
HAL Id: inria-00189723
https://hal.science/inria-00189723v2

Submitted on 1 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian Robot Programming
Olivier Lebeltel, Pierre Bessiere, Julien Diard, Emmanuel Mazer

To cite this version:
Olivier Lebeltel, Pierre Bessiere, Julien Diard, Emmanuel Mazer. Bayesian Robot Programming.
Autonomous Robots, 2004, 16 (1), pp.49–79. �10.1023/B:AURO.0000008671.38949.43�. �inria-
00189723v2�

https://hal.science/inria-00189723v2
https://hal.archives-ouvertes.fr

Autonomous Robots - Submited 01/29/2002

Bayesian Robot Programming

O

LIVIER

 L

EBELTEL

, P

IERRE

 B

ESSIÈRE

, J

ULIEN

 D

IARD

AND

 E

MMANUEL

 M

AZER

Laboratoire GRAVIR - CNRS - INRIA, 655 avenue de l’Europe, 38334 St Ismier, France

Pierre.Bessiere@imag.fr

Abstract:

 We propose a new method to program robots based on Bayesian inference and learning. It is
called BRP for Bayesian Robot Programming. The capacities of this programming method are demon-
strated through a succession of increasingly complex experiments. Starting from the learning of simple
reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior
composition, situation recognition and temporal sequencing. This series of experiments comprises the
steps in the incremental development of a complex robot program. The advantages and drawbacks of
BRP are discussed along with these different experiments and summed up as a conclusion. These dif-
ferent robotics programs may be seen as an illustration of probabilistic programming applicable
whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of pos-
sible applications is obviously much broader than robotics.

Keywords:

 bayesian robot programming, control of autonomous robots, computational architecture for
autonomous systems, theory of autonomous systems

1. Introduction

We assume that any model of a real phenomenon is

incomplete

. There are always some hidden
variables, not taken into account in the model, that influence the phenomenon. The effect of
these hidden variables is that the model and the phenomenon never have the same behavior.

Any robot system must face this central difficulty: how to use an incomplete model of its
environment to perceive, infer, decide and act efficiently? We propose an original robot pro-
gramming method that specifically addresses this question.

Rational reasoning with incomplete information is quite a challenge for artificial systems.
The purpose of Bayesian inference and learning is precisely to tackle this problem with a well-
established formal theory. BRP heavily relies on this Bayesian framework.

We present several programming examples to illustrate this approach and define

descriptions

as generic programming resources. We show that these resources can be used to incrementally
build complex programs in a systematic and uniform framework. The system is based on the
simple and sound basis of Bayesian inference. It obliges the programmer to explicitly state all
assumptions that have been made. Finally, it permits effective treatment of incomplete and
uncertain information when building robot programs.

The paper is organized as follows. Section 2 offers a short review of the main related work,
Section 3 is dedicated to definitions and notations and Section 4 presents the experimental plat-
form. Sections 5 to 9 present various instances of Bayesian programs: learning simple reac-
tive behaviors; instances of behavior combinations; sensor fusion; hierarchical behavior
composition; situation recognition; and temporal sequencing. Section 10 describes a combina-
tion of all these behaviors to program a robot to accomplish a night watchman task. Finally, we
conclude with a synthesis summing up the principles, the theoretical foundations and the pro-
gramming method. This concluding section stresses the main advantages and drawbacks of BRP.

2

Lebeltel, Bessière, Diard & Mazer

2. Related work

Our work is based on an implementation of the principle of the Bayesian theory of probabilities.
In physics, since the precursory work of Laplace (1774; 1814), numerous results have been

obtained using Bayesian inference techniques (to take uncertainty into account) and the maxi-
mum entropy principle (to take incompleteness into account). The late Edward T. Jaynes pro-
posed a rigorous and synthetic formalization of probabilistic reasoning with his "Probability as
Logic" theory (Jaynes, 2003). A historical review of this approach was offered by Jaynes (1979)
and an epistemological analysis, by Matalon (1967). Theoretical justifications of probabilistic
inference and maximum entropy are numerous. The entropy concentration theorems (Jaynes,
1982; Robert, 1990) are among the more rigorous, Cox theorem (Cox, 1961) being the most well
known, although it has been partially disputed recently by Halpern (1999a; 1999b). Numerous
applications and mathematical tools have been developed (Smith & Grandy, 1985; Tarentola,
1987; Bretthorst, 1988; Erickson & Smith, 1988a; Erickson & Smith, 1988b; Mohammad-Dja-
fari & Demoment, 1992; Kapur & Kesavan, 1992).

In artificial intelligence, the importance of reasoning with uncertain knowledge has been
recognized for a long time. However, the Bayesian approach clearly appeared as one of the prin-
ciple trends only since the proposal of Bayesian nets (Pearl, 1988) and graphical models (Lau-
ritzen & Spiegehalter, 1988; Lauritzen, 1996; Jordan, 1998; Frey, 1998). Bayesian inference has
been proved to be an NP-hard problem (Cooper, 1990). However, very important technical
progress has been achieved recently which permits approximated computation in reasonable
time (Saul et al., 1996; Zhang & Poole, 1996; Delcher et al., 1996; Darwiche & Provan, 1997;
Koller & Pfeffer, 1997; Ruiz et al., 1998; Jaakola & Jordan, 1999; Jordan et al., 1999).

Recent robot programming architectures (Aji & McEliece, 2000; Borrelly et al., 1998;
Schneider et al., 1998; Dekhil & Henderson, 1998; Mazer et al., 1998) are in general not con-
cerned with the problem of uncertainty. In robotics, the uncertainty topic was either related to
calibration (Bernhardt & Albright, 1993) or to planning problems (Brafman et al., 1997). In the
latter case, some authors have considered modeling the uncertainty of the robot motions when
planning assembly operations (Lozano-Perez et al., 1984; Donald, 1988) or modeling the uncer-
tainty related to the position of the robot in a scene (Kapur & Kesavan, 1992). More recently
Bayesian techniques have been largely used in POMDP

1

 to plan complex paths in partially
known environments (Kaelbling, Littman & Cassandra, 1996; Kaebling, Cassandra & Kurien,
1996; Koening & Simmons, 1998; Kaebling, Littman & Cassandra, 1998; Beetz & Belker, 2001;
Lane & Kaebling, 2001) or for action selection (Rosenblatt, 2000). HMM

2

 are also used to plan
complex tasks and recognize situations in complex environments (Aycard, 1998, Thrun, 1998).
Finally, a lot of works have been done about probabilistic localization and navigation (Shatkay,
1998) either with probabilistic occupancy grids (Konolidge, 1997), Markov localization (Thrun,
Burgard & Fox, 1998; Gutmann, et al., 1998; Murphy, 1999; Fox et al., 2000) correlation-based
Markov localization (Konolidge & Chou, 1999), Particle filters (Fox et al., 2001) or Kalman fil-
tering (Roumeliotis & Bekey, 2000a; Roumeliotis & Bekey, 2000b).

