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Bayesian Robot Programming

OLIVIER LEBELTEL, PERRE BESSIERE JULIEN DIARD AND EMMANUEL MAZER
Laboratoire GRAVIR - CNRS - INRIA, 655 avenue de I'Europe, 38334 St Ismier, France
Pierre.Bessiere@imag.fr

Abstract: We propose a new method to program robots based on Bayesian inference and learning. It is
called BRP for Bayesian Robot Programming. The capacities of this programming method are demon-
strated through a succession of increasingly complex experiments. Starting from the learning of simple
reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior
composition, situation recognition and temporal sequencing. This series of experiments comprises the
steps in the incremental development of a complex robot program. The advantages and drawbacks of
BRP are discussed along with these different experiments and summed up as a conclusion. These dif-
ferent robotics programs may be seen as an illustration of probabilistic programming applicable
whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of pos-
sible applications is obviously much broader than robotics.

Keywords: bayesian robot programming, control of autonomous robots, computational architecture for
autonomous systems, theory of autonomous systems

1. Introduction

We assume that any model of a real phenomenanciemplete There are always some hidden
variables, not taken into account in the model, th8uémnce the phenomenon. The effect of
these hidden variables is that the model and the phenomenon never have the same behavior.

Any robot system must face this centralfidifilty: how to use an incomplete model of its
environment to perceive, infer, decide and adicefitly? We propose an original robot pro-
gramming method that spdcally addresses this question.

Rational reasoning with incomplete information is quite a challenge fdrcatisystems.

The purpose of Bayesian inference and learning is precisely to tackle this problem with a well-
established formal theory. BRP heavily relies on this Bayesian framework.

We present several programming examples to illustrate this approach famelddsscriptions
as generic programming resources. We show that these resources can be used to incrementally
build complex programs in a systematic and uniform framework. The system is based on the
simple and sound basis of Bayesian inference. It obliges the programmer to explicitly state all
assumptions that have been made. Finally, it permits effective treatment of incomplete and
uncertain information when building robot programs.

The paper is organized as follows. Section 2 offers a short review of the main related work,
Section 3 is dedicated to fileitions and notations and Section 4 presents the experimental plat-
form. Sections 5 to @resent various instances of Bayesian programs: learning simple reac-
tive behaviors; instances of behavior combinations; sensor fusion; hierarchical behavior
composition; situation recognition; and temporal sequencdegtion 10 describes a combina-
tion of all these behaviors to program a robot to accomplish a night watchman task. Finally, we
conclude with a synthesis summing up the principles, the theoretical foundations and the pro-
gramming method. This concluding section stresses the main advantages and drawbacks of BRP.
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2. Related work

Our work is based on an implementation of the principle of the Bayesian theory of probabilities.

In physics, since the precursory work of Laplace (1774; 1814), numerous results have been
obtained using Bayesian inference techniques (to take uncertainty into account) and the maxi-
mum entropy principle (to take incompleteness into account). The late Edward T. Jaynes pro-
posed a rigorous and synthetic formalization of probabilistic reasoning with his "Probability as
Logic" theory (Jaynes, 2003). A historical review of this approach was offered by Jaynes (1979)
and an epistemological analysis, by Matalon (1967). Theoreticafipasions of probabilistic
inference and maximum entropy are numerous. The entropy concentration theorems (Jaynes,
1982; Robert, 1990) are among the more rigorous, Cox theorem (Cox, 1961) being the most well
known, although it has been partially disputed recently by Halpern (1999a; 1999b). Numerous
applications and mathematical tools have been developed (Smith & Grandy, 1985; Tarentola,
1987; Bretthorst, 1988; Erickson & Smith, 1988a; Erickson & Smith, 1988b; Mohammad-Dja-
fari & Demoment, 1992; Kapur & Kesavan, 1992).

In artificial intelligence, the importance of reasoning with uncertain knowledge has been
recognized for a long time. However, the Bayesian approach clearly appeared as one of the prin-
ciple trends only since the proposal of Bayesian nets (Pearl, 1988) and graphical models (Lau-
ritzen & Spiegehalter, 1988; Lauritzen, 1996; Jordan, 1998; Frey, 1998). Bayesian inference has
been proved to be an NP-hard problem (Cooper, 1990). However, very important technical
progress has been achieved recently which permits approximated computation in reasonable
time (Saul et al., 1996; Zhang & Poole, 1996; Delcher et al., 1996; Darwiche & Provan, 1997;
Koller & Pfeffer, 1997; Ruiz et al., 1998; Jaakola & Jordan, 1999; Jordan et al., 1999).

Recent robot programming architectures (Aji & McEliece, 2000; Borrelly et al., 1998;
Schneider et al., 1998; Dekhil & Henderson, 1998; Mazer et al., 1998) are in general not con-
cerned with the problem of uncertainty. In robotics, the uncertainty topic was either related to
calibration (Bernhardt & Albright, 1993) or to planning problems (Brafman et al., 1997). In the
latter case, some authors have considered modeling the uncertainty of the robot motions when
planning assembly operations (Lozano-Perez et al., 1984; Donald, 1988) or modeling the uncer-
tainty related to the position of the robot in a scene (Kapur & Kesavan, 1992). More recently
Bayesian techniques have been largely used in PdMBFpIan complex paths in partially
known environments (Kaelbling, Littman & Cassandra, 1996; Kaebling, Cassandra & Kurien,
1996; Koening & Simmons, 1998; Kaebling, Littman & Cassandra, 1998; Beetz & Belker, 2001;
Lane & Kaebling, 2001) or for action selection (Rosenblatt, 2000). i also used to plan
complex tasks and recognize situations in complex environments (Aycard, 1998, Thrun, 1998).
Finally, a lot of works have been done about probabilistic localization and navigation (Shatkay,
1998) either with probabilistic occupancy grids (Konolidge, 1997), Markov localization (Thrun,
Burgard & Fox, 1998; Gutmann, et al., 1998; Murphy, 1999; Fox et al., 2000) correlation-based
Markov localization (Konolidge & Chou, 1999), Partidikers (Fox et al., 2001) or Kalmdit-
tering (Roumeliotis & Bekey, 2000a; Roumeliotis & Bekey, 2000b).

However, to the best of our knowledge, the design of a robot programming system and archi-
tecture solely based on Bayesian inference has never been investigated before the PhD of Olivier
Lebeltel, summarized in the present paper (Lebetel, 1999; Diard & Lebeltel, 1999; Lebeltel et
al., 2000; Diard & Lebeltel, 2000). A paper by Thrun (Thrun, 2000) explored this same direction
but with less generality. BRP is a simple and generic framework for robot programming in pres-
ence of incompletness and uncertainty. It may be used as a unique formalism to restate and com-
pare numerous classical probabilistic models such as for instance, Bayesian Network (BN),
Dynamic Bayesian Network (DBN), Bayesian Filters, Hidden Markov Models (HMM), Kalman
Filters, Particle Filters, Mixture Models, or Maxim Entropy Models. This is detailed in a survey
by Bessiere (Bessiére et al., 2003).

Finally, a presentation of the epistemological foundations of BRP may be found in two arti-
cles by Bessiére (Bessiére et al., 1998a; Bessiére et al., 1998b).

1. Partially Observable Markov Decision Process.
2. Hidden Markov Models.
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3. Basic concepts

In this section, we introduce the concepts, postulate#itiens, notations and rules that are
necessary to dime a Bayesian robot program.

It may be read twice, dirst rapidly to acquire the main concepts, and revisited after the
instances sections (5 to 11) to understand in detail the forrfiaitdms.

3.1 Definition and notation

Proposition

The first concept we will use is the usual notionlodical proposition Propositions will be
denoted by lowercase names. Propositions may be composed to obtain new propositions using
the usual logical operatoraix b  denoting the conjunction of propositions baadb , their
disjunction and-a the negation of propositian

Variable

The notion ofdiscrete variablds the second concept we require. Variables will be denoted by
names starting with one uppercase letter.

By ddfinition, adiscrete variablex is a set of logical propositiongs  such that these propo-
sitions are mutually exclusive (for alli ~ with<j xay; is false) and exhaustive (at least one
of the propositions; is true), stands for «variable taked'its  value». denotes the car-
dinal of the sex (the number of propositiogns ).

The conjunction of two variables and , denoted Y , inee as the set afx | x| Y]
propositionsx ay; X®Y is a set of mutually exclusive and exhaustive logical propositions. As
such, it is a new variable Of course, the conjunction of variables is also a variable and, as
such, it may be renamed at any time and considered as a unique variable in the sequel.

Probability

To be able to deal with uncertainty, we will attach probabilities to propositions.

We consider that, to assign a probability to a proposition , it is necessary to have at least
somepreliminary knowledgesummed up by a proposition Consequently, the probability of a
propositiona is always conditioned, at least,-by . For each differem.| ;) is an applica-
tion assigning to each propositian a unique real value =) in the interual

Of course, we will be interested in reasoning on the probabilities of the conjunctions, dis-
junctions and negations of propositions, denoted, respectively(®yb| =) P(av,b| n) and
P(-a| ).

We will also be interested in the probability of propositiean conditioned by both the pre-
liminary knowledger and some other proposition . This will be denbtaf b A x)

For simplicity and clarity, we will also use probabilistic formula with variables appearing
instead of propositions. By convention, each time a varigble appears in a probabilistic formula
®(X), it should be understood as; € X, ®(x;) . For instance, given three varigbles , z and ,
P(X® Y| Z®=n) = P(X| =) stands for:

VX EX VY, €Y, V3 €Z

[E3.1]
P(x; A Y| | zoam) = P(x| m)

3.2 Inference postulates and rules

This section presents the inference postulates and rules necessary to carry out probabilistic rea-
soning.

3. By contrast, the disjunction of two variablesfided as the set of propositiong v Yj , iIs not a variable. These
propositions are not mutually exclusive.
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Conjunction and normalization postulates for propositions

Probabilistic reasoning needs only two basic rules:
1 - Theconjunction rule which gives the probability of a conjunction of propositions.

