P1-conservative solution interpolation on unstructured triangular meshes - Archive ouverte HAL
Article Dans Une Revue International Journal for Numerical Methods in Engineering Année : 2010

P1-conservative solution interpolation on unstructured triangular meshes

Résumé

This document presents an interpolation operator on unstructured triangular meshes that verifies the properties of mass conservation, P1-exactness (order 2) and maximum principle. This operator is important for the resolution of the conservation laws in CFD by means of mesh adaptation methods as the conservation properties is not verified throughout the computation. Indeed, the mass preservation can be crucial for the simulation accuracy. The conservation properties is achieved by local mesh intersection and quadrature formulae. Derivatives reconstruction are used to obtain an order 2 method. Algorithmically, our goal is to design a method which is robust and efficient. The robustness is mandatory to apply the operator to highly anisotropic meshes. The efficiency will permit the extension of the method to dimension three. Several numerical examples are presented to illustrate the efficiency of the approach.
Fichier principal
Vignette du fichier
RR-6804.pdf (4.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inria-00354509 , version 1 (20-01-2009)

Identifiants

Citer

Frédéric Alauzet, Michel Mehrenberger. P1-conservative solution interpolation on unstructured triangular meshes. International Journal for Numerical Methods in Engineering, 2010, pp.48. ⟨10.1002/nme.2951⟩. ⟨inria-00354509⟩
434 Consultations
886 Téléchargements

Altmetric

Partager

More