However, to the best of our knowledge, the design of a robot programming system and archi-
tecture solely based on Bayesian inference has never been investigated before the PhD of Olivier
Lebeltel, summarized in the present paper (Lebetel, 1999; Diard & Lebeltel, 1999; Lebeltel et
al., 2000; Diard & Lebeltel, 2000). A paper by Thrun (Thrun, 2000) explored this same direction
but with less generality. BRP is a simple and generic framework for robot programming in pres-
ence of incompletness and uncertainty. It may be used as a unique formalism to restate and com-
pare numerous classical probabilistic models such as for instance, Bayesian Network (BN),
Dynamic Bayesian Network (DBN), Bayesian Filters, Hidden Markov Models (HMM), Kalman
Filters, Particle Filters, Mixture Models, or Maxim Entropy Models. This is detailed in a survey
by Bessiere (Bessière et al., 2003).

Finally, a presentation of the epistemological foundations of BRP may be found in two arti-
cles by Bessière (Bessière et al., 1998a; Bessière et al., 1998b).

1. Partially Observable Markov Decision Process.
2. Hidden Markov Models.

Bayesian Robots Programming 3

3. Basic concepts

In this section, we introduce the concepts, postulates, definitions, notations and rules that are
necessary to define a Bayesian robot program.

It may be read twice, at first rapidly to acquire the main concepts, and revisited after the
instances sections (5 to 11) to understand in detail the formal definitions.

3.1 Definition and notation

Proposition

The first concept we will use is the usual notion of

logical proposition

. Propositions will be
denoted by lowercase names. Propositions may be composed to obtain new propositions using
the usual logical operators: denoting the conjunction of propositions and , their
disjunction and the negation of proposition .

Variable

The notion of

discrete variable

 is the second concept we require. Variables will be denoted by
names starting with one uppercase letter.

By definition, a

discrete variable

 is a set of logical propositions such that these propo-
sitions are mutually exclusive (for all with , is false) and exhaustive (at least one
of the propositions is true). stands for «variable takes its value». denotes the car-
dinal of the set (the number of propositions).

The conjunction of two variables and , denoted , is defined as the set of
propositions . is a set of mutually exclusive and exhaustive logical propositions. As
such, it is a new variable

3

. Of course, the conjunction of variables is also a variable and, as
such, it may be renamed at any time and considered as a unique variable in the sequel.

Probability

To be able to deal with uncertainty, we will attach probabilities to propositions.
We consider that, to assign a probability to a proposition , it is necessary to have at least

some

preliminary knowledge

, summed up by a proposition

. Consequently, the probability of a
proposition is always conditioned, at least, by . For each different , is an applica-
tion assigning to each proposition a unique real value in the interval .

Of course, we will be interested in reasoning on the probabilities of the conjunctions, dis-
junctions and negations of propositions, denoted, respectively, by , and

.
We will also be interested in the probability of proposition conditioned by both the pre-

liminary knowledge and some other proposition . This will be denoted .

For simplicity and clarity, we will also use probabilistic formula with variables appearing
instead of propositions. By convention, each time a variable appears in a probabilistic formula

, it should be understood as . For instance, given three variables , and ,
 stands for:

[E3.1]

3.2 Inference postulates and rules

This section presents the inference postulates and rules necessary to carry out probabilistic rea-
soning.

3. By contrast, the disjunction of two variables, defined as the set of propositions , is not a variable. These
propositions are not mutually exclusive.

a b∧ a b a b∨

a¬ a

X xi
i j, i j≠ xi y j∧

xi xi X i
th

X

X xi

X Y X Y⊗ X Y×

xi y j∧ X Y⊗

n

xi y j∨

a

π

a π π . π|()P

a a π|()P 0 1,[]

a b∧ π|()P a b∨ π|()P

a¬ π|()P

a

π b a b π∧|()P

X

Φ X() xi∀ X∈ Φ xi(), X Y Z

X Y⊗ Z π⊗|()P X π|()P=

xi∀ X∈ y j∀ Y∈ zk∀ Z∈, ,

xi y j∧ zk π∧|()P xi π|()P=

4

Lebeltel, Bessière, Diard & Mazer

Conjunction and normalization postulates for propositions

Probabilistic reasoning needs only two basic rules:
1 - The

conjunction rule

, which gives the probability of a conjunction of propositions.

[E3.2]

2 - The

normalization rule

, which states that the sum of the probabilities of and is
one.

[E3.3]

For the purpose of this paper, we take these two rules as postulates

4

.
As in logic, where the resolution principle (Robinson, 1965; Robinson, 1979) is sufficient to

solve any inference problem, in discrete probabilities, these two rules ([E3.2], [E3.3]) are suffi-
cient for any computation. Indeed, we may derive all the other necessary inference rules from
those two, especially the rules concerning variables:

1 Conjunction rule for variables:

[E3.4]

2 Normalization rule for variables:

[E3.5]

3 Marginalization rule for variables

[E3.6]

3.3 Bayesian Programs

We define a

Bayesian program

 as a mean of specifying a family of probability distributions.
Our goal is to show that by using such a specification one can effectively control a robot to per-
form complex tasks.

The constituent elements of a Bayesian program are presented in Figure 1:

• A program is constructed from a description and a question.
• A description is constructed from preliminary knowledge and a data set.
• Preliminary knowledge is constructed from a set of pertinent variables, a decomposi-

tion and a set of forms.
• Forms are either parametric forms or Bayesian programs.

Description

The purpose of a description is to specify an effective method to compute a joint distribution on

4. See some references on justifications of these two rules in § 2.

Figure 1: Structure of a Bayesian program

a b∧ π|()P a π|()P b a π∧|()P×=

b π|()P a b π∧|()P×=

a a¬

a π|()P a¬ π|()P+ 1=

X Y⊗ π|()P X π|()P Y X π⊗|()P×=

Y π|()P X Y π⊗|()P×=

X π|()P
X
∑ 1=

X Y⊗ π|()P
X
∑ Y π|()P=

Program
Description

Preliminary Knowledge π()

Pertinent Variables

Decomposition

Forms
Parametrical Forms

Programs











Data δ()









Question 











Bayesian Robots Programming 5

a set of variables given a set of experimental data and preliminary knowledge
. This joint distribution is denoted as: .

Preliminary Knowledge

To specify preliminary knowledge the programmer must undertake the following:
1 Define the set of relevant variables on which the joint distribution is

defined.
2 Decompose the joint distribution:

Given a partition of into subsets we define variables each cor-
responding to one of these subsets.

Each variable is obtained as the conjunction of the variables belonging to
the subset . The conjunction rule [E3.4] leads to:

[E3.7]

Conditional independence hypotheses then allow further simplifications. A conditional

independence hypothesis for variable is defined by picking some variables among

the variables appearing in conjunction , calling the conjunction of
these chosen variables and setting:

[E3.8]

We then obtain:

[E3.9]

Such a simplification of the joint distribution as a product of simpler distributions is called
a decomposition.

3 Define the forms:

Each distribution appearing in the product is then associated with either a

parametric form (i.e., a function) or another Bayesian program. In general, is a

vector of parameters that may depend on or or both. Learning takes place when some of
these parameters are computed using the data set .

Question

Given a description (i.e.,), a question is obtained by partitioning
 into three sets : the searched variables, the known variables and the unknown

variables.
We define the variables , and as the conjunction of the variables

belonging to these sets. We define a question as the distribution:

. [E3.10]

3.4 Running Bayesian programs

Running a Bayesian program supposes two basic capabilities: Bayesian inference and decision-
making.

