of our algorithm. Top: we take as input an animated velocity
field and a textureMiddle: we advect particles by the flow. We maintain a Poisson
disk distribution, killing or creating new particles wheecessary. A deformable grid
is attached to each particle and mapped to a fixed area of thetitexture.Bottom:

we blend these deformable textured grids to get our animabedre.

* We render the animated texture either by directly drawing) lalending the tex-
tured grids, or by using an indirection map to recover thdgycovering a given
pixel (see Section 3.3).

3.1 Particle sampling and distortion

The deformable textured grids must cover the whole fluid toegate an animated
texture without holes. However they must not overlap too imaied must not be too
distorted in order to preserve the input texture propeitigbe generated texture. We
ensure this by enforcing a dynamic Poisson disk distriloubiithe grid centroids (i.e.,

of the particles) and by killing particles whose grid is tastdrted.

Particle distribution We maintain a Poisson disk distribution by using the algo-
rithm [2], which is well adapted to dynamic updating [24]. iFlalgorithm Kills par-
ticles when their minimal distance to the others is less ttharit then creates new
particles at a minimal distanakto the remaining particles. If each grid covers at least
akernelof diameter @ around its particle (see Figure 1), then this algorithm gntees

a coverage of the plane without holes.

RR n° 6810

inria-00355827, version 4 - 10 May 2009

6 Yu, Neyret, Bruneton & Holzschuch

We must avoid killing particles too often (especially youparticles) since their
grids are still advected and blended until they fade out.sWuld result in many
overlapping grids, which is costly and gives a blurry aniedaexture. To solve this we
introduce an hysteresis: we kill particles when their migliistance to the others is
less thar(1— a)d. Howevera should be small to avoid increasing the particle density.
In our implementation we usea = 0.25.

Grid distortion The grids must be larger than the kernels in order to avoidshdio
ensure this we delete a particle when this criterion is ndt ience a large initial grid
size gives a long patrticle lifetime. However grids must retdo large to avoid increas-
ing the number of vertices per grid. Thus we use an initia@ siZ2+ 3)d x (2+ 8)d,
with a smallg. In our implementation, we usg@l= 0.6. We also delete a particle if
its grid folds over or if its distortion becomes too largegsgection 3.2). As in [19],
we evaluate the grid distortion as the distortidmof the most distorted triangle. We
compute the distortion of each triangle by using the singealuesymin, ymax of the Ja-
cobianJ of the affine transformation between the initial and adwetiiangle [17]. The
singular values are the square root of the eigenvaludslofThey give the minimum
and maximum length that a unit vector can get after this foanstion. Precisely, we
used = max ymax 1/Ymin) (1 means no distortion). From this we definguality mea-
sure varying between 1 (perfect) and 0 (unacceptaQie)) = max(%p), where
Omaxis the maximum acceptable distortiahaxis the main free parameter of our algo-
rithm since it directly impacts the global distortion. Inr@xamples we use@dnax= 5
(this does not mean that we can see a 5 folds distortion: tieddnides it long before
— see Section 3.2).

Flow with boundaries It is important to deal with boundaries for the flow. Eulerian
approaches such as [9, 12] do not address this issue. Whahattgched to a particle
covers a boundary, we advect the grid vertices outside theldloextrapolating the
velocity field out of the flow with a push-pull algorithm [17] each grid (see Figure 2).
We ignore these vertices during the computation of the gatbdion.

® Nodes with known velocities

® Unknown nodes

Solid boundary

Figure 2: Pyramid grids for extrapolating the velocities of the odesinodes in a
patch overlapping boundaries. We repeatedly build coagsis by averaging known
velocities of everg x 2 nodes until we reach a grid with no unknown node. Then, we
go down in the hierarchy from the coarsest grid, filling unkmonodes in a grid with
the values from the neighboring coarser grid.

INRIA

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids 7

3.2 Blending and continuity

We ensure the spatial and temporal continuity of the anich@eture by blending the
deformable grids using weighting functions, as in otheblidased representations like
RBF [1] or SPH [10]. We combine weights associated with thé'gggeometry (kernel
and distortion weights) and with the grid’s lifetime.

Spatial weights The kernel is associated with a spatial weilfptx) going from 1 at

p to O at distancel of the particlep. But this is not sufficient to avoid discontinuities.
We kill particles when their grid no longer covers the kerbel since grids are still
advected and blended until they fade out, holes can appgeawjrsg the grid border.
We need to continuously fade out at grid borders inside thgcpels kernel. For this
we use another weighdy(v) defined at grid vertices and interpolated linearly inside
the grid triangles. This weight must go to 0 at the grid bardieiour implementation
we usedKp(x) = max(1— ||x —p||/d,0), andKg = 1 for inner vertices O for border
vertices.