P(aab| ) = P(a] m)x P(b| arx)

P(b| #)x P(a] ba x)

[E3.2]

2 - Thenormalization rule which states that the sum of the probabilitieaof aad is
one.

P(al m)+P(-a| x) = 1 [E3.3]

For the purpose of this paper, we take these two rules as postulates

As in logic, where the resolution principle (Robinson, 1965; Robinson, 1979 fiisienf to
solve any inference problem, in discrete probabilities, these two rules ([E3.2], [E3.3]) fare suf
cient for any computation. Indeed, we may derive all the other necessary inference rules from
those two, especially the rules concerning variables:

1 Conjunction rule for variables:

PIX® Y| 7) = P(X] m)x P(Y| X®m)

= P(Y| #)x P(X| Y® 7) [E3.4]

2 Normalization rule for variables:
;P(XI m =1 [E3.5]

3 Marginalization rule for variables
;P(X®Y| 7)) = P(Y| n) [E3.6]

3.3 Bayesian Programs

We ddine aBayesian progranas a mean of specifying a family of probability distributions.
Our goal is to show that by using such a sfieafion one can effectively control a robot to per-
form complex tasks.

The constituent elements of a Bayesian program are presented in Figure 1:

Pertinent Variabl es
Deconposi tion
o Prelimnary Know edge () )
Description Parametrical Forns
Program For
Pr ogr ans
Data (0)
Question

Figure 1: Structure of a Bayesian program

» Aprogram is constructed from a description and a question.

Adescription is constructed from preliminary knowledge and a data set.

* Preliminary knowledge is constructed from a set of pertinent variables, a decomposi-
tion and a set of forms.

* forms are either parametric forms or Bayesian programs.

Description
The purpose of a description is to specify an effective method to compute a joint distribution on

4. See some references on jfistitions of these two rules in 8§ 2.
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a set of variablegx’, x% .., x"} given a set of experimental data and preliminary knowledge
=. This joint distribution is denoted aB(x'® X’®...® X"| 8 ®x)

Preliminary Knowledge

To specify preliminary knowledge the programmer must undertake the following:
1 Define the set of relevant variablgs®, x% ..., X"} on which the joint distribution is
defined.
2 Decompose the joint distribution:

Given a partition of{x*, X2 ..., X"} into k subsets we di@me k variablesL, ....L* each cor-
responding to one of these subsets.

Each variableL' is obtained as the conjunction of the variab{ex%, xiz, . belonging to
the subset . The conjunction rule [E3.4] leads to:

PX'eX?®...0X"| §®mn) [E3.7]
=P s@m)x P L'®@s@n)x...x P(LY| Lo ..o’ L ®s®n)

Conditional independence hypotheses then allow further dicgtions. A conditional

independence hypothesis for variahleis ddined by picking some variables among

the variables appearing in conjunctiad™®...®L?®L* , calliRg  the conjunction of
these chosen variables and setting:

PL'I L' 'e..eo’eLl'®s®n) = P(L'| R®s®n) [E3.8]
We then obtain:

PX'oX*®...0X"| d®n) [E3.9]
= P s®@m) x P(L?| RR®6®m) x P(L]| RR®6®m) x ... x P(LY| R'®@ s ®n)

Such a simpfication of the joint distribution as a product of simpler distributions is called
a decomposition.
3 Define the forms:

Each distributionP(L'| R@s®x) appearing in the product is then associated with either a
parametric form (i.e., a functionM(Li) ) or another Bayesian program. In gemperal, is a

vector of parameters that may dependrbn & orboth. Learning takes place when some of
these parameters are computed using the data set

Question

Given a description (i.,ep(xX'®@x’®..®@X"| s®x) ), a question is obtained by partitioning
{xl, X2 , X"} into three sets : the searched variables, the known variables and the unknown
variables.

We ddine the variablesearch ,Kknown andunknown as the conjunction of the variables
belonging to these sets. Wefishe a question as the distribution:

P(Searched Know®d®m). [E3.10]

3.4 Running Bayesian programs

Running a Bayesian program supposes two basic capabilities: Bayesian inference and decision-
making.

Bayesian inference

Given the joint distributiorP(x'® x*® ...® X"| d®=n) , it is always possible to compute any
possible question, using the following general inference:
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P(Searched Know® d ® x)

P(Searched® UnknowpKnown® § ® )

Unknown

P(Searche® Unknow® Knownd ® )

— Unknown

P(Known| 8 ® )
P(Searche® Unknow® Knownd ® )

— Unknown
P(Searche® Unknow® Knownd ® ) [E3.11]

Searched

Unknown

Ix S P(Searched® Unknow® Knownd® )

z Unknown

k
1 1 i i
=x P(L™) x P(L'| R
z UnkEnowrj: ( ) il:lz ( | )

where thefirst equality results from the marginalization rule (equation [E3.6]), the second
results from the product rule (equation [E3.4]) and the third corresponds to a second application
of the marginalization rule. The denominator appears to be a normalization term. Consequently,
by convention, we will replace it by . Finally, the joint distribution is replaced by its decompo-
sition.

Two main problems have to be solved: searching the modes in a high dimensional space, and
marginalizing in a high dimensional space.

Sincesearched may be a conjunction of numerous variables, each of them possibly having a
lot of values or even being continuous, it is seldom possible to exhaustively compute
P(Searched Known One may then decide either to build an approximate representation of this
distribution or to directly sample from this distribution. In both cases the challengénsl the
modes where most of the probability density is concentrated. This may be eoyltlihs most
of the probability may be concentrated in very small sub-spaces of the whole searched space.

The situation is even worse, as computing the value(séarched Known for a given value
of searchec (a single point of the searched space of the preceeding paragraph) is by itdelf a dif
cult problem. Indeed, it supposes to marginalize the joint distribution on the spavedday
Unknown. Unknown(like Searchedmay be a conjunction of numerous variables, each of them
possibly having a lot of values or even being continuous. Consequently, the sum should also be
either approximated or sampled. The challenge is théimdathe modes of

k
P(LYx [T P(L'| R) [E3.12]
i=2
(on the search spaceftteed byunknown ), where most of the probability density is concen-
trated and which mostly contribute to the sum. Finally, marginalizing in a high dimensional
space appears to be a very similar problem to searching the modes in a high dimensional space.
It is well known that general Bayesian inference is a verfycdit problem, which may be
practically intractable. Exact inference has been proved to be NP-hard (Cooper, 1990) and the
general problem of approximate inference too (Dagum & Luby, 1993).
However, approximate inference is often tractable in practical cases for three main reasons:
1 The conditional independences, as expressed by the decomposition of the joint distri-
bution, break the complexity of the problem by reducing drastically the size of the
searched space (see section 6 for an instance of that). The importance of the decompo-
sition has already been stressed by many authors (e.g., Zhang & Poole, 1996) and
explains mainly the good performances of our engine (10 inferences per Second
2 Some powerful symbolic simpications can be made before any numerical computa-
tion (see next section on OPL).
3 Numerical optimization and marginalization have a long history and impressive

5. Order of magitude on a standard desktop computer for the inferences required by the experiments described in the
sequel.
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numerical methods have been developed which can be reused in this context (see next
section on OPL).

OPL: an API to automate Bayesian inference

An inference engine and the associated programmin§ @rimed OPL for Open Probabilistic
Language) has been developed and used for the experiments presented in this paper and othe
industrial applications.

OPL proceeds in two phases: a symbolic sifiqdtion of the required computation followed
by some intensive numerical crunching.

The main goal of the simgication phase is to reduce the number of sums necessary to compute
the distribution:

k o
P(Searched Known= %x ; [P(Ll)x I1 P(L'| R) [E3.13]
Unkno i=2

These kinds of simgiication techniques are largely used in the litterature. For instance, the
well known JLO or junction tree algorithm (Jensen, Lauritzen & Olesen, 1990) may be seen as
such a simpfication technique in the case of Bayesian Networks.

In OPL, a large spectrum of such sinfiglations is used. ,

First, considering the different terms of the prodact®) x I1 P(L'| R) , three possibilities
of obvious simpfiications may appear: i=2

1 When a term is a uniform distribution it can be sirfipti: it vanishes from the expres-

sion and its value will implicitly be taken into account in the normalization constant

s,

2 When a term is a distribution where all the variables hawgvn values, then it is a
constant for this question and may also be sifigali

3 When a term is a distribution where all the variables are efi@ichec  Knawn , then

it can be factorized out of the sum.
After these thredirst steps, we get a new expression of the form:

P(Searched Known= %x H P(Lj| Rj)x kE rU_[] P(Lil Ri)} [E3.14]
JEJ Unknowrn-i€

Now, considering ¥ i]‘! P(L'| Ri)} , we can try find an order on the sum to simplify
terms that sum to 1. YUnknowri< .

Indeed, when a term(L'| R) appears in the sum, if all the variables appeating in  are part
of Unknown (summed) and if all the variables appearingRIn are either pakno@fn or
Unknown, thenP( | R') sums to 1 and vanishes out of the global sum. This operation often leads
to impressive simplications.

Finally, the last simpfication that can be made is to reorder the sums on the different
unknown variables in order to minimize the number of operations to make. OPL uses the gen-
eral distributive law algorithm to do this. A description of this algorithm may be found in a
paper by Aji and McEliece (Aji & McEliece, 2000).

A more detailed description of this simiptiation phase and of related work may be found in
Bessiére’s survey (Bessiére et al., 2003).

The main goal of the numerical crunching phase is to estimate the distribution
P(Searched Known A necessary subgoal is to estimate the corresponding sum.

Two main approaches are possible to reach these objectives, either by building approximated
explicit representation of these distributions or by sampling these distributions.

OPL includes different algorithms related to both approaches. It may approximate the distri-
bution using either particlélters (Arulampalam et al., 2001) or Multi Resolution Binary Trees
(MRBT), a homemade representation described in a pending patent (Bessiére, 2002). OPL also

6. Application Programming Interface
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uses sampling techniques, mainly Monte Carlo sampling integration methods (Neal, 1993;
MacKay, 1996) and an improved version of these techniques proposed by Mekhnacha (Mekh-
nacha, Mazer & Bessiere, 2001), where they are combined with simulated annealing.

