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Abstract. The bi-objective ring star problem aims to locate a cycle
through a subset of nodes of a graph while optimizing two types of cost.
The first criterion is to minimize a ring cost, related to the length of the
cycle, whereas the second one is to minimize an assignment cost, from
non-visited nodes to visited ones. In spite of its natural multi-objective
formulation, this problem has never been investigated in such a way. In
this paper, three metaheuristics are designed to approximate the whole
set of efficient solutions for the problem under consideration. Compu-
tational experiments are performed on well-known benchmark test in-
stances, and the proposed methods are rigorously compared to each other
using different performance metrics.

1 Introduction

The purpose of the bi-objective ring star problem is to find a cycle (the ring)
which visits a subset of nodes of a graph. The two objectives are the minimization
of a cost associated to the ring itself and the minimization of a cost associated to
the arcs directed from non-visited nodes to visited ones. Although this problem
is clearly bi-objective, it has always been investigated in a single-objective way.
It was introduced by Labbé et al. [12], where the goal was to minimize the sum
of both costs. Another mono-criterion formulation of the problem, where one of
the objectives is regarded as a constraint, has been investigated, for instance, by
Renaud et al. [16]. These two formulations are commonly used to convert a multi-
objective problem into a single-objective one by using scalar approaches [14].

The ring star problem has a wide range of industrial applications, including
telecommunication networks design, school bus routing, routing of essential med-
ical care services, circular-shaped transportation, and post-box location. How-
ever, in spite of its real-world applications, this is the first time that such a



problem is studied in a bi-objective way, perhaps because of its complexity. In-
deed, it is particularly challenging because, once it is decided which nodes have
to be visited or not, a classical travelling salesman problem still remains to be
solved. Nevertheless, Current and Schilling [5] investigated two variants of a sim-
ilar problem: the median tour problem and the maximal covering tour problem.
In both, one criterion is the minimization of the total length of the tour, while
another one is the maximization of the access to the tour for non-visited nodes.
To tackle these problems, the authors used a kind of lexicographic method, where
one objective function is optimized after another. Furthermore, Dorner et al. [8]
recently formulated a problem of tour planning for mobile healthcare facilities in
Senegal. A mobile facility has to visit a subset of nodes. Non-visited nodes are
then assigned to their closest tour stop or are regarded as unable to reach a tour
stop. The obectives are the minimization of the ratio between medical working
time and total working time, the minimization of the average distance to the
nearest tour stops, and the maximization of a coverage criterion. The authors
designed a Pareto ant colony optimization algorithm and two multi-objective
genetic algorithms to solve real-world instances.

In this paper, we investigate metaheuristic solution methods for the problem
under consideration. Three metaheuristics are designed to approximate the whole
set of efficient solutions. A population-based local search and two evolutionary
algorithms are compared on state-of-the-art instances involving up to 300 nodes.
The reminder of the paper is organized as follows. In Section 2, we provide the
basic definitions for multi-objective optimization and the formulation of the bi-
objective ring star problem. Section 3 presents three resolution methods designed
to tackle the problem under consideration. Some experimental results and a
comparative study are provided in Section 4, while the last section concludes
the paper and discusses perspectives about this work.

2 Preliminaries

This section presents some basic concepts related to multi-objective optimization
and provides the formulation of the bi-objective ring star problem.

2.1 Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) aims to optimize a set of n ≥ 2
objective functions f1, f2, . . . , fn simultaneously. Without loss of generality, we
assume that all n objective functions have to be minimized. Let X denote the
set of feasible solutions in the decision space, and Z the set of feasible points
in the objective space. To each decision vector x ∈ X is assigned exactly one
objective vector z ∈ Z on the basis of a vector function f : X → Z with z =
f(x) = (f1(x), f2(x), . . . , fn(x)). In the case of a Multi-objective Combinatorial

Optimization Problem (MCOP), note that a decision vector x ∈ X has a finite
set of possible values.



Definition 1. An objective vector z ∈ Z weakly dominates another objective

vector z′ ∈ Z if and only if ∀i ∈ [1..n], zi ≤ z′i.

Definition 2. An objective vector z ∈ Z dominates another objective vector

z′ ∈ Z if and only if ∀i ∈ [1..n], zi ≤ z′i and ∃j ∈ [1..n] such as zj < z′j.

Definition 3. An objective vector z ∈ Z is non-dominated if and only if there

does not exist another objective vector z′ ∈ Z such that z′ dominates z.

