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Parallel Partitioning Method (PPM): A new
exact method to solve Bi-Objective problems.

J. Lemesre ®*, C. Dhaenens?, E.G. Talbi?

& LIFL, Batiment M3, Université de Lille I,

59655 Villeneuve d’Ascq cedex, France

Abstract

In this paper, we propose a new exact method, called the Parallel Partitioning
Method (PPM), able to solve efficiently bi-objective problems. This method is based
on the splitting of the search space into several areas leading to elementary exact
searches. We compare this method with the well known Two-Phase Method (TPM).
Experiments are carried out on a Bi-Objective permutation FlowShop Problem
(BOFSP). During experiments the proposed PPM is compared with two versions
of TPM: the basic TPM and an improved TPM dedicated to scheduling problems.

Experiments show the efficiency of the new proposed method.

Key words: FExact method, bi-objective problem, permutation flowshop.

Introduction

A large part of real-world optimization problems are of multi-objective na-

ture. In trying to solve Multi-objective Combinatorial Optimization Problems
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(MOPs), many methods scalarize the objective vector into a single objective.
However, since several years, interest concerning MOPs area with Pareto ap-
proaches grows.

MOPs are most of the time NP-hard, and this difficulty is enforced by the
existence of several optimal solutions. Hence, a lot of heuristic methods have
been proposed to solve multi-objective (and bi-objective) problems. In this
paper, we are interested in exact resolutions of MOPs and we propose a new
exact method able to solve bi-objective problems, named the Parallel Parti-
tioning Method. This method is able to enumerate all the Pareto solutions of
a bi-objective problem.

Some exact methods have already been proposed to solve bi-objective com-
binatorial optimization problems. To find details on some of them the reader
may refer to [1,2]. A very well known approach is the weighted sum scalariza-
tion. But, as we will see later, this approach is not able to produce the whole
Pareto set. Other exact approaches are the application of the e-constraint con-
cept proposed by Haimes et al. [3,4], or the Two-Phase Method, proposed by
Ulungu and Teghem [5]. These methods have some disadvantages: for example,
in the e-constraint method, one search is required to get each solution belong-
ing to the front which can be very long for problems having a lot of Pareto
solutions. Regarding the Two-Phase Method, let us remark that its success is
based on the good distribution of supported solutions along the Pareto front
and on the efficiency of mono-objective searches. In order to overpass these
drawbacks, we propose a new method, PPM, which integrates the advantages
of the two previously cited methods.

In this paper, minimization problems are addressed.

This paper is organized as follows: Section 1 defines Multi-Objective Combi-

natorial Optimization. Section 2 presents the bi-objective permutation flow-



shop problem used as an illustration. Section 3 presents existing exact meth-
ods and in particular the e-constraint method and the original Two-Phase
Method (TPM). Section 4 describes PPM, the new proposed Parallel Parti-
tioning Method and compare PPM and TPM. Section 5 gives comparative
performance results of these approaches. Finally, we expose conclusions and

perspectives of this work.

1 Multi-objective Optimization

Before presenting the bi-objective problem used as an example, we describe
and define Multi-objective combinatorial Optimization Problems (MOPs) in
the general case in order to introduce notations used in this article.

In multi-objective problems, where an objective vector (fi, fa,...,f,) has to be
optimized, there exists not a single optimal solution but a set of solutions of
best compromise. These solutions are forming the Pareto set. They may be

defined thanks to the dominance notion.

Definition 1 In a minimization problem, a solution r dominates a solution

x’if and only if:

Vi € [L.p], fu(z) < fr(2')

3k € [1..p], fe(z) < fr(2")

Therefore the Pareto optimality definition is:

Definition 2 A solution is Pareto optimal if it is not dominated by any other

solution of the feasible set.



In this paper we are interested in developing a new exact method (PPM) able

to enumerate all the Pareto solutions for bi-objective problems.

Hence, we compare the Two-Phase Method (TPM) with the Parallel Parti-
tioning Method (PPM). To compare these methods, the problem used is a

bi-objective permutation flowshop.