Bayesian inference

Given the joint distribution , it is always possible to compute any
possible question, using the following general inference:

X
1

X
2
… X

n
, , ,{ } δ

π X
1

X
2

… X
n

⊗ ⊗ ⊗ δ π⊗|()P

X
1

X
2
… X

n
, , ,{ }

X
1

X
2
… X

n
, , ,{ } k k L

1
… L

k
, ,

L
i

X
i1 X

i2
…, ,{ }

i

X
1

X
2

… X
n

⊗ ⊗ ⊗ δ π⊗|()P
L

1
δ π⊗|()P L

2
L

1
δ π⊗ ⊗|()P …× L

k
L

k 1–
… L

2
L

1
δ π⊗ ⊗ ⊗ ⊗ ⊗|()P××=

L
i

X
j

L
i 1–

… L
2

L
1

⊗ ⊗ ⊗ R
i

L
i

L
i 1–

… L
2

L
1

δ π⊗ ⊗ ⊗ ⊗ ⊗|()P L
i

R
i

δ π⊗ ⊗|()P=

X
1

X
2

… X
n

⊗ ⊗ ⊗ δ π⊗|()P
L

1
δ π⊗|()P L

2
R

2
δ π⊗ ⊗|()P L

3
R

3
δ π⊗ ⊗|()P× …× L

k
R

k
δ π⊗ ⊗|()P××=

L
i

R
i

δ π⊗ ⊗|()P

f µ L
i

() µ

R
i

δ

δ

X
1

X
2

… X
n

⊗ ⊗ ⊗ δ π⊗|()P

X
1

X
2

...... X
n

, , ,{ }

Search Known Unknown

Searched Known δ π⊗ ⊗|()P

X
1

X
2

… X
n

⊗ ⊗ ⊗ δ π⊗|()P

6 Lebeltel, Bessière, Diard & Mazer

[E3.11]

where the first equality results from the marginalization rule (equation [E3.6]), the second
results from the product rule (equation [E3.4]) and the third corresponds to a second application
of the marginalization rule. The denominator appears to be a normalization term. Consequently,
by convention, we will replace it by . Finally, the joint distribution is replaced by its decompo-
sition.

Two main problems have to be solved: searching the modes in a high dimensional space, and
marginalizing in a high dimensional space.

Since may be a conjunction of numerous variables, each of them possibly having a
lot of values or even being continuous, it is seldom possible to exhaustively compute

. One may then decide either to build an approximate representation of this
distribution or to directly sample from this distribution. In both cases the challenge is to find the
modes where most of the probability density is concentrated. This may be very difficult, as most
of the probability may be concentrated in very small sub-spaces of the whole searched space.

The situation is even worse, as computing the value of for a given value
of (a single point of the searched space of the preceeding paragraph) is by itself a diffi-
cult problem. Indeed, it supposes to marginalize the joint distribution on the space defined by

. (like) may be a conjunction of numerous variables, each of them
possibly having a lot of values or even being continuous. Consequently, the sum should also be
either approximated or sampled. The challenge is then to find the modes of

 [E3.12]

(on the search space defined by), where most of the probability density is concen-
trated and which mostly contribute to the sum. Finally, marginalizing in a high dimensional
space appears to be a very similar problem to searching the modes in a high dimensional space.

It is well known that general Bayesian inference is a very difficult problem, which may be
practically intractable. Exact inference has been proved to be NP-hard (Cooper, 1990) and the
general problem of approximate inference too (Dagum & Luby, 1993).

However, approximate inference is often tractable in practical cases for three main reasons:
1 The conditional independences, as expressed by the decomposition of the joint distri-

bution, break the complexity of the problem by reducing drastically the size of the
searched space (see section 6 for an instance of that). The importance of the decompo-
sition has already been stressed by many authors (e.g., Zhang & Poole, 1996) and
explains mainly the good performances of our engine (10 inferences per second5).

2 Some powerful symbolic simplifications can be made before any numerical computa-
tion (see next section on OPL).

3 Numerical optimization and marginalization have a long history and impressive

5. Order of magitude on a standard desktop computer for the inferences required by the experiments described in the
sequel.

Searched Known δ π⊗ ⊗|()P Searched Unknown⊗ Known δ π⊗ ⊗|()P
Unknown
∑=

Searched Unknown Known⊗ ⊗ δ π⊗|()P
Unknown
∑

Known δ π⊗|()P
--=

Searched Unknown Known⊗ ⊗ δ π⊗|()P
Unknown
∑

Searched Unknown Known⊗ ⊗ δ π⊗|()P
Searched

Unknown

∑
--=

1
Σ
--- Searched Unknown Known⊗ ⊗ δ π⊗|()P

Unknown
∑×=

1
Σ
--- L

1
()P L

i
R

i
|()P

i 2=

k

∏×
Unknown
∑×=

Σ

Searched

Searched Known|()P

Searched Known|()P

Searched

Unknown Unknown Searched

L
1

()P L
i

R
i

|()P
i 2=

k

∏×

Unknown

Bayesian Robots Programming 7

numerical methods have been developed which can be reused in this context (see next
section on OPL).

OPL: an API to automate Bayesian inference

An inference engine and the associated programming API6 (named OPL for Open Probabilistic
Language) has been developed and used for the experiments presented in this paper and other
industrial applications.

OPL proceeds in two phases: a symbolic simplification of the required computation followed
by some intensive numerical crunching.

The main goal of the simplification phase is to reduce the number of sums necessary to compute
the distribution:

[E3.13]

These kinds of simplification techniques are largely used in the litterature. For instance, the
well known JLO or junction tree algorithm (Jensen, Lauritzen & Olesen, 1990) may be seen as
such a simplification technique in the case of Bayesian Networks.

In OPL, a large spectrum of such simplifications is used.
First, considering the different terms of the product , three possibilities

of obvious simplifications may appear:
1 When a term is a uniform distribution it can be simplified: it vanishes from the expres-

sion and its value will implicitly be taken into account in the normalization constant
.

2 When a term is a distribution where all the variables have values, then it is a
constant for this question and may also be simplified.

3 When a term is a distribution where all the variables are either or , then
it can be factorized out of the sum.

After these three first steps, we get a new expression of the form:

[E3.14]

Now, considering , we can try to find an order on the sum to simplify
terms that sum to 1.

Indeed, when a term appears in the sum, if all the variables appearing in are part
of (summed) and if all the variables appearing in are either part of or

, then sums to 1 and vanishes out of the global sum. This operation often leads
to impressive simplifications.

Finally, the last simplification that can be made is to reorder the sums on the different
unknown variables in order to minimize the number of operations to make. OPL uses the gen-
eral distributive law algorithm to do this. A description of this algorithm may be found in a
paper by Aji and McEliece (Aji & McEliece, 2000).

A more detailed description of this simplification phase and of related work may be found in
Bessière’s survey (Bessière et al., 2003).

The main goal of the numerical crunching phase is to estimate the distribution
. A necessary subgoal is to estimate the corresponding sum.

Two main approaches are possible to reach these objectives, either by building approximated
explicit representation of these distributions or by sampling these distributions.