A solution x ∈ X is said to be efficient (or Pareto optimal) if its mapping in the
objective space results in a non-dominated point. The set of all efficient solutions
is the efficient (or Pareto optimal) set, denoted by XE . The set of all non-
dominated vectors is the non-dominated front (or the trade-off surface), denoted
by ZN . A common approach in solving MOPs is to find or to approximate the
set of efficient solutions; or at least a solution x ∈ XE for each non-dominated
vector z ∈ ZN such as f(x) = z. A reasonable basic introduction to multi-
objective optimization can be found in [6].

Note that we will assume, throughout the paper, that objective values are
normalized. To achieve this, the minimum and the maximum value of each objec-
tive function are used in order to adaptively replace each objective function by
its corresponding normalized function, so that its values lie in the interval [0, 1].

2.2 The Bi-objective Ring Star Problem

The Ring Star Problem (RSP) can be described as follows. Let G = (V,E,A)
be a complete mixed graph where V = {v1, v2, . . . , vn} is a set of vertices, E =
{[vi, vj ]|vi, vj ∈ V, i < j} is a set of edges, and A = {(vi, vj)|vi, vj ∈ V } is a set of
arcs. Vertex v1 is the depot. To each edge [vi, vj ] we assign a non-negative ring

cost cij , and to each arc (vi, vj) we assign a non-negative assignment cost dij .
The RSP consists of locating a simple cycle through a subset of nodes V ′ ⊂ V

(with v1 ∈ V ′) while (i) minimizing the sum of the ring costs related to all edges
that belong to the cycle, and (ii) minimizing the sum of the assignment costs of
arcs directed from every non-visited node to a visited one so that the associated
cost is minimum. An example of solution is given in Figure 1, where solid lines
represent edges that belong to the ring and dashed lines represent arcs of the
assignments. The first objective is called the ring cost and is defined as:

∑

[vi,vj ]∈E

cijxij , (1)

where xij is a binary variable equal to 1 if and only if the edge [vi, vj ] belongs
to the cycle. The second objective, the assignment cost, can be computed as
follows: ∑

vi∈V \V ′

min
vj∈V ′

dij . (2)

The RSP is an NP-hard combinatorial problem since the particular case of vis-
iting the whole set of nodes is equivalent to a traditional travelling salesman
problem.



Fig. 1. An example of a solution for the ring star problem.

3 Metaheuristics for the Bi-objective Ring Star Problem

Three metaheuristics are proposed to tackle the bi-objective RSP: a variable
neighbourhood iterative Local Search (LS) and two Evolutionary Algorithms
(EAs). These algorithms are respectively steady-state variations of IBMOLS [1],
IBEA [17] and NSGA-II [7]. IBMOLS and IBEA are both recent indicator-based
metaheuristics, whereas NSGA-II is one of the most often used Pareto-based
resolution methods. In this section, RSP-specific components are described after
we have presented the main characteristics of the LS and of the EAs.

3.1 A Multi-objective Local Search

Since they are easily adaptable to the multi-objective context, many of the search
algorithms proposed to tackle MOPs are EAs. However, LS algorithms are known
to be effective metaheuristics for solving real-world applications [4, 9]. Several
multi-objective LS approaches have been proposed in the literature. In particu-
lar, the Indicator-Based Multi-Objective Local Search (IBMOLS for short) has
recently been presented in [1]. IBMOLS is a generic population-based multi-
objective LS dealing with a fixed population size. This allows to obtain a set of
efficient solutions in a single run without specifying any mechanism to control the
number of solutions during the search process. Moreover, IBMOLS represents
an alternative to aggregation- and Pareto-based multi-objective metaheuristics.
Indeed, as proposed in [17], it is assumed that the optimization goal is given in
terms of a binary quality indicator I [19] which can be regarded as an extension
of the Pareto dominance relation. A value I(A,B) quantifies the difference in
quality between two non-dominated sets A and B. So, if ZN denotes the optimal
non-dominated front, the overall optimization goal can be formulated as:

arg minA∈Ω I(A,ZN ) , (3)

where Ω denotes the space of all non-dominated set approximations. As noted
in [17], ZN does not have to be known, it is just required in the formalization of
the optimization goal. Since ZN is fixed, I actually represents a unary function
that assigns a real number reflecting the quality of each approximation set.



One of the main advantages of indicator-based optimization is that no specific
diversity preservation mechanism is generally required, according to the indicator
being used.