2 A Bi-Objective permutation FlowShop Problem (BOFSP)

The flowshop problem is one of the numerous scheduling problems. It has
been widely studied in the literature (for example see [6-8] for resolution
of mono-objective permutation flowshop problems). A survey of the existing
multi-objective approaches for scheduling problems may be found in [9,2].
The flowshop problem consists in scheduling n jobs (i = 1...n) on m ma-
chines (7 = 1...m). In this work, we study the permutation flowshop where
the jobs are scheduled in the same order on all the machines.

The two considered objectives are the makespan, (Cy,q;) and the total tardi-
ness (7). The makespan is the completion time of the last job and the total
tardiness is the sum of tardinesses of every job. In the Graham et al. nota-
tion [10], this problem is denoted F/permut,d;/(Cpaz, T).

The makespan minimization problem has been proved to be strongly NP-
hard by Garey, Johnson and Sethi [11] for permutation flowshops with more
than two machines whereas the total tardiness minimization problem has been
proved to be NP-hard by Du and Leung [12] even on a single machine.

Before presenting PPM, two existing exact methods are presented.



3 Existing exact methods

A well known method to solve multi-objective problems is the weighted sum
method, but this method is not able to find the whole Pareto set. There exist
several other exact methods, whose goal is to obtain the whole Pareto set :
the dichotomic Method, the e-constraint Method and the Two-Phase Method
(TPM) (see [1] for more details). Here, two methods, TPM and the e-constraint
method, are presented in details, since PPM will integrate the advantages of
these two methods. An improved TPM dedicated for scheduling problems is
also exposed (see [13] for more details). Methods in this section are presented

for the bi-objective case.

3.1 The e-constraint Method

The e-constraint Method is an application of the e-constraint concept (intro-
duced in [3,4]) to enumerate Pareto solutions. This method involves a con-
straint on one objective and optimizes the second objective. The constrained
problem may be expressed as follows: min {fi(z) : x € X, with fs(z) < €}.
First, one extreme is computed, for example the extreme with the best value on
the objective f;. This solution gives a bound on the objective fy and the best
solution regarding to objective f; is searched below this bound (see Fig. 1).

This operation is repeated (see Fig. 2) until no new solution is found. Hence

all the efficient set is known.



3.2 The Two-Phase Method (TPM)

Initial Method

In 1995, Ulungu and Teghem [5] proposed the Two-Phase Method to initially
solve a bi-objective assignment problem. This method proposes a very general
scheme that can be adapted to specific problems. Hence, an adaptation of
the Two-Phase Method for the bi-objective permutation flowshop has been

presented [13].

The first phase consists in finding all the supported solutions with aggregations
in the form A, f; + Ay fs by recursively exploring the existence of a supported
solution “between” (in the objective space) two given supported solutions.
Each time a solution is found, two new searches are launched (see Fig. 3).
Therefore only supported solutions (solutions that belong to the convex hull)

are found.

Once all the supported solutions have been found, the second phase consists
in exploring all the triangles, underlying each pair of adjacent supported so-

lutions, in order to find all the non-supported solutions (Fig. 4).
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Fig. 1. One example of search in the
Fig. 2. New search.

e-constraint method.
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Fig. 4. Location of non-supported solu-
Fig. 3. Search direction.

tions.

Characteristics of the TPM and improvements

With the Two-Phase Method, a bi-objective problem is solved exactly without
exploring the whole search space. Only the pertinent search space is visited.
In problems solved by Ulungu and Teghem [5,14] each single objective prob-
lem may be solved efficiently thanks to dedicated methods and aggregations of
these objectives as well. This explains the efficiency of TPM on such problems,
since TPM uses these dedicated methods to solve sub-problems. For example,
the Hungarian methodis able to solve efficiently the assignment problem and
is used by TPM to find extremes and supported solutions [5]. In our adapta-
tion to BOFSP, we use a Branch & Bound method to solve aggregations as
there exists no efficient method (polynomial method) for the flowshop prob-
lem associated with the studied objectives (see [13] to have more details on
this Branch & Bound). Hence, for the BOFSP, the first phase can be time
consuming.