Decision-making

For a given distribution, different decision policies are possible: for example, searching the
best (highest probability) values or drawing at random according to the distribution. For our pur-
poses, we will always use this second policy and refer to this query as:
Draw(P(Searched Know®d®m)) .

Utility functions could also be used to make the decision but they do not appear to be neces-
sary for the work described in this paper.

Control loop of the robot

To control our robot using a Bayesian program, a decision is made every tenth of a second. A
typical question is to select the values of the motor variables knowing the values of the sensory
variables. Consequently, the basic loop to operate the robot is to loop on the following instruc-
tions every tenth of a second:

1 - Read the val ues of the sensors

2 - Draw(P(Motors| Sensor® é ®x))
3 - Send the returned values to the notors

4. Experimental platform

4.1 Khepera robot

Khepera is a two-wheeled mobile robot, 57 millimeters in diameter and 29 millimeters in height,
Withn% total weight of 80g (See Figure 2). It was designed at ERRd is commercialized by K-
Tea

1!

4'-., ""“ .' "”,_u_!

ot 1T (1111
H"

- 111
lm 1 r_rrlﬂT

Figure 2: The Khepera mobile robot

7. Ecole Polytechnique Fédérale de Lausanne (Switzerland)
8. http://www.K-team.com/
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The robot is equipped with eight light sensors (six in front and two behind), taking values
between 0 and 511 in inverse relation to light intensity, stored in variahjes L8 (see Figure
3). These eight sensors can also be used as infrared proximeters, taking values between 0 anc
1023 in inverse relation to the distance from the obstacle, stored in varipkiles, Px8 (see
Figure 3).

The robot is controlled by the rotation speeds of its left and right wheels, stored in variables
Mg andMd, respectively.

Figure 3: The sensory-motor variables of the Khepera robot.

From these 18 basic sensory and motor variables, we derived three new sensory variables
(Dir , Prox andThetal) and one new motor on&rt ). They are described below.
» Dir is a variable that approximately corresponds to the bearing of the closest obstacle
(see Figure 3). It takes values between -10 (obstacle to the left of the robot) and +10
(obstacle to the right of the robot), and idided as follows:

90(Px6— PxJ) + 45(Px5— Px2 + 5(Px4— Pxi?) [E4.1]

Dir = Floor( 9(1+Pxl+ Px2+ Px3+ Px& Px5 P36

* Prox is a variable that approximately corresponds to the proximity of the closest obsta-
cle (See Figure 3). It takes values between zero (obstacle very far from the robot) and
15 (obstacle very close to the robot), and il as follows:

Max (Px1, Px2 Px3 Px4 Px5 P [E4 2]

Prox = FIoor( oa

* Thetal iS a variable that approximately corresponds to the bearing of the greatest
source of illumination. It takes on 36 values from -170° to 180°.
» The robot is piloted solely by its rotation speed (the translation spefixed). It
receives motor commands from theot variable, calculated from the difference
between the rotation speeds of the left and right wheeds. takes on values between
+10 (fastest to the right) and -10 (fastest to the left).
Khepera accepts turrets on its top to augment either its sensory or motor capacities. For the
final experiment (the nightwatchman task), a linear camera of 64 pixels and a micro turbine were
added on top of the robot.

4.2 Environment

For all experiments described in the current paper, the Khepera is placed in a 1 m by 1 m envi-
ronment. This environment has walls around its contour, textured to be easily seen by the robot.
Inside this square, we place walls made of If%gu'cks that can be moved easily to set any con-
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figuration we need quickly. We usually build a recess made of high®Legtls in a corner, and
place a small light over this recess, to create a «base» for the robot (see Figure 12).

5. Reactive behavior

5.1 Goal and experimental protocol

The goal of thdirst experiment was to teach the robot how to push objects.

First, in a learning phase, we drove the robot with a joystick to push objects. During that
phase, the robot collected, every tenth of a second, both the values of its sensory variables and
the values of its motor variables (determined by the joystick position). This data set was then
used to identify the free parameters of the parametric forms.

Then, in a restitution phase, the robot has to reproduce the behavior it had just learned.
Every tenth of a second it decided the values of its motor variables, knowing the values of its
sensory variables and the internal representation of the task.

5.2 Specification

Having ddined our goal, we describe the three steps necessaryine ttee preliminary knowl-
edge.

1 - Chose the pertinent variables

2 - Deconpose the joint distribution

3 - Define the paranetric forns

Variables

First, the programmer spdi@s which variables are pertinent for the task.

To push objects it is necessary to have an idea of the position of the objects relative to the
robot. The front proximeters provide this information. However, we chose to sum up the infor-
mation of these six proximeters by the two varialbas rng

We also chose to set the translation speed to a constant and to operate the robot by its rota-
tion speedvrot .

These three variables are all we need to push obstacles. Tfigitidles are summed up as
follows:

Dir € {10, ...,10}, | Dir ] = 21
Prox€ {0, ..., 15}, | Prox| = 16 [S5.1]
Vrote {10, ..., 10}, | Vrot | =21

Decomposition

In the second spdication step, we give a decomposition of the joint probability
P(Dir ® Prox ® Vrot| A® z-obstacle as a product of simpler terms. This distribution is conditioned
by both z-obstacle, the preliminary knowledge we ardidang, anda a data set that will be pro-
vided during the learning phase.

P(Dir ® Prox ® Vrot| A ® s-obstaclg
= P(Dir | A ® m-obstaclé x P(Prox| Dir® A ® m-obstaclé x P(Vrot| Prox® Dir® A ® m-obstaclé  [S5.2]
= P(Dir | A ® m-obstaclg x P(Prox| A ® sn-obstaclg x P(Vrot| Prox® Dir® A ® z-obstacle

Thefirst equality results from the application of the product rule (equation [E3.4]). The sec-
ond results from the simgication P(Prox| Dir® A ® m-obstacle = P(Prox| A ® a-obstacl§ , which
means that we consider thatox  abd are independent. The distances to the objects and their
bearings are not contingent.

Parametric forms
To be able to compute the joint distribution, fireally need to assign parametric forms to each
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of the terms appearing in the decomposition:

P(Dir | A ® m-obstaclg = Uniform
P(Prox| A ® m-obstaclg = Uniform [S5.3]
P(Vrot| Prox® Dir® A ® m-obstaclg = G(u(Prox, Dir), a(Prox, Dir))

We have no a priori information about the direction and the distance of the obstacles.
Hence, P(Dir | A® m-obstacld¢ andP(Prox| A ® w-obstacly are uniform distributions; all directions
and proximities have the same probability.

For each sensory situation, we believe that there is one and only one rotation speed that
should be preferred. The distributio®(Vrot| Prox® Dir® A ® a-obstaclg is unimodal. However,
depending of the situation, the decision to be madefer may be more or less certain. This is
resumed by assigning a Gaussian parametric form\@t| Prox® Dir® A ® a-obstaclg

5.3 Identification

We drive the robot with a joystick (see Movi@)land collect a set of data . Let us call the par-
ticular set of data corresponding to this experimemtsh . A datum collected at time s a trip-
let (vrot, dir,, prox,) .

The free parameters of the parametric forms (means and standard deviations for all the
LDir | x [Prox| Gaussians) can then be idd®d by computing the means and standard devia-
tions of vrot for each position of the obstacle.

Finally, it is possible to compute the joint distribution:

P(Dir ® Prox ® Vrot| é-push® s-obstaclg

E5.1
= P(Dir | n-obstaclg x P(Prox| m-obstacle x P(Vrot| Prox® Dir ® d-push® s-obstaclg [ ]

According to equation [E3.11], the robot can answer any question concerning this joint dis-
tribution.

We call the distributionP(Dir ® Prox ® Vrot| -push® n-obstaclg adescriptionof the task. A
description is the result of identifying the free parameters of a preliminary knowledge using
some given data. Hence, a description is completdiypel@ by a couple preliminary knowledge
+ data. That is why a conjunctiam® s always appears to the right of a description.

5.4 Utilization

To render the pushing obstacle behavior just learned, the Bayesian controller is called every
tenth of a second :

1 - The sensors are read and the val ues of dir, and prox are conputed
2 - The Bayesian programis run with the query:

Draw (P (Vrot| prox, ® dir, ® 6-push® m-obstacle) [E5.2]

3 - The drawn vrot, is sent to the notors
5.5 Results, lessons and comments

Results

As shown in Movie §, the Khepera learns how to push obstacles in 20 to 30 seconds. It learns
the particular dependency, corresponding to this §pebehavior, between the sensory vari-
ablesDir andrrox and the motor variamMet

This dependency is largely independent of the particular characteristics of the objects
(weight, color, balance, nature, etc.). Therefore, as shown in Md@j¢H2 robot is also able to
push different objects. This, of course, is only true within certain limits. For instance, the robot
will not be able to push the object if it is too heavy.

9. http://www-laplace.imag.fr’ENGLISH/PRESENTATION/Semaine-Science/Trans7/T7.mov
10. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/Semaine-Science/Trans8/T8.mov
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Lesson 1: A generic method for Bayesian Robot Programming

In this experiment we apply a precise three-step method to program the robot.
1 - Specification: define the prelimnary know edge
1.1 - Choose the pertinent variabl es
1.2 - Deconpose the joint distribution
1.3 - Define the paranetric forns
2 - ldentification:identify the free paraneters of the prelinmnary know edge
3 - Wilization: ask a question to the joint distribution

In the sequel, we will use the very same method for all the other BRP experiments.

Lesson 2: Bayesian Program = Preliminary Knowledge + Data + Question

Numerous different behaviors may be obtained by changing some of the different components of
a Bayesian program in the following ways.
* It is possible tachange the questigrkeeping the description unchanged. For instance,
if the Prox information is no longer available because of some failure, the robot may
still try to push the obstacles knowing only their direction. The query is then:

Draw(P(Vrot| dir, ® 6-push® s-obstacle) [E5.3]

* It is possible tochange the datakeeping the preliminary knowledge unchanged. For
instance, with the same preliminary knowledgebstacle ~ , we taught the robot to avoid
objects or to follow their contour (see Figure 4 and Mowt&).3Two new descrip-

Figure 4: Contour following (superposed images)

tionst? were obtained by changing only the driving of the robot during the learning
phase. As a result, two new programs were obtained leading to the expected behaviors
: «obstacle avoidance» and «contour following».