The IBMOLS algorithm maintains a population P . Then, it generates the
neighbourhood of a solution contained in P until a good solution is found (i.e.
one that is better than at least one solution of P in terms of the indicator being
used). By iterating this simple principle to every solution of P , we obtain a
local search step. The whole local search stops when the archive of potentially
efficient solutions has not received any new item during a complete local search
step. Moreover, as local search methods are usually performed in an iterative
way, a population re-initialization scheme has to be designed after each local
search. Several strategies can be used within an iterative IBMOLS [1]. Solutions
can be re-initialized randomly, and crossover or random noise can be applied
to solutions of the efficient set approximation. The interested reader could refer
to [1] for more details about IBMOLS.

A benefical feature of this LS is the low number of parameters that are re-
quired. In addition to the population size, the binary quality indicator to be
used and the population re-initialization strategy (between each local search)
are the two only other problem-independent parameters. Indeed, several quality
indicators can be used within IBMOLS. The binary additive ǫ-indicator [17] is
particularly well-adapted to indicator-based search and seems to be efficient on
different kinds of problems (see, for instance, [1, 17]). It is capable of obtain-
ing both a well-converged and a well-diversified Pareto set approximation. This
indicator computes the minimum value by which a solution x1 ∈ X can be trans-
lated in the objective space to weakly dominate another solution x2 ∈ X. For a
minimization problem, it is defined as follows:

Iǫ+(x1, x2) = max
i∈{1,...,n}

(fi(x1) − fi(x2)) . (4)

Furthermore, to evaluate the quality of a solution according to a whole popula-
tion P and a binary quality indicator I, different approaches exist. As proposed
in [17], we will here consider an additive technique that amplifies the influence
of solutions mapping to dominating points over solutions mapping to dominated
ones which can be outlined as follows:

I(P \ {x}, x) =
∑

x⋆∈P\{x}

−e−I(x⋆,x)/κ , (5)

where κ > 0 is a scaling factor. However, the initial experiments were not sat-
isfactory because the algorithm was not able to find the extreme points of the
trade-off surface. This is known to be one of the drawbacks of the ǫ-indicator, ap-
parently due to the high convexity of the front. To tackle this problem, we add
a condition preventing the deletion of solutions corresponding to the extreme
non-dominated vectors during the replacement step of IBMOLS. Additionally,
the population re-initialization scheme used between each local search is based
on random noise, such as in the basic simulated annealing algorithm [4]. Ran-
dom noise consists of multiple mutations applied to N different randomly chosen



solutions contained in the archive of potentially efficient solutions. If the size of
the archive is less than N , the population is filled with random solutions.

3.2 Multi-objective Evolutionary Algorithms

The multi-objective EAs designed for the RSP are variations of two state-of-
the-art methods, namely IBEA [17] and NSGA-II [7]. Some minor modifications
have been carried out to improve the algorithms for the particular case of the
addressed problem, for which the set of non-dominated points is, in general, very
large.

IBEA Introduced by Zitzler and Künzli [17], the Indicator-Based Evolution-

ary Algorithm (IBEA) is, like IBMOLS, an indicator-based metaheuristic. The
fitness assignment scheme of this EA is based on a pairwise comparison of solu-
tions contained in a population by using a binary quality indicator. As within
IBMOLS, no diversity preservation technique is required, according to the indi-
cator being used. The selection scheme for reproduction is a binary tournament
between randomly chosen individuals. The replacement strategy is an environ-
mental one that consists of deleting, one-by-one, the worst individuals, and in
updating the fitness values of the remaining solutions each time there is a dele-
tion; this is continued until the required population size is reached. Moreover,
an archive stores solutions mapping to potentially non-dominated points, in or-
der to prevent their loss during the stochastic search process. However, in our
case, and in contrast to the IBEA defined in [17], this archive is updated at
each generation since the beginning of the EA, so that the output size is not
necessarily less than or equal to the population size. Just like for the IBMOLS
algorithm, the indicator used within IBEA is the additive ǫ-indicator; and the
same mechanism has been used to prevent the loss of the extreme points on the
trade-off surface.