OPL includes different algorithms related to both approaches. It may approximate the distri-
bution using either particle filters (Arulampalam et al., 2001) or Multi Resolution Binary Trees
(MRBT), a homemade representation described in a pending patent (Bessière, 2002). OPL also

6. Application Programming Interface

Searched Known|()P
1
Σ
--- L

1
()P L

i
R

i
|()P

i 2=

k

∏×
Unknown
∑×=

L
1

()P L
i

R
i

|()P
i 2=

k

∏×

Σ

Known

Searched Known

Searched Known|()P
1
Σ
--- L

j
R

j
|()P

j J∈
∏× L

i
R

i
|()P

i I∈
∏

Unknown
∑×=

L
i

R
i

|()P
i I∈
∏

Unknown
∑

L
i

R
i

|()P L
i

Unknown R
i

Known

Unknown L
i

R
i

|()P

Searched Known|()P

8 Lebeltel, Bessière, Diard & Mazer

uses sampling techniques, mainly Monte Carlo sampling integration methods (Neal, 1993;
MacKay, 1996) and an improved version of these techniques proposed by Mekhnacha (Mekh-
nacha, Mazer & Bessière, 2001), where they are combined with simulated annealing.

Decision-making

For a given distribution, different decision policies are possible: for example, searching the
best (highest probability) values or drawing at random according to the distribution. For our pur-
poses, we will always use this second policy and refer to this query as:

.
Utility functions could also be used to make the decision but they do not appear to be neces-

sary for the work described in this paper.

Control loop of the robot

To control our robot using a Bayesian program, a decision is made every tenth of a second. A
typical question is to select the values of the motor variables knowing the values of the sensory
variables. Consequently, the basic loop to operate the robot is to loop on the following instruc-
tions every tenth of a second:

1 - Read the values of the sensors
2 -
3 - Send the returned values to the motors

4. Experimental platform

4.1 Khepera robot

Khepera is a two-wheeled mobile robot, 57 millimeters in diameter and 29 millimeters in height,
with a total weight of 80g (See Figure 2). It was designed at EPFL7 and is commercialized by K-
Team8.

7. Ecole Polytechnique Fédérale de Lausanne (Switzerland)

Figure 2: The Khepera mobile robot

8. http://www.K-team.com/

Draw Searched Known δ π⊗ ⊗|()P()

Draw Motors Sensors δ π⊗ ⊗|()P()

Bayesian Robots Programming 9

The robot is equipped with eight light sensors (six in front and two behind), taking values
between 0 and 511 in inverse relation to light intensity, stored in variables (see Figure
3). These eight sensors can also be used as infrared proximeters, taking values between 0 and
1023 in inverse relation to the distance from the obstacle, stored in variables (see
Figure 3).

The robot is controlled by the rotation speeds of its left and right wheels, stored in variables
Mg and Md, respectively.

From these 18 basic sensory and motor variables, we derived three new sensory variables
(, and) and one new motor one (). They are described below.

• is a variable that approximately corresponds to the bearing of the closest obstacle
(see Figure 3). It takes values between -10 (obstacle to the left of the robot) and +10
(obstacle to the right of the robot), and is defined as follows:

[E4.1]

• is a variable that approximately corresponds to the proximity of the closest obsta-
cle (See Figure 3). It takes values between zero (obstacle very far from the robot) and
15 (obstacle very close to the robot), and is defined as follows:

[E4.2]

• is a variable that approximately corresponds to the bearing of the greatest
source of illumination. It takes on 36 values from -170° to 180°.

• The robot is piloted solely by its rotation speed (the translation speed is fixed). It
receives motor commands from the variable, calculated from the difference
between the rotation speeds of the left and right wheels. takes on values between
+10 (fastest to the right) and -10 (fastest to the left).

Khepera accepts turrets on its top to augment either its sensory or motor capacities. For the
final experiment (the nightwatchman task), a linear camera of 64 pixels and a micro turbine were
added on top of the robot.

4.2 Environment

For all experiments described in the current paper, the Khepera is placed in a 1 m by 1 m envi-
ronment. This environment has walls around its contour, textured to be easily seen by the robot.
Inside this square, we place walls made of Lego© bricks that can be moved easily to set any con-

Figure 3: The sensory-motor variables of the Khepera robot.

L1 … L8, ,

Px1 … Px8, ,

Vrot
- +

1

2

3 4

6

5

78

Dir

Prox

Dir = +10

Dir = 0

Dir = -10

Dir Prox Theta1 Vrot

Dir

Dir Floor
90 Px6 Px1–() 45 Px5 Px2–() 5 Px4 Px3–()+ +

9 1 Px1 Px2 Px3 Px4 Px5 Px6+ + + + + +()
--- 
 =

Prox

Prox Floor
Max Px1 Px2 Px3 Px4 Px5 Px6, , , , ,()

64
--- 
 =

Theta1

Vrot

Vrot

10 Lebeltel, Bessière, Diard & Mazer

figuration we need quickly. We usually build a recess made of high Lego© walls in a corner, and
place a small light over this recess, to create a «base» for the robot (see Figure 12).

5. Reactive behavior

5.1 Goal and experimental protocol

The goal of the first experiment was to teach the robot how to push objects.
First, in a learning phase, we drove the robot with a joystick to push objects. During that

phase, the robot collected, every tenth of a second, both the values of its sensory variables and
the values of its motor variables (determined by the joystick position). This data set was then
used to identify the free parameters of the parametric forms.

Then, in a restitution phase, the robot has to reproduce the behavior it had just learned.
Every tenth of a second it decided the values of its motor variables, knowing the values of its
sensory variables and the internal representation of the task.

5.2 Specification

Having defined our goal, we describe the three steps necessary to define the preliminary knowl-
edge.

1 - Chose the pertinent variables
2 - Decompose the joint distribution
3 - Define the parametric forms

Variables

First, the programmer specifies which variables are pertinent for the task.
To push objects it is necessary to have an idea of the position of the objects relative to the

robot. The front proximeters provide this information. However, we chose to sum up the infor-
mation of these six proximeters by the two variables and .

We also chose to set the translation speed to a constant and to operate the robot by its rota-
tion speed .

These three variables are all we need to push obstacles. Their definitions are summed up as
follows:

[S5.1]

Decomposition

In the second specification step, we give a decomposition of the joint probability
 as a product of simpler terms. This distribution is conditioned

by both , the preliminary knowledge we are defining, and a data set that will be pro-
vided during the learning phase.

[S5.2]

The first equality results from the application of the product rule (equation [E3.4]). The sec-
ond results from the simplification , which
means that we consider that and are independent. The distances to the objects and their
bearings are not contingent.

Parametric forms

To be able to compute the joint distribution, we finally need to assign parametric forms to each

Dir Prox

Vrot

Dir 10– … 10, ,{ }∈ Dir 21=,

Prox 0 … 15, ,{ }∈ Prox 16=,

Vrot 10– … 10, ,{ }∈ Vrot 21=,

Dir Prox Vrot⊗ ⊗ ∆ π-obstacle⊗|()P

π-obstacle ∆

Dir Prox Vrot⊗ ⊗ ∆ π-obstacle⊗|()P

Dir ∆ π-obstacle⊗|()P Prox Dir ∆ π-obstacle⊗ ⊗|()P Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|()P××=

Dir ∆ π-obstacle⊗|()P Prox ∆ π-obstacle⊗|()P Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|()P××=

Prox Dir ∆ π-obstacle⊗ ⊗|()P Prox ∆ π-obstacle⊗|()P=

Prox Dir

Bayesian Robots Programming 11

of the terms appearing in the decomposition:

[S5.3]

We have no a priori information about the direction and the distance of the obstacles.
Hence, and are uniform distributions; all directions
and proximities have the same probability.

For each sensory situation, we believe that there is one and only one rotation speed that
should be preferred. The distribution is unimodal. However,
depending of the situation, the decision to be made for may be more or less certain. This is
resumed by assigning a Gaussian parametric form to .