 Finally, it is possible tahange the preliminary knowledgehich leads to completely
different behaviors. Numerous examples will be presented in the sequel of this paper.
For instance, we taught the robot another reactive behavior called phototaxy. Its goal is
then to move toward a light source. This new preliminary knowlegg®totaxyl uses
the variables/rot andhetal Thetal roughly corresponds to the direction of the light.

11. http://www-laplace.imag.fr/ENGLISH/PRESENMTION/Semaine-Sciencef@ns9/T9.mu
12. P(Dir ® Prox ® Vrot| d-avoid® m-obstacleé and P(Dir ® Prox ® Vrot| d-follow ® s-obstacle
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6. Sensor fusion

6.1 Goal and experimental protocol

The goal of this experiment is to fuse the data originating from the eight light sensors to deter-
mine the position of a light source.

This will be obtained in two steps. In tfiest one, we specify one description for each sen-
sor individually. In the second one, we mix these eight descriptions to form a global one.

6.2 Sensor model
Specification

Variables

To huild a model of the light sensar , we only require two variables:  the reading df the
sensor, andheta2 , the bearing of the light source.

Li€ {0, ...,511}, | Li ] = 512

Theta2e {-17Q ..., 180}, | Theta2] = 36 [S6.1]

Decomposition

The decomposition simply spdigs that the reading of a sensor obviously depends on the posi-
tion of the light source

P(Theta2® Li| A ® n-sensoj

: [S6.2]
= P(Theta2] n-sensoj x P(Li | Theta2® A ® s-sensoj
Parametric forms
As we have na@ priori information on the position of the source, we state:
P(Theta2| m-sensoj = Uniform [S6.3]

The distributionP(Li | Theta2® A ® #-sensoj is usually very easy to specify because it corre-
sponds exactly to the kind of information that the sensor supplier provides: the expected read-
ings of its device when exposed to a light. For the Khepera'’s light sensors, we obtain (see Figure
5):

K (Theta20)

AR SaaaTITTERIPPRY e e
wand e
S S WU DO A
. R S Y NS

1aa_ ............. é ............................... é. .............

a
Theta2(°)

Figure 5: K(Theta20)
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P(Li | Theta2® n-senso) = Gy (thetazp,), o(L1)

L - _ [S6.4]
(e (¢ =49 (B=003)
l+e

K(Theta26;) = 1-

In specfication [S6.4],6; stands for the position of the sensor with respect to the robot, and
will be used later to «rotate» this model for different sensors.

Specfications [S6.1], [S6.2], [S6.3] and [S6.4] are the preliminary knowledge correspond-
ing to this sensor model. This preliminary knowledge is namsegiso

Identification

No identfication is required as there are no free parametetgdnsol

However, it may be easy and interesting to calibrate 8pally each of the eight light sen-
sors. This could be achieved, for instance, by identifying parameters g and independently for
each sensor, by observing the response of the particular sensor to a light source.

6.3 Fusion
Specification

Variables
The interesting variables are the eight variahies Tae@?2

L1 {0, ...,511}, | L1] = 512

L8€ {0, ...,511}, | L8| = 512 [S6.5]

Theta2e {170 ..., 180}, | Theta2| = 36

Decomposition
The decomposition of the joint distribution is chosen to be:

P(Theta2® LI® LR LP L LB L&® LB® LBA® afusion)

P(Theta2] A ® n-fusion) x P(L1| Theta2® A ® s-fusion) x P(L2| L1® Theta2® A ® s-fusion)
...xP(L8] L7® L6® L5® L4® L3® L2® LI® Theta® A ® a-fusion) [S6.6]
8
P(Theta2| n-fusion) x H P(Li| Theta2® A ® a-fusion)
i=1

The first equality results from the product rule [E3.4]. The second from diagtions of
the kind:

P(Lj| Lj -1® ... ® L1® Theta2® A ® a-fusion) = P(Lj| Theta2® A ® m-fusion) [E6.1]

These simpfications may seem peculiar as obviously the readings of the different light sen-
sors are not independent. The exact meaning of these equations is that we cowrsizler (the
position of the light source) to be the main reason for the contingency of the readings. Conse-
guently, we state that, knowirtheta2 , the readings  are indepenadtesis2 is the cause of the
readings and knowing the cause, the consequences are independent. This is, indeed, a very
strong hypothesis. The sensors may be correlated for numerous other reasons. For instance,
ambient temperaturefluences the functioning of any electronic device and consequently corre-
lates their responses. However, we choose, fastaapproximation, to disregard all these other
factors.

Parametric forms
We do not have anwg priori information onTheta2 :
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P(Theta2| m-fusion) = Uniform [S6.7]

P(Li | Theta2® A ® a-fusion) iS obtained from the model of each sensor as §ipécin previous
section (6.2):

P(Li | Theta2® A ® a-fusion) = P(Li | Theta2® z-sensoj [S6.8]
Identification
As there are no free parametersrdfusion  , no idexdiion is required.
Utilization

To find the position of the light source the standard query is:

Draw(P(Theta2] I, ®......® |8, ® a-fusion)) [E6.1]

This question may be easily answered using equation [E3.11] andicptian [S6.8]:

P(Theta2] L, ® ... ® 18, ® a-fusion)

8 [E6.2]
x 1_[ P(li;| Theta2® m-senso)

i=1
Values drawn from this distribution may bdieiently computed given that the distribution
P(Theta?] L, ®...®I8,® a-fusion) is simply a product of eight very simple ones, and given that the
normalizing constant does not need to be computed for a random draw.

Mi

Many other interesting questions may be asked of this description, as the following:
* It is possible to search for the position of the light source knowing only the readings of
a few sensors:

P(Theta?| L, ® 12, ® n-fusion)

1 [E6.3]
=35 P(11;| Theta2® n-sensoj x P(12,| Theta2® x-sensoj

* It is possible to check whether the sensor  is out of order. Indeed, if its reading  at
time t, persists in being inconsistent with the readings of the others for some period, it
is a good indication of a malfunction. This inconsistency may be detected by a very
low probability forli, :

P(L] 12, ® ... ® 18, ® w-fusion)
_ ° [E6.4]

1 )
= =x P(li;| Theta2® a-sensoj
z Tr%aaljl '

6.4 Results, lessons and comments

Results

Figure 6 presents the result obtained for a light source with a bearing of 10°:

The eight peripherdlgures present the distributio®$Theta2] Li® n-senso) corresponding to
the eight light sensors. The central schema presents the result of the fusion, the distribution
P(Theta?l I, ®...®18,® afusion) . Even poor information coming from each separate sensor may
blend as a certainty.

Lesson 3: Breaking the complexity using conditional independences
The conditional independencies hypothesis which permits to transform:
P(Theta2® LI® L LI L LB L® L® LBA® a-fusion) [E6.5]

into:
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Figure 6: The result of a sensor fusion for a light source with a bearing of 10°

8
P(Theta2| z-fusion) x [ P(Li| Theta2® A ® -fusion) [E6.6]
i=1
is the main tool at hand to simplify the treated problem. More than any clever inference
algorithm they are the essential way to keep computation tractable. For instance, here the size of
the search space for the joint distribution [EBésc 512 « 2”° | when the size of the search space
for the decomposition [E6.6] i86x (512x 36 x 8 « 2%

Lesson 4: Calling Bayesian subroutines

Specfication [S6.8]: P(Li| Theta2® A ® a-fusion) = P(Li | Theta2® m-sensoj, where a distribution
appearing in a decomposition isficed by a question to another Bayesian program, may be seen as
the probabilistic anologous to subroutine calls in regular programming.

This Bayesian subroutine call mechanism will play the same role than the usual one: allow-
ing to build complex Bayesian programs as hierarchies of embedded calls to simpler and simpler
Bayesian programming building blocks. Section 10 will present a more complex instance of this.

Lesson 5: Sensor fusion method

In the experiment just presented, we have seen a simple instance of a general method to carry
out data fusion.

The key point of this method is in the decomposition of the joint distribution, which has
been considerably simfiled under the hypothesis that «knowing the cause, the consequences
are independent». This is a very strong hypothesis, although it may be assumed in numerous
cases.

This way of doing sensor fusion is veryiefent. Its advantages are manifold.
» The signal is heightened.
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* It is robust to a malfunction of one of the sensors.
* It provides precise information even with poor sensors.
* It leads to simple and veryfefient computations.

We presented this method on a very simple case for didactic purposes. However it is a very
popular technigue to do sensor fusion which can be used for much more complicated cases in a
large variety of applications. For instance, we usdtheenent of this technique for ADAS
(Advanced Driver Assistance System) to merge information coming from two radars and one
lidar in order to partially automate car driving (Coué et al., 2002, Coué et al., 2003).

Lesson 6: No inverse and no ill-posed problems in the probabilitic framework

In this experiment, another fundamental advantage of Bayesian programming is clearly evi-
dent. The description is neither a direct nor an inverse model. Mathematically, all variables
appearing in a joint distribution play exactly the same role. This is why any question may be
asked of a description. Consequently one mdindehe description in one wap(Li| Theta )
and question it in the opposite wap(theta2 L, ®....®18) ). In theory, any inverse problem
may be solved when expressed in a probabilistic framework. In practice some of these inverse
problems may require a lot of computational ressources. However, this is a major difference
with non probabilistic modelling where inverse problem may only be solved in rare cases.

Furthermore, there is none ill-posed problem in a probabilistic framework. If a question may
have several solutions, the probabilistic answer will simply have several peaks.

7. Behavior combination

7.1 Goal and experimental protocol

In this experiment we want the robot to go back to its base where it can recharge.

This will be obtained with no further teaching. As the robot's base is lit, the light gradient
usually gives good hints on its direction. Consequently, we will obtain the homing behavior by
combining together the obstacle avoidance behavior and the phototaxy behavior. By program-
ming this behavior we will illustrate one possible way to combine Bayesian programs that make
use of a «command variable».