NSGA-II At each generation of NSGA-II (Non-dominated Sorting Genetic Al-

gorithm II [7]), the solutions contained in the population are ranked into several
classes. Individuals mapping to vectors from the first front all belong to the best
efficient set; individuals mapping to vectors from the second front all belong to
the second best efficient set; and so on. Two values are then computed for every
solution of the population. The first one corresponds to the rank the correspond-
ing solution belongs to, and represents the quality of the solution in terms of
convergence. The second one, the crowding distance, consists of estimating the
density of solutions surrounding a particular point of the objective space, and
represents the quality of the solution in terms of diversity. A solution is said to
be better than another if it has the best rank, or in the case of a tie, if it has the
best crowding distance. The selection strategy is a deterministic tournament be-
tween two random solutions. At the replacement step, only the best individuals
survive, with respect to the population size. Likewise, an external population is
added to the steady-state NSGA-II in order to store every potentially efficient
solution found during the search.



3.3 Application to the Bi-objective Ring Star Problem

This section provides the problem-specific steps of the metaheuristics introduced
earlier. Components designed for the particular case of the bi-objective RSP,
such as the encoding mechanism, the population initialization as well as the
neighbourhood, mutation and crossover operators, are described below.

Solution Encoding The encoding mechanism used to represent a RSP solution,
for both the LS and the EAs, is based on the random keys concept proposed
by Bean [2]. This implementation has already been successfully applied for a
single-objective version of the RSP in [16]. To each node vi belonging to the ring
we assign exactly one random key xi ∈ [0, 1[, where x1 = 0. A special value is
assigned to unvisited nodes. Thus, the ring route associated to a solution cor-
responds to the nodes ordered according to their random keys in an increasing
way; i.e. if xi < xj , then vj comes after vi. As an example, a possible represen-
tation for the cycle (v1,v7,v4,v9,v2,v6) is given in Figure 2. Vertices v3,v5,v8 and
v10 are assigned to a visited node in such a way that the associated assignment
cost is minimum.

Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 0.7 - 0.3 - 0.8 0.2 - 0.5 -

Fig. 2. A RSP solution represented by random keys.

Population Initialization For every optimization method, the initial popula-
tion has been generated randomly. Each node has a probability p = 0.5 that it
will be visited or not, and to each visited vertex we associate a key randomly
generated between 0 and 1.

Neighbourhood and Mutation Operators As the RSP is both a routing
problem and an assignment problem, different neighbourhood and mutation op-
erators have to be designed. Here, we consider the following:

– insert operator : adds an unvisited node vi in the cycle, the position where
to insert vi is chosen in order to minimize the ring cost

– remove operator : removes a vertex vj of the ring
– 2-opt operator : applies a 2-opt operator between two nodes of the cycle vi

and vj , i.e. it reverses the sequence of visited nodes between vi and vj .

For the LS, the neighbours of a solution are randomly explored, without consid-
ering any order between these three operators; and each neighbour is at most
visited once. Moreover, note that it is not necessary to completely re-evaluate
a solution each time a neighbourhood operator is applied. Thus, after an in-

sert neighbourhood operator, we just have to re-assign unvisited nodes in order



to minimize the assignment cost. After a remove neighbourhood operator, we
just have to re-assign the nodes that were previously assigned to the one that
has been removed. And, after a 2-opt neighbourhood operator, we just have to
recompute the ring cost, the assignment cost being unchanged. In the case of
mutations, the operators are applied to randomly chosen vertices.

Crossover Operator The crossover operator is a quadratic crossover closely
related to the one proposed in [16]. Two randomly selected solutions s1 and
s2 are divided in a particular position. Then, the first part of s1 is combined
with the second part of s2 to build a first offspring, and the first part of s2 is
combined with the second part of s1 to build a second offspring. Every node
retains its random key so that it enables an easy reconstruction of the new
individuals. Thanks to the random keys encoding mechanism, solutions having
a different ring size can easily be recombined, even if the initial ring structures
are generally broken in the offspring solutions.

4 Experiments

The metaheuristics described in the previous section have all been implemented
using the ParadisEO-MOEO library3 [13]. ParadisEO-MOEO is a C++ white-
box object-oriented framework dedicated to the reusable design of metaheuristics
for multi-objective optimization. All the algorithms share the same base compo-
nents for a fair comparison between them. Computational runs were performed
on an Intel Core 2 Duo 6600 (2 × 2.40 GHz) machine, with 2 GB RAM.

4.1 Experimental Protocol

Benchmarks The performance of the metaheuristics has been tested on dif-
ferent instances taken from the TSPLIB4 [15]. These instances involve between
50 and 300 nodes. The number at the end of an instance’s name represents the
number of nodes for the instance under consideration. Let lij denote the distance
between two nodes vi and vj of a TSPLIB file. Then, the ring cost cij and the
assignment cost dij have both been set to lij for every pair of nodes vi and vj .