Distortion weights In order to limit the apparant distortion we use a weighbased

on our quality measur® (see Section 3.1). Instead of using a global weight per geid w
use alocal weight to get a finer control of the appearantdisto(it is frequent to have

a small distorted area in a grid). So we defiqeon grid vertices (using the average
quality of the adjacent triangles) and we interpolate idifly inside the grid triangles.
We want grids to fade out whefy gets to 0. But since a grid continues to deform after
its particle has been killed, we must kill the particle beftirat. In our implementation
we Kill a particle when there is a vertex inside the kernehw((v) < 0.5.

Temporal weights Finally we fade particles in and out at their creation andrdes
tion, using two weightsss(t) and Foy(t). The fading periodr can be long (in our
implementation we used = 5 seconds).Fy; is mainly used to force the fading out
of grids whose distortion would stop increasing. And iis longer than the particles
lifetime, Fn andFy; rule the weights of all particles and are thus renormalizetia
end (see below).

The total weight at a point inside a grid is finally defined as

W(x,t) = Kp(x)Kg(¥)Ka (X)Fin (t) Four(t)- 1)

The animated texture atis then computed by blending the textufies<) of the grids
covering this location with (see Section 3.3):

T(x) = ZZW—WT)

To compensate the loss of contrast due to overlapping, walsaruse:
_ S Wi

3.3 Reconstruction and rendering

T(x)

®3)

We propose two methods to blend the deformable textured:grid

RR n° 6810

inria-00355827, version 4 - 10 May 2009

8 Yu, Neyret, Bruneton & Holzschuch

* We can draw each grid one by one, accumulatingvitie andw; in separate
channels. A second pass combines these channels to evatpatton 3.

« Alternatively, we can also use an indirection structuréna’] and [24]. In a
first pass we draw for each grid itg, v) field and its weightsv(x,t) in anFFD
image We also divide the fluid domain in tiles and compute for edetthe list
of grids that intersect it. In a second pass a pixel shadey thhese indirection
maps to find the grids that may cover a given pixel, and thertdrg(u,v) and
w(x,t) of each grid at this pixel. It then evaluates Equation 3.

The second method is more complex but is better adapted tocageeof a sparse
fluid in a large domain, such as a river. It computes only thsiblé pixels, and its
memory usage is proportional to the number of grids, as agaptusthe size of the do-
main. On the contrary, the first method requires texturesitog the whole domain at
the maximum resolution, using floats (since the accumublaégkes are not bounded).
It thus computes all pixels, even invisible ones.

In both methods the input texture can contain either finadisobr input parameters
for a complex procedural shader (clouds, fire, etc). In tlooisé case we blend the
parameterdeforeapplying the procedural shader to avoid ghosting effec@s [This
also decreases the computation cost as the proceduralrshadd#led only once per
pixel instead of once per grid. Note that the procedural shadn use displacement
mapping to create a 3D surface from the 2D animated texteeeKgyure 8).

4 Results and comparison

4.1 Performance and timings

One of the strongest advantages of our method is that it runsail-time, making it
useful for video-games, exploration of virtual world, pisttime generation of content
and virtual modeling.

We tested our algorithm on an Athlon AMD 3000+ at 1.8 MHz with [dVidia
GeForce 8800 GTS and a picture resolution of 1Q2vD24. With these settings and
with roughly 150 particles, each attached to a grid gf®vertices, the average compu-
tation time for each frame was 8.1 ms (123 fps), of which 5..n@s for the advection
of vertices and 2.5 ms for final reconstruction (using theragalion-based method).
The cost for Poisson disk sampling was negligible. Thisdsawore than 20 ms of
computation time for other tasks (such as animation andemémglof the virtual world)
in a real-time application (30 fps or more).

The rendering time is proportional to the overall numbereatfices: doubling the
number of particles or doubling the number of vertices in ghid attached to each
particle will both have the effect of doubling the compuattime.

4.2 Quality of the animated texture

We introduce two criteria to evaluate the quality of an artedaexture: its optical

flow and its Fourier spectrum. Both properties are computatie generated animated
texture. Ideally, the optical flow of the synthesized anidaexture should match the
input fluid velocity field, while its Fourier spectrum shoutthtch the Fourier spectrum

INRIA

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids 9

(e) ()

Figure 3: Quality of our generated animated textures Left: input texture (a), input
flow (c) and Fourier spectrum (e) of input textuiRight our advected texture (b), its
optical flow (d) and its Fourier spectrum (f).

of the input texture. As can be seen on Figure 3 and the acawyingavideo?, our
algorithm works perfectly on both points.