7.2 Specification

Variables

We needbDir Prox ,Thetal and/rot , the four variables already used in the two composed behav-
iors. We also need a new varialle  which acts as a command to switch from avoidance to pho-
totaxy.

Dir € {10, ..., 10}, | Dir | = 21
Proxe {0, ..., 15}, | Prox] = 16
Thetale {-17Q ..., 180}, | Thetal| = 36 [S7.1]
Vrote {0, ..., 10}, | Vrot] = 21
H € {avoidance phototaxy|H | =2

Decomposition

We believe that the sensory variableis Prgx anetal are independent from one another. Far
from any objects, we want the robot to go toward the light. Very close to obstacles, we want the
robot to avoid them. Hence, we consider that  should only deperd»on . Finally, we believe
thatvrot must depend on the other four variables. These programmer choices lead to the follow-
ing decomposition:
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P(Dir ® Prox ® Thetal® H® Vroj A ® m-home
= P(Dir | 7=-home x P(Prox| a-hom@ x P(Thetal| #-home x P(H | Prox® s-home [S7.2]
x P(Vrot| Dir ® Prox® Thetal® H® n-home

Parametric forms

We hare no a priori information about either the direction and distance of objects or the direc-
tion of the light source. Consequently, we state:

P(Dir | a<homeg = Uniform
P(Prox| m-home = Uniform [S7.3]
P(Thetal| m-home = Uniform

H is a command variable to switch from avoidance to phototaxy. This means that when
H = avoidance the robot should behave as it learned to do in the description
P(Dir ® Prox ® Vrot| d-avoid® m-obstacle¢ and whenH = phototaxy the robot should behave according
to the descriptiorP(Thetal® Vrof é-phototaxy® m-phototaxy) . Therefore, we state:

P(Vrot| Dir ® Prox® Thetal® avoidance® s-home = P(Vrot| Dir ® Prox ® d-avoid® sz-obstacle [S7 4]
P(Vrot| Dir ® Prox® Thetal® phototaxy® a-home = P(Vrot| Thetal® §-phototaxy® s-phototaxyl '

We want a smooth transition from phototaxy to avoidance as we move closer and closer to
objects. Hence wenally state:

P(avoidancd ProxX® n-home = Sigmoida’ ﬁ(Prox) (a=9),(p=0,25

S7.5
P(phototaxy] Prox® n-home = 1-P(avoidancgd Prox a-home [ ]

The discrete approximation of the Sigmoid function we use above, which will nofinedle

P(avoidance | Prox® .=home
1.00

0.30
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0.z20

o.ag Iy
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Prox

Figure 7:P(avoidancd Pro® m-home

in the current paper, is shown in Figure 7.
The preliminary knowledge-home is fleed by spedications [S7.1], [S7.2], [S7.3], [S7.4]
and [S7.5].

7.3 ldentification
There are no free parameters in preliminary knowledg@ne . No learning is required.
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7.4 Utilization

While Khepera returns to its base, we do not know in advance when it should avoid obstacles or
when it should go toward the light. Consequently, to render the homing behavior we will use the
following question wherei is unknown:

P(Vrot| Dir ® Prox ® Thetal® a-home

= ; P(Vrot® H| Dir ® Prox ® Thetal® a-home
[E7.1]

1 [ [P(avoidancgd Prox a-home x P(Vrot| Dir ® Prox ® d-avoid® s-obstacle | ]
= =X
2 +[P(phototaxy] Prox® sm-home x P(Vrot| Thetal® d-phototaxy® s-phototaxyl ]

Equation [E7.1] shows that the robot does a weighted combination between avoidance and
phototaxy. Far from any objectgrox = 0, P(phototaxy] prox® #-home =1) it does pure photot-
axy. Very close to objectspfox = 15 P(avoidancd proX® a-home =1) it does pure avoidance. In
between, it mixes the two.

7.5 Results, lessons and comments

Results
Figure 8 and Movie ¥ show eficient homing behavior obtained this way.

Figure 8: Homing behavior (The arrow points out the light source)
(superposed images).

Figures 9 and 10 present the probability distributions obtained when the robot must avoid an
obstacle on the left with a light source also on the left. As the object is on the left, the robot
needs to turn right to avoid it. This is what happens when the robot is close to the objects (see
Figure 9). However, when the robot is further from the object, the presence of the light source on
the left ifluences the way the robot avoids obstacles. In that case, the robot may turn left
despite the presence of the obstacle (see Figure 10).

13. http://www-laplace.imag.fr/ENGLISH/PRESEMTION/Semaine-Sciencef@ns10/T10.mo
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(Dir = -5,Prox = 10,Lum= -90)
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Figure 9: Homing behavior (Khepera close to an object on its left and has also the light
source on its left). The top left distribution shows the knowledgeron given by the
phototaxy description; the top right¥sot  given by the avoidance description; the
bottom left shows the knowledge of the «command variakle» ; finally the bottom right

shows the resulting combination @mot

(Dir = -5,Prox = 8, Lum=-90)

P(Vrot| Thetal® é-phototaxy® z-phototaxy} R(Vrot | Dir ® Prox ® é-avoid® s-obstaclg

0.80 0. 80

0. 60 0. 60

0.40 0. 40 ]

0.20 0. 20

0. o0_MI I he—p—r—ry 0.0 — :
-10 -5 0 5 10 -10 -5 0 5 10

PH | Prox® s-homg P(Vrot | Dir ® Prox® Thetal® z-home@

1.00_ 0. 80

0.75 0. 60

0. 50_| 0. 40

0. 25 | 0. 20

oool LI 0. 00 fﬂTh.h i iilq i

phototaalx();}dance -10 -5 0 5 10

Figure 10: Homing behavior (Khepera further from the object on its left).
This figure is structured as Figure 9.
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Lesson 7: A probabilistic if-then-else

In this experiment we present a simple instance of a general method to combine descriptions to
obtain a new mixed behavior. This method uses a command varable to switch from one of the
composing behaviors to another. A probability distributionton  knowing some sensory vari-
ables should then be spfed or learnetf. The new description inally used by asking ques-

tions whereH is unknown. The resulting sum on the different cases of does the mixing.

This shows that Bayesian robot programming allows easy, clear and rigorouscapiecis
of such combinations. This seems to be an importantfhlezanpared to some other methods
that have great ditulties in mixing behaviors with one another, such as Brooks’ subsumption
architecture (Brooks, 1986; Maes, 1989) or neural networks.

Description combination appears to naturally implement a mechanism similar to-*HEM
(Jordan & Jacobs, 1994) and is also closely related to mixture models (see McLachlan & Deep,
2000 for a reference document about mixture models and see Bessiére et al., 2003 for detail
about the relation between description combination and mixture models).

Finally, from a programming point of view, description combination can be seen as a proba-
bilistic if-then-else.H is the condition. H is known with certainty then we have a usual bran-
ching structure. IH is known with some uncertainty through a probability distribution then the
2 possible consequences are automatically mixed using weights proportional to this distribution.

8. Situation recognition

8.1 Goal and experimental protocol

The goal of this experiment is to distinguish different objects from one another.

At the beginning of the experiment the robot does not know any object (see below for a pre-
cise ddinition). It must incrementally build categories for the objects it encounters. When it
knowsn of them, the robot must decide if a presented object enters in onenof the  categories or
if it is something new. If it is a new object, the robot must create a new category and should start
to learn it.

8.2 Specification

Variables

The Khepera does not use its camera for this task. It must «grope» for the object. It uses the
«contour following» behavior to do so (see Figure 4). It does a tour of the presented object and
computes at the end of this tour four new variabiis: the number of left turns, the number
of right turns,Per the perimeter and the longest straight line. The values of these variables
are not completely determined by the shape of the object, given that the contour following
behavior is quite choppy.

We also require a variable to identify the different classes of object. The walue is
reserved for the class of unknown (not yet presented) objects.

Finally, we obtain:

NIite {0, ..., 24}, | NIt] = 25
Nrte {0, ..., 24}, L Nrt | = 25
Pere {0, ..., 9999}, | Per | = 10000 [S8.1]
Lrl € {0, ..., 999}, | Lrl | = 1000
0€{0,...,15},| 0] = 16

Decomposition

Obviously, the four variablesit Nrt Per and are not independent of one another. However,
by reasoning similar to the sensor fusion case (see Section 6), we consider that knowing the

14. see (Diard & Lebeltel, 1999)
15. Hierachical Mixture of Expert
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objecto , they are independent. Indeed, if the object is known, its perimeter or the number of
turns necessary to complete a tour are also known. This leads to the following decomposition:

P(O® NIt ® Nrt® Per® Lrl| A® m-object)
= P(O| m-object) x P(NIt] O® A ® m-objec) x P(Nrt| O ® A ® m-objecd) [S8.2]
x P(Per| O® A ® s-object) x P(Lrl | O ® A ® z-object)

Parametric forms
We have naa priori information on the presented object:

P(O| m-object) = Uniform [S8.3]

For an already observed objead£0 ), we state that the distributiomgton Nrand are
Laplace succession latfsand that the distributions arer  and are Gaussian laws:

Vo, €0, 0 =0,
P(NIt| o; ® A ® m-object) = L;(ny,(0;))
P(Nrt| o; ® A ® m-object) = L,(ny,(0;)) [S8.4]
P(Per| g ® A ® m-objec) = G;(u(0;), o(0;))
P(Lrl | 0; ® A ® n-object) = G,(u(0;), 5(0;))

Finally, we state that for a new objecd € 0 ) we haveanpriori information aboutNit
Nrt, Per andLrl :

P(NIt| o, ® m-object) = Uniform
P(Nrt| o, ® m-object) = Uniform

. . [S8.5]
P(Per| o, ® n-object) = Uniform

P(Lrl | 0y, ® n-object) = Uniform

The preliminary knowledge composed of sfieations [S8.1], [S8.2], [S8.3], [S8.4] and
[S8.5] is namedr-object .