5.3 Identification

We drive the robot with a joystick (see Movie 19), and collect a set of data . Let us call the par-
ticular set of data corresponding to this experiment . A datum collected at time is a trip-
let .

The free parameters of the parametric forms (means and standard deviations for all the
 Gaussians) can then be identified by computing the means and standard devia-

tions of for each position of the obstacle.

Finally, it is possible to compute the joint distribution:

[E5.1]

According to equation [E3.11], the robot can answer any question concerning this joint dis-
tribution.

We call the distribution a description of the task. A
description is the result of identifying the free parameters of a preliminary knowledge using
some given data. Hence, a description is completely defined by a couple preliminary knowledge
+ data. That is why a conjunction always appears to the right of a description.

5.4 Utilization

To render the pushing obstacle behavior just learned, the Bayesian controller is called every
tenth of a second :

1 - The sensors are read and the values of and are computed
2 - The Bayesian program is run with the query:

[E5.2]

3 - The drawn is sent to the motors

5.5 Results, lessons and comments

Results

As shown in Movie 19, the Khepera learns how to push obstacles in 20 to 30 seconds. It learns
the particular dependency, corresponding to this specific behavior, between the sensory vari-
ables and and the motor variable .

This dependency is largely independent of the particular characteristics of the objects
(weight, color, balance, nature, etc.). Therefore, as shown in Movie 210, the robot is also able to
push different objects. This, of course, is only true within certain limits. For instance, the robot
will not be able to push the object if it is too heavy.

9. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/Semaine-Science/Trans7/T7.mov
10. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/Semaine-Science/Trans8/T8.mov

Dir ∆ π-obstacle⊗|()P Uniform≡

Prox ∆ π-obstacle⊗|()P Uniform≡

Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|()P G µ Prox Dir,() σ Prox Dir,(),()≡

Dir ∆ π-obstacle⊗|()P Prox ∆ π-obstacle⊗|()P

Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|()P

Vrot

Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|()P

∆

δ-push t

vrott dir t proxt, ,()

Dir Prox×

Vrot

Dir Prox Vrot⊗ ⊗ δ-push π-obstacle⊗|()P

Dir π-obstacle|()P Prox π-obstacle|()P× Vrot Prox Dir δ-push π-obstacle⊗ ⊗ ⊗|()P×=

Dir Prox Vrot⊗ ⊗ δ-push π-obstacle⊗|()P

δ π⊗

dir t proxt

Draw Vrot proxt dir t δ-push π-obstacle⊗ ⊗ ⊗|()P()

vrott

Dir Prox Vrot

12 Lebeltel, Bessière, Diard & Mazer

Lesson 1: A generic method for Bayesian Robot Programming

In this experiment we apply a precise three-step method to program the robot.
1 - Specification: define the preliminary knowledge
1.1 - Choose the pertinent variables
1.2 - Decompose the joint distribution
1.3 - Define the parametric forms

2 - Identification:identify the free parameters of the preliminary knowledge
3 - Utilization: ask a question to the joint distribution

In the sequel, we will use the very same method for all the other BRP experiments.

Lesson 2: Bayesian Program = Preliminary Knowledge + Data + Question

Numerous different behaviors may be obtained by changing some of the different components of
a Bayesian program in the following ways.

• It is possible to change the question, keeping the description unchanged. For instance,
if the information is no longer available because of some failure, the robot may
still try to push the obstacles knowing only their direction. The query is then:

[E5.3]

• It is possible to change the data, keeping the preliminary knowledge unchanged. For
instance, with the same preliminary knowledge , we taught the robot to avoid
objects or to follow their contour (see Figure 4 and Movie 311). Two new descrip-

tions12 were obtained by changing only the driving of the robot during the learning
phase. As a result, two new programs were obtained leading to the expected behaviors
: «obstacle avoidance» and «contour following».

• Finally, it is possible to change the preliminary knowledge, which leads to completely
different behaviors. Numerous examples will be presented in the sequel of this paper.
For instance, we taught the robot another reactive behavior called phototaxy. Its goal is
then to move toward a light source. This new preliminary knowledge uses
the variables and . roughly corresponds to the direction of the light.

Figure 4: Contour following (superposed images)

11. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/Semaine-Science/Trans9/T9.mov
12. and

Prox

Draw Vrot dirt δ-push π-obstacle⊗ ⊗|()P()

π-obstacle

Dir Prox Vrot⊗ ⊗ δ-avoid π-obstacle⊗|()P Dir Prox Vrot⊗ ⊗ δ-follow π-obstacle⊗|()P

π-phototaxy1

Vrot Theta1 Theta1

Bayesian Robots Programming 13

6. Sensor fusion

6.1 Goal and experimental protocol

The goal of this experiment is to fuse the data originating from the eight light sensors to deter-
mine the position of a light source.

This will be obtained in two steps. In the first one, we specify one description for each sen-
sor individually. In the second one, we mix these eight descriptions to form a global one.

6.2 Sensor model

Specification

Variables

To build a model of the light sensor , we only require two variables: the reading of the
sensor, and , the bearing of the light source.

[S6.1]

Decomposition

The decomposition simply specifies that the reading of a sensor obviously depends on the posi-
tion of the light source

[S6.2]

Parametric forms

As we have no a priori information on the position of the source, we state:

[S6.3]

The distribution is usually very easy to specify because it corre-
sponds exactly to the kind of information that the sensor supplier provides: the expected read-
ings of its device when exposed to a light. For the Khepera’s light sensors, we obtain (see Figure
5):

Figure 5:

i Li i
th

Theta2

Li 0 … 511, ,{ }∈ Li 512=,

Theta2 170– … 180, ,{ }∈ Theta2 36=,

Theta2 Li⊗ ∆ π-sensor⊗|()P

Theta2 π-sensor|()P Li Theta2 ∆ π-sensor⊗ ⊗|()P×=

Theta2 π-sensor|()P Uniform≡

Li Theta2 ∆ π-sensor⊗ ⊗|()P

K (Theta2,0)

Theta2 (°)

K Theta2 0,()

14 Lebeltel, Bessière, Diard & Mazer

[S6.4]

In specification [S6.4], stands for the position of the sensor with respect to the robot, and
will be used later to «rotate» this model for different sensors.

Specifications [S6.1], [S6.2], [S6.3] and [S6.4] are the preliminary knowledge correspond-
ing to this sensor model. This preliminary knowledge is named .

Identification

No identification is required as there are no free parameters in .
However, it may be easy and interesting to calibrate specifically each of the eight light sen-

sors. This could be achieved, for instance, by identifying parameters and independently for
each sensor, by observing the response of the particular sensor to a light source.

6.3 Fusion

Specification

Variables

The interesting variables are the eight variables and :

[S6.5]

Decomposition

The decomposition of the joint distribution is chosen to be:

[S6.6]

The first equality results from the product rule [E3.4]. The second from simplifications of
the kind:

[E6.1]

These simplifications may seem peculiar as obviously the readings of the different light sen-
sors are not independent. The exact meaning of these equations is that we consider (the
position of the light source) to be the main reason for the contingency of the readings. Conse-
quently, we state that, knowing , the readings are independent. is the cause of the
readings and knowing the cause, the consequences are independent. This is, indeed, a very
strong hypothesis. The sensors may be correlated for numerous other reasons. For instance,
ambient temperature influences the functioning of any electronic device and consequently corre-
lates their responses. However, we choose, as a first approximation, to disregard all these other
factors.