Parameter Setting For each one of the metaheuristics proposed to tackle the
bi-objective RSP, the search process stops after a certain ammount of run time.
As shown in Table 1, this run time is defined according to the size of the instance
under consideration. Likewise, the population size depends on the number of
vertices involved in the instance (see Table 1). For each instance, a small (S),
a medium (M), a large (L) and an extra-large (XL) population size have been
tested. The noise rate for the population re-initialization in the iterated version
of IBMOLS is set to a fixed percentage of the instance’s size. We investigate

3 ParadisEO is available at http://paradiseo.gforge.inria.fr.
4 Benchmarks are available at http://elib.zib.de/pub/mp-testdata/tsp/tsplib.



three different values for this noise rate: 5%, 10% and 20%. Then, 0.05 × n,
0.1 × n and 0.2 × n random mutations are applied respectively for a problem
with n nodes. For both IBMOLS and IBEA, the scaling factor κ is set to 0.05.
Finally, for the EAs, the crossover probability is set to 0.25, and the mutation
probability to 1.00, with a probability of 0.25, 0.25 and 0.50 for the remove, the
insert and the 2-opt operator, respectively.

Table 1. Instance-dependant parameters setting.

Instance Population size Running
S M L XL time

eil51 5 10 15 100 20”
st70 5 10 15 100 1’
kroA100 10 15 20 100 2’
bier127 10 15 20 100 5’
kroA150 15 20 30 100 10’
kroA200 15 20 30 100 20’
pr264 15 20 30 100 50’
pr299 15 20 30 100 100’

Performance Assessment For each TSPLIB instance and each metaheuristic
proposed in Section 3, a set of 20 runs, with different initial populations, has
been performed. In order to evaluate the quality of the non-dominated front ap-
proximations obtained for a specific test instance, we follow the protocol given
in [11]. First, we compute a reference set Z⋆

N of non-dominated points extracted
from the union of all these fronts. Second, we define zmax = (zmax

1 , zmax
2 ), where

zmax
1 (respectively zmax

2 ) denotes the upper bound of the first (respectively sec-
ond) objective in the whole non-dominated front approximations. Then, to mea-
sure the quality of an output set A in comparison to Z⋆

N , we compute the dif-
ference between these two sets by using the unary hypervolume metric [18],
(1.05 × zmax

1 , 1.05 × zmax
2 ) being the reference point. The hypervolume differ-

ence indicator (I−H) computes the portion of the objective space that is weakly
dominated by Z⋆

N and not by A. Furthermore, we also consider the R2 indica-
tor proposed in [10] with a Chebycheff utility function defined by z⋆ = (1, 1),
ρ = 0.01 and a set Λ of 500 uniformly distributed normalized weighted vectors.
As a consequence, for each test instance, we obtain 20 hypervolume differences
and 20 R2 measures, corresponding to the 20 runs, per algorithm. As suggested
by Knowles et al. [11], once all these values are computed, we perform a statis-
tical analysis on pairs of optimization methods for a comparison on a specific
test instance. To this end, we use the Mann-Whitney statistical test as described
in [11], with a p-value lower than 5%. Note that all the performance assessment
procedures have been achieved using the performance assessment tool suite pro-
vided in PISA5 [3].

5 The package is available at http://www.tik.ee.ethz.ch/pisa/assessment.html.



4.2 Computational Results and Discussion

Table 2 presents the results obtained by the metaheuristics on eight different test
instances. Due to space limitation and in order to simplify the reading of the
table, only the results obtained by a large population size and by a noise rate of
5% for IBMOLS and by an extra-large population size for NSGA-II and IBEA
are reported in the paper. These parameters have respectively been chosen as
they were globally more efficient for each one of the algorithms. Overall, with
respect to the metrics we used, we can see that IBMOLS performs significantly
better than IBEA and NSGA-II on most test instances. Nevertheless, it is not
the case on large problems (pr264 and pr299), where IBMOLS is outperformed
by both algorithms according to the R2 metric. Additionally, although IBEA is
in general statistically outperformed by IBMOLS, it performs significantly bet-
ter than NSGA-II on a large number of the tested instances, and never performs
significantly worse on each one of them. Furthermore, we can see that the overall
efficiency of NSGA-II is very poor since it is statistically outperformed on most
problems, except occasionally where it performs better than the IBMOLS algo-
rithm, as pointed out above. To summarise, IBMOLS performs well on small-size
RSP instances, but seems to have more trouble in dealing with large ones. More-
over, we also compared our results to the ones given in [12] for a mono-objective
version of the problem. For each test instance, the error ratio between the point
belonging to Z⋆

N that minimizes the single objective function investigated in [12]
and the exact optimal value is is always under 2% and is averagely under 0.5%.