8.3 Identification

When an object is presented to the robot, if it is recognized as a member of@ class , the param-
eters of the two Laplace succession laws and the two Gaussian laws corresponding to this class
are updated.

If the object is considered by Khepera to be a new one, then a new class is created and the
parameters of the distributions are initialized with the valuesitofNrt ,Per ,  Land just read.

The learning process is incremental. Contrary to what we have seen up to this point, the
identification and utilization phases are not separated. Each new experience changes the set of
dataa , and leads to a new descriptfi® ® Nit® Nrt® Per® Lrl| 8, ® z-object)

8.4 Utilization
After n—1 experiences, to recognize a presented object, the question to answer is:
P(O] nit,®nrt, ® per,®Irl ,® 3§, _, ® n-objecy) [E8.1]

This may be simply computed by:

1+n
16. A Laplace succession law on a variable V il by:N+—L\\;j withN the total number of observatioh¥, |

the number of possible values fgr  angd the number of observations of thigcsyeciev .
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P(O| NIt® Nrt® Per® L ® 9, _; ® 7-objec)
- % x P(NIt| 0®8,,_,® mobject x P(Nrt| O®3, _, ® r-objech [E8.2]
x P(Per| O® 3, _; ® m-object) x P(Lrl | O ® 8, _; ® 7-object)

If the most probable value far is zero, then Khepera assumes that it is facing a new object.
Otherwise, this most probable value is considered to correspond to the recognized object.

8.5 Results, lessons and comments

Results

Figure 11: The different objects presented to Khepera.

The 15 objects shown on Figure 11 have been presented to thefrabbtimes each, in ran-
dom order. Each time the question was as follows: «Do you know this object, or is it a new
one?» mathematicaly stated B| nit,® nrt, ® per,®Irl ,® 8,_, ® z-object . The obtained results
are presented on table 1.

It should befirst noticed that two objects (top right of the picture, 3 and 7 in the ordiesf
presentation) have the exact same square basis and thus may not be distinguished from one
another given the four chosen variables. In these 2 cases, Khepera was in the position of some-
one asked to identify the color of an object by groping it.

The robot did not ever fail to recognize novelty (column 1) but forfitls¢ presentation of
object 7 which was recognized as object 3.

At the second presentation of each object the robot recognized the object except for object 7
which was always iderfted as 3 and but once for object 12 (the wood pyramid) which was also
recognized as 3.
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Table 1: Situation Recognition.
The columns correspond to the «really» presented objects.
The first column (F) corresponds to the first presentation of an object and the lines to the
recognize objects.

Lesson 8: Categorization

The main lesson to retain from this experiment is that categorization of objects or situations may
be considered as developing some dpedensor. Indeed, the method used in this section for
object recognition is very similar to what was achieved for sensor fusion in Section 6. The
hypotheses are similar and the advantages are the same.

9. Temporal sequences

9.1 Goal and experimental protocol

In this section, to exemplify the Bayesian programming method, we choose a «night watchman
task». This may be obtained as temporal sequences of six simpler behaviors:
1ldle: The robot is at its base, recharging its batteries. It waits for both an order and
enough energy to leave.
2 Patrol: It wanders around its environment and sounds an alarm if it detects any move-
ment.
3 Recognition The robot tours object to identify them.
4 Fire-intervention Khepera tries to extinguisfires by blowing on them using its
micro-turbine.
5 Homing It goes to its base when ordered to do so.
6 RechargeWhen low on energy, it goes to its base to recharge.

The purpose of this section is to show how such temporal sequences may fiedspetie
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Bayesian framework.
9.2 Specification

Variables

The first variable to consider iBehavior , which may take the six preceding vadleatrol,
recognition fire-intervention homingandrecharge This variable will be used to select a given
behavior.

This selection will be made according to the values of the six following variables:

* Vigil :a binary variable, used to order the Khepera to work.

* Energy :a variable that measures the level of available en@&rgygy may take four dif-

ferent values very-high high, low andvery-low.

 Base :a binary variable, true if the robot is at its base.

* Fire :a binary variable, true if the robot detects #ing.

* Identify :a binary variable, used to order the Khepera to recognize an object.
Finally, Behavior_t-1 a variable taking the same six value®eéisavior , used to memorize
which behavior was selected at time1
This may be summed up as usual :

Behaviore {idle, patrol recognition fire- interventiorhoming rechargé, | Behavior| = 6
Vigil € {true, fals¢, | Vigil | =2
Energye {very— high high, low, very- low, | Energy| = 4
Basec {true, false, | Base| =2 [S9.1]
Fire € {true, falsg,|Fire|=2
Identifye {true, false, | Identify] =2
Behavior_t-1€ {idle, patrol ..., recharge}, | Behavior_t-1] =6

Decomposition

At each time step the robot will select a behavior knowing the values of these six variables by
answering the question:

P(Behavior| Vigil® Energy® Bas® Fi® Identiy Behavior &lw-behaviop [E9.1]

It is tempting to specify this distribution directly. It would correspond to the usual program-
ming method where the conditions at time1 establish what should be done at time

We propose to do the exact opposite. Indeed, it is quite easy, knowing the behavior, to have
some notion of the possible values of the variablgs Eneigy Base Fire, , |dndry . For
instance, if the Khepera is patrolling, it means that it has been necessarily ordered to do so and
that vigil is true. Furthermore, we consider that knowing the behavior, tfigsevariables are
independent. These assumptions lead to the following decomposition:

P(Behavior® Vigil® Energyw Bas® Fir® Identiy Behavior_{-Tr-behavio

= P(Behavior_t-1| s-behavion x P(Behavior| Behavior_t-& s-behavior

x P(Vigil | Behavior® s-behavioy x P(Energy| Behavio® s-behavion [S9.2]
x P(Base| Behavio® m-behavion x P(Fire | Behavior® s-behavior

x P(ldentify| Behavio® s-behavior

Parametric forms
First we chose a uniform priori value for P(Behavior_t-1] s-behaviop :

P(Behavior_t-1] m-behaviop = Uniform [S9.3]

We chose to specify all the other terms of this decomposition as discrete distributions. Their
different values will be givea priori, one by one, using tables.
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For instance p(Behavior| Behavior_t-® a-behavion IS speioed by table 2.

This table should be read by column. Each column corresponds to the probalsktyadr
knowing a certain behavior of the robot at timei. . Consequently, each column should sum to 1
to respect the normalization constraint.

For instance, thdirst column of table 3 spdigs the probabilities of the variabBehavior
knowing that the behavior of the robot at time1 wdle. If Khepera waddle, then it may
stayidle with a high probability (90%), it may not directly change its behavior to erdgoagni-
tion, homingor recharge (probability 0), it may switch tgatrol or fire-interventionwith a low
probability (0.05 for both case obtained by normalization as pdddy the «x»).

If the Khepera was in modeatrol (second column), the most probable behavior is that it
stays in this mode, although it can switch to any other one. If the Khepera was imaunogei-
tion (third column) we set a very high probability for it to stay in this mode because we do not
want it to be easily distracted from this task and we preclude any possibility of switchihe to
In modefire-intervention(column 4) we exclude any switch tdle, recognitionor homing
Finally, when in moddomingor recharge the most probable behavior is to stay in the current
mode, although nothing is fieitely excluded.

BBeﬁgsi\g(r)_rt{l idle patrol recognition | fire-interv. homing recharge
idle 0.9 X 0 0 X X
patrol X 0.9 X X X X
recognition 0 X 0.99 0 X X
fire-interv. X X X X X X
homing 0 X X 0 0.9 X
recharge 0 X X X X Q9

Table 2:P(Behavior] Behavior_t-® w-behaviop

Table 3 mainly says thatatrol and recognitionsuppose thatigil is true and thahoming
supposes thatigil is false. Whenidle the probability thaMgil is true is not 0, because the
Khepera may béalle to recharge its batteries even when ordered to work.

Vigil / Behavior idle patrol recognition | fire-interv. homing recharge
false 0.9 0 0 X 1 X
true 0.1 1 1 X 0 X

Table 3:P(Vigil | Behavior® m-behavio

Table 4 spedies that whendle it is more probable tha&nergyis low than high. It also says
thatpatrol andrecognitionsuppose a higeknergyandrechargethe opposite.

Energy / Behavior idle patrol recognitiorlu fire-interv. homing recharge
very-low 0.325 0 0 X X 08
low 0.325 0.1 0.1 X X 0.2
high 0.25 X X X X 0
very-high 0.1 X X X X 0

Table 4:P(Energy| Behavio® a-behavion

Table 5 says thatdle imposes thatBaseis true, whenpatrol, recognition homing and
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rechargesuppose with a high probability that Khepera is not at its base.

Base/ Behavior idle patrol recognition | fire-interv. homing recharge
false 0 0.99 0.99 X 0.99 0.99
true 1 0.01 0.01 X 0.01 0.01

Table 5:P(Base| Behavio® s-behavion

Table 6 means that when Khepera is facirigey it is necessarily in modee-intervention

Fire / Behavior idle patrol recognition | fire-interv. homing recharge
false 1 1 1 0 1 1
true 0 0 0 1 0 0

Table 6:P(Fire| Behavior® a-behavion

Finally, Table 7 saysecognitionimposes that Khepera has been ordered to ddsotffyis

true).

Identify /
Behavior

idle

patrol

recognition

fire-interv.

homing

recharge

false

X

0

X

true

X

1

X

Table 7:P(Identify| Behavio® m-behaviop

9.3 Identification
No identfication is required, as there are no free parametetsdhavior

9.4 Utilization
The robot chooses its behavior with the following query:

Draw(P(Behavior| Vigil® Energy® Bas® Fir® Identi Behavior &lr-behavior) [E9.1]

that can be easily computed:

P(Behavior| Vigil® Energyw Bas® Fir®@ Identiy Behavior_&lz-behaviop

1

=35 P(Behavior_t-1 s-behavion x P(Behavior] Behavior_t-® s-behavion

[E9.2]

x P(Vigil | Behavior® s-behavion x P(Energy| Behavio® s-behavior)
x P(Base| Behavio® s-behavion x P(Fire| Behavior® s-behavior) x P(ldentify| Behavio® z-behavior

9.5 Results, lessons and comments

Results
Using these techniques, Khepera obtains temporal sequences of behaviors that appear convinc:
ing to a human observer (an instance of such a sequence will be given in the next section, see

Movie 5'7).
For instance, these sequences are stable. Khepera does not behave like a weathercock tha

changes its mind every second.