Parametric forms

We do not have any a priori information on :

Li Theta2 π-sensor⊗|()P GK Theta2 θi,() σ, Li()≡

K Theta2 θi,() 1 1

1 e
4β Theta2 θi– α–()–

+
---–= α 45=() β 0 03,=(),

θi

π-sensor

π-sensor

α β

Li Theta2

L1 0 … 511, ,{ }∈ L1 512=,

…

L8 0 … 511, ,{ }∈ L8 512=,

Theta2 170– … 180, ,{ }∈ Theta2 36=,

Theta2 L1 L2 L3 L4 L5 L6 L7 L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ∆ π-fusion⊗|()P

Theta2 ∆ π-fusion⊗|()P L1 Theta2 ∆ π-fusion⊗ ⊗|()P L2 L1 Theta2 ∆ π-fusion⊗ ⊗ ⊗|()P××=
… L8 L7 L6 L5 L4 L3 L2 L1 Theta2 ∆ π-fusion⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P×

Theta2 π-fusion|()P Li Theta2 ∆ π-fusion⊗ ⊗|()P
i 1=

8

∏×=

Lj Lj 1– … L1 Theta2 ∆ π-fusion⊗ ⊗ ⊗ ⊗ ⊗|()P Lj Theta2 ∆ π-fusion⊗ ⊗|()P=

Theta2

Theta2 Lj Theta2

Theta2

Bayesian Robots Programming 15

[S6.7]

 is obtained from the model of each sensor as specified in previous
section (6.2):

[S6.8]

Identification

As there are no free parameters in , no identification is required.

Utilization

To find the position of the light source the standard query is:

[E6.1]

This question may be easily answered using equation [E3.11] and specification [S6.8]:

[E6.2]

Values drawn from this distribution may be efficiently computed given that the distribution
 is simply a product of eight very simple ones, and given that the

normalizing constant does not need to be computed for a random draw.

Many other interesting questions may be asked of this description, as the following:
• It is possible to search for the position of the light source knowing only the readings of

a few sensors:

[E6.3]

• It is possible to check whether the sensor is out of order. Indeed, if its reading at
time t, persists in being inconsistent with the readings of the others for some period, it
is a good indication of a malfunction. This inconsistency may be detected by a very
low probability for :

[E6.4]

6.4 Results, lessons and comments

Results

Figure 6 presents the result obtained for a light source with a bearing of 10°:
The eight peripheral figures present the distributions corresponding to

the eight light sensors. The central schema presents the result of the fusion, the distribution
. Even poor information coming from each separate sensor may

blend as a certainty.

Lesson 3: Breaking the complexity using conditional independences

The conditional independencies hypothesis which permits to transform:

[E6.5]

into:

Theta2 π-fusion|()P Uniform≡

Li Theta2 ∆ π-fusion⊗ ⊗|()P

Li Theta2 ∆ π-fusion⊗ ⊗|()P Li Theta2 π-sensor⊗|()P≡

π-fusion

Draw Theta2 l1t l8t π-fusion⊗ ⊗ ⊗|()P()

Theta2 l1t … l8t π-fusion⊗ ⊗ ⊗|()P

1
Σ
--- li t Theta2 π-sensor⊗|()P

i 1=

8

∏×=

Theta2 l1t … l8t π-fusion⊗ ⊗ ⊗|()P

Σ

Theta2 l1t l2t π-fusion⊗ ⊗|()P

1
Σ
--- l1t Theta2 π-sensor⊗|()P l2t Theta2 π-sensor⊗|()P××=

i l i t

li t

l1t l2t … l8t π-fusion⊗ ⊗ ⊗|()P

1
Σ
--- li t Theta2 π-sensor⊗|()P

i 1=

8

∏
Theta2
∑×=

Theta2 Li π-sensor⊗|()P

Theta2 l1t … l8t π-fusion⊗ ⊗ ⊗|()P

Theta2 L1 L2 L3 L4 L5 L6 L7 L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ∆ π-fusion⊗|()P

16 Lebeltel, Bessière, Diard & Mazer

[E6.6]

is the main tool at hand to simplify the treated problem. More than any clever inference
algorithm they are the essential way to keep computation tractable. For instance, here the size of
the search space for the joint distribution [E] is , when the size of the search space
for the decomposition [E6.6] is .

Lesson 4: Calling Bayesian subroutines

Specification [S6.8]: , where a distribution
appearing in a decomposition is defined by a question to another Bayesian program, may be seen as
the probabilistic anologous to subroutine calls in regular programming.

This Bayesian subroutine call mechanism will play the same role than the usual one: allow-
ing to build complex Bayesian programs as hierarchies of embedded calls to simpler and simpler
Bayesian programming building blocks. Section 10 will present a more complex instance of this.

Lesson 5: Sensor fusion method

In the experiment just presented, we have seen a simple instance of a general method to carry
out data fusion.

The key point of this method is in the decomposition of the joint distribution, which has
been considerably simplified under the hypothesis that «knowing the cause, the consequences
are independent». This is a very strong hypothesis, although it may be assumed in numerous
cases.

This way of doing sensor fusion is very efficient. Its advantages are manifold.
• The signal is heightened.

Figure 6: The result of a sensor fusion for a light source with a bearing of 10°

0.00

0.12

0.25

0.37

0.50

-180 -90 -45 0 45 170

0.00

0.12

0.25

0.37

0.50

-180 -90 -45 0 45 90 170

0.00

0.12

0.25

0.37

0.50

-180 -90 -45 0 45 90 170

0.00

0.12

0.25

0.37

0.50

-180 -90-45 0 45 90 170

0.00

0.12

0.25

0.37

0.50

-180 -90 -45 0 45 90 170

0.00

0.12

0.25

0.37

0.50

-180 -90-45 0 45 90 170

0.00

0.12

0.25

0.37

0.50

-180 -90 -45 0 45 90 170

0.00

0.12

0.25

0.37

0.50

-180 -90 -45 0 45 90 170

0.00

0.25

0.50

0.75

1.00

-180 -90-50 10 50 90 170

P(Theta2 | L3 ⊗ π-sensor)
(L3 =171)

90

P(Theta2 | L4 ⊗ π-sensor)
(L4 =135)

P(Theta2 | L5 ⊗ π-sensor)
(L5 =280)

P(Theta2 | L6 ⊗ π-sensor)
(L6 =489)

P(Theta2 | L2 ⊗ π-sensor)
(L2 =422)

P(Theta2 | L1 ⊗ π-sensor)
(L1 =506)

P(Theta2 | L8 ⊗ π-sensor)
(L8 =511)

P(Theta2 | L7 ⊗ π-sensor)
(L7 =511)

P(Theta2 | L1⊗ ...⊗ L8 ⊗ π-fusion)
(Theta2 = 10)

Theta2 π-fusion|()P Li Theta2 ∆ π-fusion⊗ ⊗|()P
i 1=

8

∏×

36 512
8

× 2
79

∝

36 512 36×() 8×× 2
22

∝

Li Theta2 ∆ π-fusion⊗ ⊗|()P Li Theta2 π-sensor⊗|()P≡

Bayesian Robots Programming 17

• It is robust to a malfunction of one of the sensors.
• It provides precise information even with poor sensors.
• It leads to simple and very efficient computations.