One of the main characteristics of the problem under consideration seems
to be the high number of points located in the trade-off surface. Then, after a
certain number of iterations, a large part of the population involved in all the
algorithms might map to potentially non-dominated points. This could explain
the low efficiency of NSGA-II. Since the same rank is assigned to the major
part of the population, only the crowding distance is used to compare solutions.
However, the indicator-based fitness assignment scheme is obviously much more
suited to determine potentially efficient solutions than the single crowding dis-
tance. Moreover, the high performance of IBMOLS in comparison to IBEA might
depends on how close are the solutions which map to non-dominated points in
the decision space. If these solutions are close to each other according to the
neighbourhood operators, a LS is known to be particularly well-suited to find
additional interesting solutions by exploring the neighbourhood of a potentially
efficient solution. On the contrary, an EA usually explores the decision space in
a more random way. Thus, a landscape analysis could be interesting to study
the bi-objective RSP in more depth.

5 Conclusion

In this paper, a multi-objective routing problem, the bi-objective ring star prob-
lem, has been investigated. It has already been studied in a single-objective form
where either both objectives have been combined [12] or one objective has been
treated as a constraint [16]. Here, for the first time, this problem is formulated



Table 2. Comparison of different metaheuristics for the I−
H

and the R2 metrics by
using a Mann-Whitney statistical test with a p-value of 5%. According to the metric
under consideration, either the results of the algorithm located at a specific row are
significantly better than those of the algorithm located at a specific column (≻), either
they are worse (≺), or there is no significant difference between both (≡).

I−
H

R2
IBMOLS IBEA NSGA-II IBMOLS IBEA NSGA-II

eil51 IBMOLS - ≻ ≻ - ≻ ≻
IBEA ≺ - ≻ ≺ - ≻
NSGA-II ≺ ≺ - ≺ ≺ -

st70 IBMOLS - ≡ ≻ - ≻ ≻
IBEA ≡ - ≻ ≺ - ≻
NSGA-II ≺ ≺ - ≺ ≺ -

kroA100 IBMOLS - ≡ ≻ - ≡ ≻
IBEA ≡ - ≻ ≡ - ≻
NSGA-II ≺ ≺ - ≺ ≺ -

bier127 IBMOLS - ≻ ≻ - ≻ ≻
IBEA ≺ - ≻ ≺ - ≻
NSGA-II ≺ ≺ - ≺ ≺ -

kroA150 IBMOLS - ≻ ≻ - ≻ ≻
IBEA ≺ - ≻ ≺ - ≻
NSGA-II ≺ ≺ - ≺ ≺ -

kroA200 IBMOLS - ≻ ≻ - ≻ ≻
IBEA ≺ - ≡ ≺ - ≡
NSGA-II ≺ ≡ - ≺ ≡ -

pr264 IBMOLS - ≡ ≻ - ≺ ≺
IBEA ≡ - ≻ ≻ - ≻
NSGA-II ≺ ≺ - ≻ ≺ -

pr299 IBMOLS - ≡ ≻ - ≺ ≺
IBEA ≡ - ≻ ≻ - ≻
NSGA-II ≺ ≺ - ≻ ≺ -

in such a way that multiple conflicting criteria have to be optimized simulta-
neously. Three metaheuristics have been proposed to approximate the minimal
complete set of efficient solutions: a population-based local search with variable
neighbourhood and two evolutionary algorithms. Experiments were conducted
using various test instances. We concluded that the local search method was sig-
nificantly more efficient than the evolutionary algorithms on a large majority of
instances, with respect to the performance metrics we used. The only instances
for which the local search was outperformed were large ones. As a next step, we
will try to solve ring star problem instances involving an even bigger number of
nodes, to verify if our observations are still valid. If it is the case, it could be in-
teresting to design a cooperation scheme between two different methods (i.e. the
local search procedure and an evolutionary algorithm) in order to benefit from
the respective quality of each one of them. The resulting hybrid metaheuristic
could be particularly effective for solving large size problems.
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