In addition, the efficiency of the TPM is also based on the size of the generated
triangles which depends on the number of supported solutions in the Pareto

set and on their distribution along the front. In the permutation flowshop,



supported solutions may be vary close. A result of one instance with 20 jobs
and 10 machines is represented on Figure 5. In this experiment, we can see
that 5 supported solutions are adjacent (on the top of the front). Hence, for

this part of the front, the TPM will not be very efficient.

Cmax
1780 T T T T T
supported solutions ¢

1760 - |
1740 L non-supported solutions  +
1720 - + 7
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1680 - .
.
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1640 - . .
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Fig. 5. Result 20 jobs, 10 machines, Nol.

In response to these remarks, we proposed some improvements (see [13] for
more details) to speed up the method when it is applied to scheduling prob-
lems. The first improvement deals with the computation of the extremes. The
second improvement aims to avoid useless searches during the first phase.

Using these two improvements, we managed to solve problems faster (see Ta-
ble 1 and Table 2). But during the first phase of TPM only supported solutions
are found. So, the search space obtained for the second phase may be very large
if supported solutions are not well distributed along the front. Moreover, the
search of supported solutions can be very long when the problem has no in-
teresting structure. For these reasons, we propose a new method that keeps

the idea of the space partitioning but manages it in a different way.



4 The Parallel Partitioning Method (PPM)

The new proposed PPM is a method able to solve any bi-objective problem.
This method provides a general scheme in order to find the whole Pareto set

in three stages.

4.1 First stage: search of the extremes

The first stage consists in finding the two extreme efficient solutions which are
Pareto optimal. In order to speed up this search, we propose to use a lexico-
graphical order on the objectives. Hence, for example, to obtain the extreme
Pareto solution for objective f;, f; is first optimized without optimizing fs.
Secondly the best value for f; is kept and f, is optimized.

These two solutions give bounds on the pertinent search space because they
indicate the lowest and the largest possible values on each objective for any

Pareto optimal solution.

4.2 Second stage: split of the search space

The objective of this stage is to find a subset of well distributed Pareto so-
lutions. Therefore the second stage consists in equally splitting the search
space. Extreme solutions found at the first stage are used to make the split.
This splitting is done according to one objective. In Figure 6, four splits have
been made according to objective fs.

Then, for each split a specific Pareto solution is computed: the one that re-

spects the considered split and has the best value for the objective not used for



the splitting. Therefore, one objective is limited and the second is optimized.
This process is similar to the e-constraint method [3].

Solutions found for splits of Figure 6 are shown on Figure 7. It is important to
notice that this stage finds supported and non-supported solutions. So, if the
distribution of the Pareto optimal solutions is well sparse, then the obtained
subset, of Pareto solutions is also well sparse.

The objective chosen to make the split does not change the performance of
the method. The two schemes have been tested for the studied BOFSP and

times required to solve instances are equivalent.

Fig. 7. Search of solutions well
Fig. 6. Split of search space.

distributed on the Pareto front.

4.8  Third stage: search of all the other Pareto solutions

The third stage consists in finding all the Pareto solutions not found during
the previous stages. This stage is similar to the second phase of the improved
TPM. For two adjacent solutions f(s) and f(r) the search is made in the
rectangle SY RO where Y is the point (fi(s), f2(r)), R is the point (0,f2(r))
and S is the point (fi(s),0) (see Fig. 8). In fact, this search can be limited

to the rectangle f(r)Y f(s)Z where Z is the point (fa(s), fi(r)), if the search
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method is able to handle such constraints.

The whole search space explored at this stage is represented in Figure 9. No
solution can dominate the extremes (grey space in the figure). Moreover if one
solution is not in this search space (if this solution is in the hatched space), this

solution is dominated by one or more previously found solutions. To search

f
2
fy
f(r)
10 &—%—— 7
s f
2 X (s)
S. -
0 f(s) 1 f,
Fig. 8. Rectangle of search. Fig. 9. Search space for third stage.

inside the rectangles, search directions can be defined by A\; and Ay computed

as in TPM (A = fa(r) — fa(s), Ao = fi(s) — fi(r)).