We presented this method on a very simple case for didactic purposes. However it is a very
popular technique to do sensor fusion which can be used for much more complicated cases in a
large variety of applications. For instance, we used refinement of this technique for ADAS
(Advanced Driver Assistance System) to merge information coming from two radars and one
lidar in order to partially automate car driving (Coué et al., 2002, Coué et al., 2003).

Lesson 6: No inverse and no ill-posed problems in the probabilitic framework

In this experiment, another fundamental advantage of Bayesian programming is clearly evi-
dent. The description is neither a direct nor an inverse model. Mathematically, all variables
appearing in a joint distribution play exactly the same role. This is why any question may be
asked of a description. Consequently one may define the description in one way ()
and question it in the opposite way (). In theory, any inverse problem
may be solved when expressed in a probabilistic framework. In practice some of these inverse
problems may require a lot of computational ressources. However, this is a major difference
with non probabilistic modelling where inverse problem may only be solved in rare cases.

Furthermore, there is none ill-posed problem in a probabilistic framework. If a question may
have several solutions, the probabilistic answer will simply have several peaks.

7. Behavior combination

7.1 Goal and experimental protocol

In this experiment we want the robot to go back to its base where it can recharge.
This will be obtained with no further teaching. As the robot's base is lit, the light gradient

usually gives good hints on its direction. Consequently, we will obtain the homing behavior by
combining together the obstacle avoidance behavior and the phototaxy behavior. By program-
ming this behavior we will illustrate one possible way to combine Bayesian programs that make
use of a «command variable».

7.2 Specification

Variables

We need , , and , the four variables already used in the two composed behav-
iors. We also need a new variable which acts as a command to switch from avoidance to pho-
totaxy.

[S7.1]

Decomposition

We believe that the sensory variables , and are independent from one another. Far
from any objects, we want the robot to go toward the light. Very close to obstacles, we want the
robot to avoid them. Hence, we consider that should only depend on . Finally, we believe
that must depend on the other four variables. These programmer choices lead to the follow-
ing decomposition:

Li Theta2|()P

Theta2 l1t l8t⊗ ⊗|()P

Dir Prox Theta1 Vrot

H

Dir 10– … 10, ,{ }∈ Dir 21=,

Prox 0 … 15, ,{ }∈ Prox 16=,

Theta1 170– … 180, ,{ }∈ Theta1 36=,

Vrot 10– … 10, ,{ }∈ Vrot 21=,

H avoidance phototaxy,{ }∈ H 2=,

Dir Prox Theta1

H Prox

Vrot

18 Lebeltel, Bessière, Diard & Mazer

[S7.2]

Parametric forms

We have no a priori information about either the direction and distance of objects or the direc-
tion of the light source. Consequently, we state:

[S7.3]

 is a command variable to switch from avoidance to phototaxy. This means that when
 the robot should behave as it learned to do in the description

 and when the robot should behave according
to the description . Therefore, we state:

[S7.4]

We want a smooth transition from phototaxy to avoidance as we move closer and closer to
objects. Hence we finally state:

[S7.5]

The discrete approximation of the Sigmoid function we use above, which will not be defined

in the current paper, is shown in Figure 7.
The preliminary knowledge is defined by specifications [S7.1], [S7.2], [S7.3], [S7.4]

and [S7.5].

7.3 Identification

There are no free parameters in preliminary knowledge . No learning is required.

Figure 7:

Dir Prox Theta1 H Vrot⊗ ⊗ ⊗ ⊗ ∆ π-home⊗|()P

Dir π-home|()P Prox π-home|()P Theta1 π-home|()P H Prox π-home⊗|()P×××=

. Vrot Dir Prox Theta1 H π-home⊗ ⊗ ⊗ ⊗|()P×

Dir π-home|()P Uniform≡

Prox π-home|()P Uniform≡

Theta1 π-home|()P Uniform≡

H

H avoidance=

Dir Prox Vrot⊗ ⊗ δ-avoid π-obstacle⊗|()P H phototaxy=

Theta1 Vrot⊗ δ-phototaxy π-phototaxy1⊗|()P

Vrot Dir Prox Theta1 avoidance π-home⊗ ⊗ ⊗ ⊗|()P Vrot Dir Prox δ-avoid π-obstacle⊗ ⊗ ⊗|()P≡

Vrot Dir Prox Theta1 phototaxy π-home⊗ ⊗ ⊗ ⊗|()P Vrot Theta1 δ-phototaxy π-phototaxy1⊗ ⊗|()P≡

avoidance Prox π-home⊗|()P Sigmoidα β, Prox()≡ α 9=() β 0 25,=(),

phototaxy Prox π-home⊗|()P 1 avoidance Prox π-home⊗|()P–=

Prox

P(avoidance | Prox ⊗ π-home)

avoidance Prox π-home⊗|()P

π-home

π-home

Bayesian Robots Programming 19

7.4 Utilization

While Khepera returns to its base, we do not know in advance when it should avoid obstacles or
when it should go toward the light. Consequently, to render the homing behavior we will use the
following question where is unknown:

[E7.1]

Equation [E7.1] shows that the robot does a weighted combination between avoidance and
phototaxy. Far from any objects () it does pure photot-
axy. Very close to objects () it does pure avoidance. In
between, it mixes the two.

7.5 Results, lessons and comments

Results

Figure 8 and Movie 413 show efficient homing behavior obtained this way.

Figures 9 and 10 present the probability distributions obtained when the robot must avoid an
obstacle on the left with a light source also on the left. As the object is on the left, the robot
needs to turn right to avoid it. This is what happens when the robot is close to the objects (see
Figure 9). However, when the robot is further from the object, the presence of the light source on
the left influences the way the robot avoids obstacles. In that case, the robot may turn left
despite the presence of the obstacle (see Figure 10).

Figure 8: Homing behavior (The arrow points out the light source)
(superposed images).

13. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/Semaine-Science/Trans10/T10.mov

H

Vrot Dir Prox Theta1 π-home⊗ ⊗ ⊗|()P

Vrot H⊗ Dir Prox Theta1 π-home⊗ ⊗ ⊗|()P
H
∑=

1
Σ

avoidance Prox π-home⊗|()P Vrot Dir Prox δ-avoid π-obstacle⊗ ⊗ ⊗|()P×[]

. phototaxy Prox π-home⊗|()P Vrot Theta1 δ-phototaxy π-phototaxy1⊗ ⊗|()P×[]+
×=

prox 0 phototaxy prox π-home⊗|()P 1=,=

prox 15 avoidance prox π-home⊗|()P 1=,=

20 Lebeltel, Bessière, Diard & Mazer

Figure 9: Homing behavior (Khepera close to an object on its left and has also the light
source on its left). The top left distribution shows the knowledge on given by the

phototaxy description; the top right is given by the avoidance description; the
bottom left shows the knowledge of the «command variable» ; finally the bottom right

shows the resulting combination on .

Figure 10: Homing behavior (Khepera further from the object on its left).
This figure is structured as Figure 9.