4.3 Comparison with Eulerian texture advection

Eulerian Texture advection [12] is very close to our workeThain difference is that
they work in an Eulerian framework, while we work in a Lagrargframework. Pa-
rameters in an Eulerian framework apply to the entire wanldich complicates the
adaptation to local effects. Their solution to regenerheetexture when the local
accumulated distortion is too high is to interpolate betw@éexture layers that regen-
erate periodically with 3 differertredefinedatencies. They choose the interpolation

LAvailable athttp://http://evasion.inrialpes.fr/Membres/Qizhi.Yu/projects/texadv/

RR n° 6810

http://http://evasion.inrialpes.fr/Membres/Qizhi.Yu/projects/texadv/

inria-00355827, version 4 - 10 May 2009

10 Yu, Neyret, Bruneton & Holzschuch

(@) (h) ()

Figure 4: Problems of Eulerian texture advectidreft: input texture (a), input flow (d)
and Fourier spectrum of input texture (gMiddle: with a short regeneration latency
the advected texture (b) conveys an incorrect optical flgwb(g the Fourier spectrum
is almost preserved (hRight with a long latency the texture is too stretched (c) and
the Fourier spectrum is distorted (i), but the optical flowtofees the input velocity
field (f).

weights to get a latency inversely proportional to the ldnatease rate of the distor-
tion. But the predefined latencies are bounded, while thenisn increase rate is not
(areas at rest require an infinite latency). Hence for somesftbey are only able to

maintain either the optical flow or the Fourier spectrum @f thxture, at the expense
of the other (see Figure 4 and the accompanying video).

4.4 Comparison with sprite-based texture advection

The approach of [24] to simulate rivers has similaritieswaitir work. The main differ-
ence is that they advect solid particles, while we adveatredble grids. This gives

INRIA

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids 11

Figure 5: Comparison with animated texture synthesis The optical flow (b) does
not accurately match the input velocity field (a) (measureceton [Kawtra et al.
2005]).

a "blocky” velocity field, and thus unwanted secondary mio It can also give a
relative sliding motion between blended features on opgiteg sprites, which can be
noticeable in stretched areas (see the accompanying vi@ew)deformable grids are
a natural improvement for such an application.

4.5 Comparison with animated texture synthesis

Animated texture synthesis algorithms [6, 5, 4] take thees@mput and produce the
same output as our work. There are two main differences. Tegsure texture sim-
ilarities using neighborhoods while we use the Fourier spaetand they put less em-
phasis on the accurate reproduction of the input velocityg.fi®ur experiments show
that these methods tend to give rigid moving chunks aroungttsired features and
show sudden changes in the pattern. In other words the iresolptical flow does not

accurately match the input flow (see Figure 5 and the accoyipguideo).

Another point is that since texture synthesis algorithmety identifying neigh-
borhoods (and thus structures) in the input textures, theg to give unreliable results
for textures without identifying features, such as noiseéus. See Figure 6 for an
application of the texture synthesis algorithm using a@tésture as input: the texture
synthesis introduced new features that were not preseneimput texture.

4.6 Discussion

Due to its properties our algorithm works well with noisettees and procedural tex-
tures which are useful for modeling various fluids in the ratsuch as fires, clouds
and water waves (see Figure 8, Figure 7, and the accompavigieg).

Our experiments show that it also applies to a large rangepftitextures, in-
cluding bubbles, foam and froth. Our algorithm places a feguirements on the
input texture in order to work correctly: the features musnd nicely by addition.
In particular, this supposes that there are no significagelacale structures, and that
local structures are resistant to blending. For exampleatmorithm works well with
pictures of bubbles because blending together two pictfradubble produces a con-

RR n° 6810

inria-00355827, version 4 - 10 May 2009

12 Yu, Neyret, Bruneton & Holzschuch

(@)

Figure 6: Comparison with animated texture synthesis Example based texture
synthesis introduces artificial features (b) with noiseuingextures (a) (measured here
on [Lefebvre and Hoppe 2005]).

vincing bubble (or two bubbles glued together). It would wotk, however, withe.g.
a checkerboard texture.