5 Comparisons of PPM and TPM

In this section, we discuss the particularities of TPM and PPM and their

advantages and disadvantages.

5.1  Solutions used for the split

In order to split the search space, TPM proposes to use all the supported

solutions, whereas PPM uses well distributed Pareto (supported or non sup-
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ported) solutions. Hence, in TPM, lot’s of searches are made to find all the
supported solutions and some of them do not produce any new solution but are
used to prove that no new supported solution exists. Therefore the number of
mono-objective searches can be high in TPM. When mono-objective searches
required to find supported solutions are polynomial (case of well structured
problems), finding all the supported solutions is not time consuming. But
when these searches are NP-Hard, it is interesting to limit their number. This

is what PPM does.

5.2 Balance the search space

In TPM, the size of the triangles obtained for the second phase depends on the
distribution of supported solutions and may be very unbalanced (very small
and very large triangles). As far as PPM is concerned, the size of searches for
the third stage are dependent on supported and non-supported solutions, that
is to say on the distribution of the whole set of solutions of the Pareto front.

Figure 10 illustrates this fact. The search space defined by TPM and the search

f
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O
@><_ ><| Legend: O supported solution
! . X' non-supported solution
>'< - = — — search space of PPM
X i - search space of TPM
i
i
i
fl

Fig. 10. Search spaces of the methods.

space defined by PPM are presented. On this figure, supported solutions are

indicated with rounds and non-supported with crosses. In this example, seven

12



mono-objective searches are required by TPM to find the extremes and all the
supported solutions (and to prove that no other supported solution exists).
With PPM, only four searches are required to find the extremes and the two
solutions used for the split. Moreover the search sub-spaces obtained with
PPM are well balanced than the search sub-spaces obtained with TPM because
in PPM, supported and non-supported solutions can be used to delimit this

search space.

5.3  Number of partitions

TPM and PPM are very general schemes that could be applied to any bi-
objective problem. In PPM, the number of partitions has to be determined.
This is a parameter of the procedure. This number must be determined ac-
cording to the studied problem and the knowledge we may have on the form
of the Pareto set. In TPM the first phase, used to reduce the search space,
can be very time consuming, especially when the mono-objective searches are
NP-hard. In PPM, the determination of the number of partitions give control

on the time required to find solutions used for the split.

5.4 Structure of problems

During the second step of PPM, a constraint is added on one objective. With
this constraint, the structure of the original problem may be broken and ex-
isting efficient method dedicated for this problem may becaume unusable.
Hence, for these problems, TPM will be efficient. On contrary, for NP-hard

mono-objective problems, like in our case the BOFSP, exact mono-objective

13



methods do not use the structure of problems. Therefore for these problems

PPM will be efficient.

The discussion about these four points show that in theory, PPM should
be more efficient than TPM in particular on a difficult problem such as the

BOFSP. These conclusions have to be verified thanks to experiments.

6 Experiments

To evaluate the different methods on the BOFSP presented in section 2, we
use benchmarks proposed by Taillard [15] and by Reeves [16] for the problem
F/permut/Cypqe , to which due dates for jobs have been added! in order to
be able to compute the total tardiness objective.

Instances are described with the origin of the instance, the number of jobs, the
number of machines and the number of the instance. For example, the instance
taill_20_5_1 is the first instance of Taillard with 20 jobs and 5 machines.

All these experiments have been carried out on a computer with a Pentium
IV microprocessor of 3 GHz. In this part, methods are compared and different
aspects are discussed.

In order to compare the different methods, same approaches, based on Branch

& Bound, are used to solve sub-problems.