17. http://www-laplace.imag.fr/ENGLISH/PRESENRTION/Semaine-Sciencef@ns12/T12.small.mo
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Lesson 9: Inverse programming

This experiment demonstrates a completely new method of specifying temporal sequences of
tasks that could be called «inverse temporal programming». Indeed, the programmer does not
specify, as usual, the necessary conditions for an action. On the contrary, he or dhesdpeci

each action the expected observations and assumes that knowing the action these observations
are independent.

Inverse programming presents two main advantages.

« It is robust to unforeseen situations. A sequence of actions is always produced, even in

cases that the programmer did not explicitly take into account.

» Due to the conditional independence assumption, the number of cases to take into

account grows only linearly with the number of conditioning variables.

The a priori spedication of the probability distributions of the observed variables knowing
the behavior may be a @idulty. However it is possible to learn these distributions (see Diard &
Lebeltel, 1999).

Furthermore, the stability of the behavior according to the values in the tables is a critical
guestion. We do not have yet any qufiat results to answer this question but we are trying to
set up an experimental protocol to evaluate it.

10. Integration: A Night watchman Task

10.1 Goal and experimental protocol

The practical goal and experimental protocol of the night watchman task has already been pre-
sented in Section 9.1.

The scienfiic purpose of this last experiment is to prove that Bayesian robot programming is
an eficient constructive methodology and that all the previous descriptions may be integrated
into a single synthetic one.

Three descriptions and a few corresponding variables necessary for the night watchman task
have not yet been presented to keep the paper short:
1- P(Base® PxI®..®Px8® L1®...®L8|wbase used by Khepera to decide if it is at its
base
2 - P(Move® Behavio® Move_t-® Tem@ Tdum-move another temporal sequencing
description required because some of the behaviors are successions of reactive move-
ments.
3 - P(Vrot® Virans® Move® H® Di® Prox® Dirl® Proxl® Virans ® Thetd2r-speed built on
the reactive behaviors fmally decide the rotation and translation speeds.

10.2 Specification

Variables

The nightwatchman task requires 41 variables:
» Thirty-three «sensory» variables that Khepera may read every tenth of a second. When
convenient, we will summarize these 33 variables by their conjunction (a variable
namedsSensory-variables).

Sensory-variables Px® ... ® Px8® L1® ... ® L8
® Vigil ® Energy® Fire® Identify® Behavior_t-1
® Move_t-1® Temp® Tow Di® Pro® Dirty Prox® Vtrans_c
® NIt ® Nrt ® Per® Lrl

[E10.1]

* Rve internal variablesBase Theta2 Behavipr Moyve H
» Three «motor» variables that Khepera must compute. These three variables are the
rotation speedirot , the translation speadns and the identity of the object
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Decomposition and parametric forms

The decomposition of the joint distribution on these 41 variables is a product of a uniform distri-
bution on the sensory variables(Eensory-variablgs-watchman ) and eight questions addressed to
the previously digned descriptions:

Sensory-variables
P|Base® Theta® Behavi®® Mo |mwatchma
Vrot® Vtrans® O
= P(Sensory-variablgs-watchman
x P(Base PxI® ... ® Px8® L1® ... ® L8 ® n-base
x P(Theta2] L1® L® L® LB LD L& LB L a-fusion [E10.2]
x P(Behavior] Vigil® Energy®w Bas® Fir® Identifp Behavior_&lz-behavior
x P(Move| Behavio® Move t-® Tem@ TaRraz-move
x P(H| Prox® m-home
x P(Vrot® Vtrans| Move® H® Dir® Prox® DirL® ProxL® Vtrans_® Theta® n-speed
x P(O] NIt® Nrt® Per® Lrl® m-object)

10.3 Identification
No identfication is required.

10.4 Utilization
The ultimate question that Khepera must answer is:

P(Vrot® Vtrans® O| Sensory-variable® s-watchmar) [E10.3]

«What order should be sent to the motors, knowing the sensory state, and ignoring the values
of the internal variables?»

The answer to that question is obtained, as usual, by summing ovitvdlignored vari-
ables. This leads to the following result:

P(Vrot® Vtrans® O| Sensory-variable® z-watchman

P(Move| Behavio® ... ® Tour® s-move x

= % x P(O| NIt® Nrt® Per® Lrl® m-object)
P(Behavior| Vigil® ... ® Behavior_t-1® z-behavior [E10.4]
2 ( x P(Basg PxI® ...... ® L8 ® n-base >

Be;;’vio{
Base

X
V\%/e x P(Theta?] LI® ... ® L8 ® a-fusion)
Theta? x P(H| Prox® s-home
H x P(Vrot® Vtrans| Move® ... ® Theta2® #-speed

This expression may seem complex. In fact, it exactigces the structure of the reasoning
required to solve the problem.

» Recognizing the object is independent of the Khepera control.

» The innermost sum searches #avior ignordge

P(Behavior| Vigil® ... ® Behavior_t-1® z-behavior
Base( x P(Basg PxI® ... ® L8 ® n-base )
= P(Behavior] Vigil® ... ® Behavior_t-1® Px1® ... ® L8 ® s-watchmar)

[E10.5]

The intermediary sum searches the movement ignorin@edheior Baswd .

The position of the light sourcalieta2 ) is estimated by the fusion of the light sensors
information.

The command variable is estimated according to the valresof

» The outermost sum searches fost andns ignoring the precise valuesfifethe
internal variables.
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No decision is made except the ultimate one alveait vanoks . Uncertainty is propagated
from the innermost level to the outermost. All the available information is taken into account.
The resulting observed robot behavior is, indeed, a probabilistic mixture of the different compo-
nent descriptions.

Discarding no information has an obvious computational cost. The evaluation of the three
levels of cascading sums may be very time consuming. Thus, the programmer may choose to
make decisions on any intermediary variables. This choice will always trade a gdiiciehef
for a loss of information. For instance, the modicegnt possible program would make a deci-
sion for all the internal variables:

1 - Draw(P(Basg PxI® ... ® LB® n-basg) to decide if the robot is at its base,

2 - Draw(P(Behavior| ... ® Base® ... ® n-behavio)) to deci de the Behavior knowi ng Base

3 - Draw(P(Move| Behavio® ... ® z-move) to chosoe a novenent knowi ng the

Behawvior,

4 - Draw(P(Theta?] LI® ... ® L8® &-fusion)) to decide the position of the |ight

sour ce,

5 - Draw(P(H| Prox® n-home) to deci de between avoi dance and phot ot axy,

6 - and finally, Draw(P(Vrot® Vtrans| ... ® n-speed) to control the robot.

10.5 Results, lessons and comments

The results obtained are satisfactory to a human observer. The Khepera performed this task hun-
dreds of time in various environments and conditions. The behavior was very robust; for
instance, this experiment ran without interruption, 10 hours a day for three days as a demonstra-
tion during a public science fair.

The Movie 5/ shows the Khepera during one of these experiments. It successively shows:
« Khepera identifying an object,

» Khepera aborting its object recognition due to a posditdedetection,

» Khepera verifying that it is really facingfiae by trying to blow it,

» Khepera extinguishing thfere,

» Khepera patrolling the environment (it stops occasionally to detect movement and
sounds an alarm if it succeeds),

Khepera returning to its base.

Blowing

Figure 12: The night watchman task.
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11. Synthesis
11.1 Principles, theoretical foundation and methodology

Principles
The dominant paradigm in robotics may be caricatured by Figure 13.

Avoi dObs()

if (Obs=01)
t hen

turn: =true
el se

Figure 13: The symbolic approach in robotics.

The programmer of the robot has an abstract conception of its environment. He or she may
describe the environment in geometrical terms because the shape of objects and the map of the
world can be spefied. He or she may described the environment in analytical terms because
laws of physics that govern this world are known. The environment may also be described in
symbolic terms because both the objects and their characteristics can be named.

The programmer uses this abstract representation to program the robot. The programs use
these geometric, analytic and symbolic notions. In a way, the programmer imposes on the robot
his or her own conception of the environment.

The dificulties of this approach appear when the robot needs to link these abstract concepts
with the raw signals it obtains from its sensors and sends to its actuators.

The central origin of these di€ulties is the irreducible incompleteness of the models.
Indeed, there are always some hidden variables, not taken into account in the moddluthat in
ence the phenomenon. The effect of these hidden variables is that the model and the phenome-
non never behave exactly the same. The hidden variables prevent the robot from relating the
abstract concepts and the raw sensory-motor data reliably. The sensory-motor data are then saic
to be «noisy» or even «aberrant». A queer reversal of causality occurs that seem to consider that
the mathematical model is exact and that the physical world has some unfkaesn

Compelling the environment is the usual answer to the§ieuitfes. The programmer of the
robot looks for the causes of «noises» and fiveslieither the robot or the environment to sup-
press theseflaws». The environment is mdokd until it corresponds to its mathematical model.

This approach is both legitimate andigfnt from an engineering point of view. A precise con-
trol of both the environment and the tasks ensures that industrial robots work properly.
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However, compelling the environment may not be possible when the robot must act in an
environment not speiically designed for it. In that case, completely different solutions must be
devised.

The purpose of this paper is to propose Bayesian Robot Programming (BRP) as a possible
solution.

Figure 14 presents the principles of this approach.

The fundamental notion is to place side by side the programmer’s conception of the task (the
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Figure 14: The BRP approach in robotics.

preliminary knowledge) and the experimental data to obtain the programming resources called
«descriptions». As seen in the different examples described in this paper, both the preliminary
knowledge and the descriptions may be expressed easily facidrefy in probabilistic terms.