We think that the set of textures that work nicely with ouraalthm (foam, bubbles,
froth, debris...) are precisely the kind of textures we widiike to use on a moving
fluid, introducing moving details that enhance the reali$itme fluid.

Animated texture synthesis algorithms [6, 5, 4] preserxgdascale features of the
input texture but loose other texture properties, do nofa@omaccurately to the input
flow, and require a long pre-computation and several minpggsframe. We think
that both algorithms have their benefits, depending on theirements and the input
textures.

5 Conclusion and future work

We have presented an algorithm for the generation of andhrtatdures suitable for
texturing moving fluids. Our algorithm takes as input a teg@nd the velocity field of
a moving fluid, and generates an animated texture that detyfallows the velocity
field, while preserving the properties of the original tertuOur method is well suited
for noise textures, as well as procedural textures baseaise,rand it also works on
a large variety of input textures, and a large variety of mg\luids. As our algorithm
accurately follows the velocity field of the moving fluid, welieve it will have many
applications in Computer Graphics, including special@#dor motion pictures, sim-
ulators, video games and virtual worlds. The fact that ogodthm runs in real-time
on a standard GPU makes it well suited for interactive apfibos.

Our algorithm could be applied directly to 3D velocity fielisd 3D input textures,
except for the rendering part. As future work we would likeise volumetric rendering
to experiment with this. We would also like to extend our noetto use a Poisson disk
sampling in screen space as in [24], to get a view dependebDtn@chanism. Finally
we could try to replace the random selection of the inpututexarea for new grids
with a smarter method.

INRIA

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids 13

Frame 20 Frame 40

Frame 60 Frame 80

Figure 7: Animated fires with abundant details. It is generated in sv&eps. A
2D density field is advected with a low resolution velocitidfi@hen, flow noise [13]
advected with our method is used to modulate the density fiéhally, a fire shader
uses the enriched density field to generate colors.

References

[1] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell,RVFright, B. C. McCal-
lum, and T. R. Evans. Reconstruction and representatiob offects with radial
basis functions. In Eugene Fiume, editelGGRAPH 2001, Computer Graphics
Proceedingspages 67-76. ACM Press / ACM SIGGRAPH, 2001.

[2] Daniel Dunbarand Greg Humphreys. A spatial data stmedtr fast poisson-disk
sample generatiolACM Trans. Graph.25(3):503-508, 2006.

[3] Doug Ikeler and Jennifer Cohen. The use of Spryticle mtsual FX for "The
Road to El Dorado”. IIACM SIGGRAPH 2000 sketch&00.

[4] Vivek Kwatra, David Adalsteinsson, Theodore Kim, NipKwatra, Mark Carl-
son, and Ming Lin. Texturing fluidsIEEE Transactions on Visualization and
Computer GraphicsSeptember 2007.

RR n° 6810

inria-00355827, version 4 - 10 May 2009

14 Yu, Neyret, Bruneton & Holzschuch

Frame 20 Frame 40

5 _ %

Frame 60 Frame 80

Figure 8: Animated clouds with advected details. It is generated inm@alper of steps.
A 2D density field is advected with a low resolution veloc#idfi Advected flow noise
is used to modulate the density field. Finally, the enrichedsity field is used for
displacement mapping in a cloud shader.

[5] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatréexture optimiza-
tion for example-based synthesiBCM Transactions on Graphics, SIGGRAPH
2005 August 2005.

[6] Sylvain Lefebvre and Hugues Hoppe. Parallel contrdabxture synthesis. In
SIGGRAPH '05: ACM SIGGRAPH 2005 Papguages 777-786, New York, NY,
USA, 2005. ACM.

[7] Sylvain Lefebvre and Fabrice Neyret. Pattern basedgutoral textures. IACM-
SIGGRAPH Symposium on Interactive 3D Graphics (I1383M, ACM Press,
2003.

[8] Nelson Max and Barry Becker. Flow visualization usingvimg textures. In
Proceedings of the ICASW/LaRC Symposium on Visualizing-Vamying Data
pages 77-87, 1995.

[9] Nelson Max, Roger Crawfis, and Dean Williams. Visualiziwind velocities
by advecting cloud textures. MIS '92: Proceedings of the 3rd conference on
Visualization '92 pages 179-184, 1992.

INRIA

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids 15

3 - e ” 4 3
’ » -
- ‘e » P
N
L
» 2
Frame 20 Frame 40
| of
4 - ¢ 'y »
- g . ’
» p y ’
y
o .
Frame 60 Frame 80

Figure 9: Advection of a foam texture (image) in a river channel.