L' details on this extension may be found at www.lifl.fr/~lemesre

14



6.1 Efficiency of methods

In this section, we compare methods while looking for the minimal set (only so-
lutions with different values of objectives are searched). For the PPM method
the split is made according to the total tardiness criterion. Previous exper-
iments have shown that the objective chosen to split, has no influence on
the time required to solve instances on BOFSP. Table 1 presents results ob-
tained with different methods for Taillard’s Benchmarks. This table indicates
the number of solutions (supported and non-supported) of the front and the
time required to solve the instances for three different methods: the original
Two-Phase Method (TPM), the improved Two-Phase Method and the Paral-
lel Partitioning Method (PPM). It shows that improvements on TPM allow
an important reduction of the search time, in particular for problems of size
20 * 10. It shows also that the search time for PPM is even smaller than for

the improved TPM.
Table 1

Taillard’s benchmarks: Times required to obtain the minimal Pareto set.

Instances Number of solutions Time
Supported Non Original Improved
Supported TPM TPM PPM
taill_20_5_1 3 1 6.5 s 3.5 s 3.3 s
taill_20_5_2 2 4 3 mn 10 s 2mnbd50s 2mnb0s
taill_20_10_1 10 32 lday3h 12h25mn 8 h 58 mn
taill_20_10_2 8 23 18h04mn 7h23mn 5 hO01l mn

Table 2 presents similar results obtained for benchmarks proposed by Reeves

15



(reC_nbJob_nbMach_nb). For these benchmarks, we produce two types of in-
stances; “easy” and “hard”, according to the difficulty to optimize the total
tardiness in the mono-objective case. For these two types the same information
as in Table 1 is given.

Table 2

Reeves’ Benchmarks: Times required to obtain the minimal Pareto set.

Instances Number of solutions Time
Supported Non Original Improved
Supported TPM TPM PPM
Easy
reC_20.5_1 7 17 53 s 20 s 18 s
reC_20_10_7 3 3 3 mn 01l s 35 s 31 s
reC_20_15_13 4 7 5h10mn 2h10mn 1h55mn
reC_20_15_17 5 14 10h4l mn 6hO0lmn 3h42 mn
Hard
reC_20.5_1 8 34 54 s 39 s 32s
reC_20_10_7 9 31 1h22mn 32mnd4ls 22mnl9s

This table allows to make similar conclusions as for Table 1: improvements
on TPM allow a reduction of the search time and the time required by PPM
is even smaller than for the improved TPM. Moreover we can see that the
time required to solve a given size of problems depends on the difficulty of the
total tardiness associated problem. In particular, problems of size 20 % 15 of

yvhe hard class problem can not be solved within one week whereas problems

16



of the same size of the easy class may be solved within few hours.

6.2 Graphical representation of fronts

Cmax
1368 —fd : ‘ ‘
1367 I- N supported solutions ¢ |
non-supported solutions ~ +

1366 [ + _
1365 [ _
1364 [ _
1363 [ + _
1362 [ _
1361 [ #
1360 | _

! ! ! I I I I I I
1359450 500 550 600 650 700 750 800 850 LQOb Tardiness
Fig. 11. Result of problem taill_20_5_2.

Figures 5 (in Section 3.2), 12 and 11 present three different Pareto fronts for
three different instances. Those figures show that Pareto sets may have differ-
ent structures (number of solution, number of supported /non-supported solu-
tion, distribution of the supported solutions...). For example, Figure 5 and 12
shows that supported solutions may be very close (and not well distributed).
Moreover, Figure 11 shows that there may exist few supported solutions. In
this case TPM is unable to split interestingly the search space. Therefore,

structures of these fronts explain the good saving of time obtained with PPM.

6.3 Impact of the search of the extremes

The search of the two extremes has to be made whatever the method used.
Unfortunately these searches may be time consuming. Therefore to appreciate

the saving of time of PPM compared to the improved TPM, these two methods
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Fig. 12. Pareto set taill_20_10_2
are compared without considering the time required to search the extremes.
Table 3 indicates the required time to compute the two extremes and the time
required to solve the different instances once the two extremes are computed.
Table 3 shows that the part of the time spent to search the extremes can
represent a large part of the total time required by a given method. Moreover
this table shows that without considering this common part of the work, PPM
appears even more efficient than Improved TPM. Indeed, PPM can required

only half of the time of TPM (reC'_20_15_17).