The preliminary knowledge gives some hints to the robot about what it may expect to
observe. The preliminary knowledge is nofixeed and rigid model purporting completeness.
Rather, it is a gauge, with open parameters, waiting to be molded by the experimental data.
Learning is the means of setting these parameters. The resulting descriptions result from both
the views of the programmer and the physical dpsties of each robot and environment. Even
the ifluence of the hidden variables is taken into account and @eantihe more important
their effects, the more noisy the data, the more uncertain the resulting descriptions.

However, Bayesian robot programming preserves two very important merits of the symbolic
approach. Thanks to the preliminary knowledge, the descriptions are comprehensible to the pro-
grammer. Thanks to Bayesian inference, complex reasoning is possible.

Theoretical foundations
The theoretical foundations of Bayesian robot programming may be summed up by Figure 15.

The first step transforms the irreducible incompleteness to uncertainty. Starting from the
preliminary knowledge and the experimental data, learning builds probability distributions.
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Incompletness

Preliminary Knowledge Maximum Entropy
o+ Principle
Experimental Data

ProbabiIity_Distributions -2 pi In(pj)

Uncertainty

P(aab |r) =P(a t)P(b [arm)=P(b |t)P(a [bax)

Bayesian Inference
P(—-a [r)+P(-ajr) =1

Decision

Figure 15: Theoretical foundation.

The maximum entropy principle is the theoretical foundation of fins$ step. Given some
preliminary knowledge and some data, the probability distribution that maximizes the entropy is
thedistribution thatbestrepresents this couple. Entropy gives a precise, mathematical and quan-
tifiable meaning to the «quality» of a distribution (for jfistitions of the maximum entropy
principle see, for instance, Jaynes, 1982; Robert, 1990; Bessiére et al., 1998b).

Two extreme examples may help to understand what occurs:

» Suppose that we are studying a formal phenomenon. There are no hidden variables. A
complete model may be proposed. If we select this model as the preliminary knowl-
edge, any data set will lead to a description made of Diracs. There is no uncertainty,
any question may be answered either by true or false. Logic appears as a special case
of the Bayesian approach in that particular context (see Cox, 1979).

» On the opposite extreme, suppose that preliminary knowledge consists of very poor
hypotheses about the modeled phenomenon. Learning will leafthte distributions,
containing no information. No relevant decisions can be made, only completely ran-
dom ones.

Hopefully, most common cases are somewhere in between these two extremes. Preliminary
knowledge, even imperfect and incomplete, is relevant and provides interesting hints about the
observed phenomenon. The resulting descriptions are neither Diracs nor uniform distributions.
They give no certitudes, although they provide a means of taking the best possible decision
according to the available information.

The second step consists of reasoning with the probability distributions obtainedflrgtthe
step.

To do so, we only require the two basic rules of Bayesian inference (see Section 3). These
two rules are to Bayesian inference what the resolution principle is to logical reasoning (see
Robinson, 1965; Robinson, 1979; Robinson & Sibert, 1983a; Robinson & Sibert, 1983b). These
inferences may be as complex and subtle as those usually achieved with logical inference tools,
as illustrated in the different examples in this paper.

11.2 Advantages

In this section we survey, comment and fiyieliscuss the advantages of the BRP method pro-
posed in this paper.

* Ability to treat incomplete and uncertain informatidrhe basis of this work is related
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to the fundamental ditulty of robot programming in real environment. For us this

difficulty is the direct consequence of the irreducible incompleteness of models. Con-

sequently, thdirst advantage of BRP is its ability to take into account this incomplete-
ness and the resulting uncertainty. This is obtained in three steps, thanks to the
following three abilities of the method:

° Ability to convert incompleteness to uncertainty by learnagydemonstrated in the
numerous instances where the free parameters of preliminary knowledge are identi-
fied from experimental data (see, for instance, Section 5 concerning reactive behav-
iors or Section 8 concerning object recognition). Object recognition, for instance,
shows that with simple preliminary knowledge, we are able to learn descriptions suf-
ficient for clasdication. However, in this task there are numerous ignored variables
such as, for instance, the color and material of the objects, the global lighting of the
room, the approximate quality of the contour following behavior or the position from
where the robot has started.

° Ability to reason despite uncertaintys demonstrated by all the experiments requir-
ing inference (see, for instance, Section 6 about sensor fusion or Section 8 about
object recognition). The «nightwatchman» task (see Section 10) shows the complex-
ity of the possible reasoning (41 variables, 12 descriptions, four hierarchical levels).

° Ability to decide, taking uncertainty into accouithe decision strategy selected in
this work has been to draw the values of the searched variables from the distributions
obtained by the preceding inference step. This strategy «renders» uncertainty, the
decision are nearly deterministic when the distributions are sharp, and conversely,
nearly random when they afiat.

Simple and sound theoretical bas&fe proposed approach is founded on simple the-

oretical bases. Essential questions may be asked clearly and formally and eventually

answered by mathematical reasoning. For instance, one may consider to fairly com-
pare Bayesian inference and logic as two possible models of reasoning. Thanks to
these theoretical bases, the experimental results (successes or even more enlightening
failures) may be analyzed and understood in detail.

Generic, systematic and simple programming metfBRIP is simple, systematic and

generic. Simple, as this method may be learned and mastered easily. Systematic, as it

may be applied with rigor andfafiency. Generic, as this method may be also used in
numerous other domains than robot programming.

Homogeneity of representations and resolution procesBB® is based on a unique

data structure, called a description, associated with two inference rules. This homoge-

neity leads to simple and generic program development.

Obligation to state all hypothesi€hoosing a description as the only data structure to

specify robotics programs and following a systematic method to do so compel the pro-

grammer to exhaustively express his knowledge about the task. Everything that should
be known about a given robotic problem is in its description: the synthesis between the
preliminary knowledge and the experimental data. There is no hidden knowledge in

either the inference program or the decision algorithm. As the description encapsulates
all the relevant information, exchanging, sharing or discussing models is easy and rig-
orous.

Large capacity of expressioDescriptions offer a large capacity of expression to spec-

ify models and to question them as well.

° Specification capacity The different experiments described in this paper prove that
descriptions may be used to specify numerous different models. Let us recall that we
used descriptions tiearn simple reactive behaviors (Section 5), to combine them
(Section 6), to hierarchically compose them (Section 8), to merge sensor informa-
tion (Section 6), to recognize situations (Section 8), to carry out temporal
sequencing (Section 9) and finally, to specify a task integrating all the previously
defined descriptions (Section 10).

° Question capacityLet us also recall that any question may be asked to a joint distri-
bution. Mathematically, all variables appearing in a joint distribution play the exact
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same role. They may all, indifferently, be known, unknown or searched. The descrip-
tion is neither a direct nor an inverse model. Sensor fusion (Section 6), situation rec-
ognition (Section 8) or inverse programming (Section 9) offer instances where the
guestions asked do not correspond to the §gation order. Furthermore, there is no
ill-posed problem. If a question may have several solutions, the probabilistic answer
will simply have several peaks. Some instances of sensor fusion efiethhis
point (see Section 6.3).
 Ability for real incremental development of roboBayesian Robot Programming,
thanks to its clear theoretical foundations and to its rigorous programming methodol-
ogy, appears to be an incremental method of developing robot programs that can really
be used in practice. THanal experiment (Section 10) demonstrates that point.

° Ability to combine descriptionsThe first incremental development tool is descrip-
tion combination (Section 6). With this tool it is possible tdire new behaviors as
weighted mixtures of different simpler ones.

° Ability to compose description¥he second incremental development tool is hierar-
chical description composition (Section 8). It is in some senses similar to calling
sub-procedures in classical programming, as some of the parametric forms appearing
in a decomposition may be questions addressed to more basic descriptions.

° Description = ResourceMore generally, a description, as an internal representation
of a physical phenomenon, may be considered as a programming ressource. For
instance, a description may offer new variables to be used in other descriptions. This
is the case with the variable  that idéiet$ the object, provided by the object rec-
ognition description (Section 8). Object recognition also proposes another example
of the use of a description as a programming resource. Indeed, the countour follow-
ing behavior is a necessary tool to be able for computing the four variablest ,
Per and Lrl used by the object recognition description. Numerous other possibilities
for enhancing the capacity of a robot using descriptions as resources may be found in
Dedieu’s PhD. thesis (Dedieu, 1995).

11.3 BRP in practice

BRP is a very simple, practical andiefent way to program robots for the 3 main following rea-
sons:
* BRP proposes a generic methodology for robot programming:
1 - Specification: define the prelimnary know edge.
1.1 - Choose the pertinent variabl es.
1.2 - Deconpose the joint distribution.
1.3 - Define the paranetric forns.
2 - ldentification : identify the free parameters of the prelimnary know edge
3 - Wilization: ask a question of the joint distribution.

» The conditional independences are used to break the complexity and keep the computation
tractable.

* BRP may really be considered as a programming language because it proposes three main
tools to build complex programs from simpler ones:
° Calling Bayesian subroutines.
° Probabilistic if-then-else.
° Inverse programming to sequence behaviors.

11.4 Scalability

This paper presented only very simple instances of robot programming for didactic purposes.
The goal was to illustrate the fundamental principles rather than to present applications.

Consequently two fundamental questions are still open: is BRP scalable? may it be used for
practical robotics applications?

Elements of answer to these two questions may be found in may be found in other works that
used the BRP approach:

» Kamel Mekhnacha build a Bayesian robotic CAD system which offers the usual capa-
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bilities of such a system but also handles the uncertainties. This system works with
hundreds of variables and tens of probability distributions (Mekhnacha, 1999; Mekh-
nacha, Mazer & Bessiére, 2000; Mekhnacha, Mazer & Bessiere, 2001)

« Julien Diard proposed in his PhD thesis the concept of Bayesian maps, which is a spe-
cialization of the BRP formalism, for representing the environment in navigation
tasks. In particular, the descriptions and the combination operators considered in this
work are special cases of the one presented here (Diard, 2003).

» Christophe Coué is using BRP for an Advanced Driving Assistance System (ADAS)
(Coué et al., 2002; Coué et al., 2003).

Ongoing works include manipulation with 6 DOF arms, pick and place problems, videogame

Bot programming, outdoor SLAM with automotive vehicles and indoor service robotics.
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