[10] J. J. Monaghan. An introduction to SPKComputer Physics Communications
48:89-96, January 1988.

[11] Rahul Narain, Jason Sewall, Mark Carlson, and Ming Liast animation of
turbulence using energy transport and procedural syrthé§€M Transactions
on Graphics 27(5), December 2008.

[12] Fabrice Neyret. Advected textures. SCA '03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animapages 147-153,
2003.

[13] Ken Perlin and Fabrice Neyret. Flow noise: texturaltigsis of animated flow
using enhanced Perlin noise. $iIGGRAPH 2001 Technical Sketches and Appli-
cations August 2001. http://www-imagis.imag.fr/Publicatiop801/PNO1.

[14] W.T. Reeves. Particle systems — a technique for mogelitiass of fuzzy objects.
ACM Trans. Graphics2:91-108, April 1983.

[15] William T. Reeves and Ricki Blau. Approximate and prbliatic algorithms
for shading and rendering structured particle systems. .l1A.BBarsky, editor,
Computer Graphics (SIGGRAPH '85 Proceedings)lume 19(3), pages 313—
322, July 1985.

[16] C. W. Reynolds. Flocks, herds, and schools: A distabubehavioral model.
Computer Graphics (SIGGRAPH '87)1(4):25-34, 1987.

RR n° 6810

inria-00355827, version 4 - 10 May 2009

16 Yu, Neyret, Bruneton & Holzschuch

[17] Pedro V. Sander, John Snyder, Steven J. Gortler, anduékigloppe. Texture
mapping progressive meshes.3IGGRAPH '01 pages 409-416, 2001.

[18] Karl Sims. Particle animation and rendering using daasallel computation.
Computer Graphics24(4), 1990.

[19] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, andniDaischinski.
Bounded-distortion piecewise mesh parameterizationVi$'02: Proceedings
of the conference on Visualization 'Q@ages 355-362, 2002.

[20] Jos Stam. Stable fluids. BIGGRAPH '99pages 121-128, 1999.

[21] Jos Stam and Eugene Fiume. Depicting fire and other gaggtenomena using
diffusion processes. IBIGGRAPH'95pages 129-136, 1995.

[22] Jarke J. van Wijk. Image based flow visualizatiorACM Trans. Graph.
21(3):745-754, 2002.

[23] Wonder touchhttp://www.wondertouch.com/.

[24] Qizhi Yu, Fabrice Neyret, Eric Bruneton, and Nicolasl#sehuch. Scalable real-
time animation of riversComputer Graphics Forum (Proceedings of Eurograph-
ics 2009) 28(2), mar 2009.

INRIA

http://www.wondertouch.com/

inria-00355827, version 4 - 10 May 2009

Spectrum-preserving texture advection for animated fluids

17

Contents

1 Introduction

2 Previous work

3 Our algorithm

3.1
3.2
3.3

Particle sampling and distortion
Blendingand continuity Lo
Reconstructionandrendering

4 Results and comparison

4.1
4.2
4.3
4.4
4.5
4.6

Performanceandtimings
Quality of the animated texture
Comparison with Eulerian texture advection
Comparison with sprite-based texture advection
Comparison with animated texture synthesis
DiSCuSSION

5 Conclusion and future work

RR n° 6810

11

inria-00355827, version 4 - 10 May 2009

/<

Centre de recherche INRIA Grenoble — Rhéne-Alpes
655, avenue de 'Europe - 38334 Montbonnot Saint-IsmiearfEe)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domainedsitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille — Nord Europe : Parc Scieq#i de la Haute Borne - 40, avenue Halley - 59650 Villeneuvect
Centre de recherche INRIA Nancy — Grand Est : LORIA, Techfegé Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-dyaBedex
Centre de recherche INRIA Paris — Rocquencourt : Domaineotiee®au - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes — Bretagne Atlantique SARCampus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Saclay — ile-de-France : ParcyQusiversité - ZAC des Vignes : 4, rue Jacques Monod - 91892&edex
Centre de recherche INRIA Sophia Antipolis — Méditerran2604, route des Lucioles - BP 93 - 06902 Sophia Antipolis ®ede

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 hesbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	Previous work
	Our algorithm
	Particle sampling and distortion
	Blending and continuity
	Reconstruction and rendering

	Results and comparison
	Performance and timings
	Quality of the animated texture
	Comparison with Eulerian texture advection
	Comparison with sprite-based texture advection
	Comparison with animated texture synthesis
	Discussion

	Conclusion and future work