6.4 Minimal Pareto set/Mazimal Pareto set

Let us bring to the attention of the reader that depending on the space we
are considering (decision space/objective space), the number of Pareto solu-
tions may be different. In the objective space, two solutions having the same
objective vector will be considered as a single point, whereas they represent
two different solutions of the decision space. The Pareto set in the objective
space is called the minimal complete Pareto set whereas it is the maximal

complete Pareto set in the decision space. These two problems are slightly
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different and it is worth precising which problem is addressed while studying

a multi-objective problem.

Table 4 presents the time required by PPM to obtain the maximal complete

Pareto set and the number of Pareto solutions composing the maximal com-

Table 3

Search of the extremes.

Instances Time
Search of Improved TPM PPM
extremes without extremes without extremes
Taillard
taill . 20_5_1 2.6 s 09s 0.7s
taill_20_5_2 2 mn 20 s 30 s 30 s
taill 20_.10_1 1 h 02 mn 11 h 23 mn 7 h 56 mn
taill 20_.10.2 1 h 05 mn 6 h 18 mn 3 h 56 mn
Reeves Easy
reC_20.5_1 6 s 14 s 12 s
reC_20_10_7 18 s 17 s 13 s
reC_20_15_.13 1h 13 mn 57 mn 42 mn
reC_20_15.17 1 h 21 mn 4 h 40 mn 2 h 21 mn
Reeves Hard
reC_20.5_1 2s 37 s 30 s
reC20_10_7 2mnO0ls 30 mn 40 s 20 mn 18 s

19



Table 4

Maximal Pareto set.

Instances Maximal set Minimal set
Time # of solutions Time # of solutions
Taillard
taill_20_5_1 4s 18 3.3s 4
taill_20_5_2 3mn 15 s 21 2 mn 50 s 6
taill_20_10_.1 9 h 07 mn 43 8 h 58 mn 42
taill_20_10_2 5h 15 mn 31 5h 01 mn 31
Reeves Easy
reC_20.5_1 19 s 50 18 s 24
reC_20_10_7 40 s 13 31ls 6
reC_20_15_.13 1 h 59 mn 12 1 h 55 mn 11
reC_20_15_17 3 h 55 mn 28 3 h 42 mn 19
Reeves Hard
reC_20.5_1 33 s 71 32s 42
reC_.20_10_7 25 mn 24 s 368 22 mn 19 s 40

plete Pareto set. Table 4 also recalls the time required to obtain the minimal

complete Pareto set and the corresponding number of solutions, in order to

make a comparison.

This table shows that the time required to obtain the maximal Pareto set is
comparable with the time needed to obtain the minimal Pareto set, even if for

some instances, the number of solutions may be larger. Hence, the efficiency

20



of the method does not decrease with the search of the maximal Pareto set.

7 Conclusion and perspectives

In this paper, we propose a new exact method named Parallel Partitioning
Method for solving bi-objective problems. This method is compared with the
well known Two-Phase Method for which several improvements were proposed
for scheduling problems. These methods are general scheme able to enumerate
all the Pareto solutions for any bi-objective problem. PPM is a method which
takes advantages of other exact methods to find Pareto optimal solutions more
rapidly. It proposes an interesting split of the search space, by finding well dis-
tributed solutions.

We have chosen to validate and compare the two methods (TPM and PPM)
on a bi-objective permutation flowshop problem. We present some advantages
of the Parallel Partitioning Method and some particularities of the studied

problem which explain the good results obtained with this method.

Further researches on this topic will deal with comparing TPM and PPM
on other bi-objective scheduling and non-scheduling problems. The Parallel
Partitioning Method may also be used in cooperation schemes with (meta-)-
heuristics (Basseur et al. [17]). Another further research direction is to develop
a parallel implementation of PPM, which should be very efficient, since the
concept of the method is inherently parallel. Finally an interesting point is

the extension of such a method to more than two objectives.
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