(Dir = -5, Prox = 10, Lum = -90)

0.00

0.20

0.40

0.60

0.80

-10 -5 0 5 10

0.00

0.20

0.40

0.60

0.80

-10 -5 0 5 10

0.00

0.25

0.50

0.75

1.00

0.00

0.20

0.40

0.60

0.80

-10 -5 0 5 10phototaxy
avoidance

P(Vrot | Theta1 ⊗ δ-phototaxy ⊗ π-phototaxy1) P(Vrot | Dir ⊗ Prox ⊗ δ-avoid ⊗ π-obstacle)

P(H | Prox ⊗ π-home) P(Vrot | Dir ⊗ Prox ⊗ Theta1 ⊗ π-home)

Vrot

Vrot

H

Vrot

(Dir = -5, Prox = 8, Lum = -90)

phototaxy
avoidance

P(Vrot | Theta1 ⊗ δ-phototaxy ⊗ π-phototaxy1) P(Vrot | Dir ⊗ Prox ⊗ δ-avoid ⊗ π-obstacle)

P(H | Prox ⊗ π-home) P(Vrot | Dir ⊗ Prox ⊗ Theta1 ⊗ π-home)

0.00

0.20

0.40

0.60

0.80

-10 -5 0 5 10

0.00

0.20

0.40

0.60

0.80

-10 -5 0 5 10

0.00

0.25

0.50

0.75

1.00

0.00

0.20

0.40

0.60

0.80

-10 -5 0 5 10

Bayesian Robots Programming 21

Lesson 7: A probabilistic if-then-else

In this experiment we present a simple instance of a general method to combine descriptions to
obtain a new mixed behavior. This method uses a command variable to switch from one of the
composing behaviors to another. A probability distribution on knowing some sensory vari-
ables should then be specified or learned14. The new description is finally used by asking ques-
tions where is unknown. The resulting sum on the different cases of does the mixing.

This shows that Bayesian robot programming allows easy, clear and rigorous specifications
of such combinations. This seems to be an important benefit compared to some other methods
that have great difficulties in mixing behaviors with one another, such as Brooks’ subsumption
architecture (Brooks, 1986; Maes, 1989) or neural networks.

Description combination appears to naturally implement a mechanism similar to HEM15

(Jordan & Jacobs, 1994) and is also closely related to mixture models (see McLachlan & Deep,
2000 for a reference document about mixture models and see Bessière et al., 2003 for detail
about the relation between description combination and mixture models).

Finally, from a programming point of view, description combination can be seen as a proba-
bilistic if-then-else. is the condition. If is known with certainty then we have a usual bran-
ching structure. If is known with some uncertainty through a probability distribution then the
2 possible consequences are automatically mixed using weights proportional to this distribution.

8. Situation recognition

8.1 Goal and experimental protocol

The goal of this experiment is to distinguish different objects from one another.
At the beginning of the experiment the robot does not know any object (see below for a pre-

cise definition). It must incrementally build categories for the objects it encounters. When it
knows of them, the robot must decide if a presented object enters in one of the categories or
if it is something new. If it is a new object, the robot must create a new category and should start
to learn it.

8.2 Specification

Variables

The Khepera does not use its camera for this task. It must «grope» for the object. It uses the
«contour following» behavior to do so (see Figure 4). It does a tour of the presented object and
computes at the end of this tour four new variables: the number of left turns, the number
of right turns, the perimeter and the longest straight line. The values of these variables
are not completely determined by the shape of the object, given that the contour following
behavior is quite choppy.

We also require a variable to identify the different classes of object. The value is
reserved for the class of unknown (not yet presented) objects.

Finally, we obtain:

[S8.1]

Decomposition

Obviously, the four variables , , and are not independent of one another. However,
by reasoning similar to the sensor fusion case (see Section 6), we consider that knowing the

14. see (Diard & Lebeltel, 1999)
15. Hierachical Mixture of Expert

H

H

H H

H H

H

n n

Nlt Nrt

Per Lrl

O O 0=

Nlt 0 … 24, ,{ }∈ Nlt 25=,

Nrt 0 … 24, ,{ }∈ Nrt 25=,

Per 0 … 9999, ,{ }∈ Per 10000=,

Lrl 0 … 999, ,{ }∈ Lrl 1000=,

O 0 … 15, ,{ }∈ O 16=,

Nlt Nrt Per Lrl

22 Lebeltel, Bessière, Diard & Mazer

object , they are independent. Indeed, if the object is known, its perimeter or the number of
turns necessary to complete a tour are also known. This leads to the following decomposition:

[S8.2]

Parametric forms

We have no a priori information on the presented object:

[S8.3]

For an already observed object (), we state that the distributions on and are
Laplace succession laws16 and that the distributions on and are Gaussian laws:

[S8.4]

Finally, we state that for a new object () we have no a priori information about ,
, and :

[S8.5]

The preliminary knowledge composed of specifications [S8.1], [S8.2], [S8.3], [S8.4] and
[S8.5] is named .

8.3 Identification

When an object is presented to the robot, if it is recognized as a member of a class , the param-
eters of the two Laplace succession laws and the two Gaussian laws corresponding to this class
are updated.

If the object is considered by Khepera to be a new one, then a new class is created and the
parameters of the distributions are initialized with the values of , , and just read.

The learning process is incremental. Contrary to what we have seen up to this point, the
identification and utilization phases are not separated. Each new experience changes the set of
data , and leads to a new description .

8.4 Utilization

After experiences, to recognize a presented object, the question to answer is:

[E8.1]

This may be simply computed by:

16. A Laplace succession law on a variable V is defined by: with the total number of observations,

the number of possible values for and the number of observations of the specific value .

O

O Nlt Nrt Per Lrl⊗ ⊗ ⊗ ⊗ ∆ π-object⊗|()P

O π-object|()P Nlt O ∆ π-object⊗ ⊗|()P Nrt O ∆ π-object⊗ ⊗|()P××=

. Per O ∆ π-object⊗ ⊗|()P× Lrl O ∆ π-object⊗ ⊗|()P×

O π-object|()P Uniform≡

O 0≠ Nlt Nrt

Per Lrl

1 nv+

N V+
--------------------- N V

V nv v

oi O∈∀ oi o0≠,

Nlt oi ∆ π-object⊗ ⊗|()P L1 nNlt oi()()≡

Nrt oi ∆ π-object⊗ ⊗|()P L2 nNrt oi()()≡

Per oi ∆ π-object⊗ ⊗|()P G1 µ oi() σ oi(),()≡

Lrl o i ∆ π-object⊗ ⊗|()P G2 µ oi() σ oi(),()≡

O 0= Nlt

Nrt Per Lrl

Nlt o0 π-object⊗|()P Uniform≡

Nrt o0 π-object⊗|()P Uniform≡

Per o0 π-object⊗|()P Uniform≡

Lrl o0 π-object⊗|()P Uniform≡

π-object

oi

Nlt Nrt Per Lrl

∆ O Nlt Nrt Per Lrl⊗ ⊗ ⊗ ⊗ δn π-object⊗|()P

n 1–

O nltn nrtn pern lr l n⊗ ⊗ ⊗ δn 1– π-object⊗ ⊗|()P

Bayesian Robots Programming 23

[E8.2]

If the most probable value for is zero, then Khepera assumes that it is facing a new object.
Otherwise, this most probable value is considered to correspond to the recognized object.

8.5 Results, lessons and comments

Results.

The 15 objects shown on Figure 11 have been presented to the robot, five times each, in ran-
dom order. Each time the question was as follows: «Do you know this object, or is it a new
one?» mathematicaly stated as . The obtained results
are presented on table 1.

It should be first noticed that two objects (top right of the picture, 3 and 7 in the order of first
presentation) have the exact same square basis and thus may not be distinguished from one
another given the four chosen variables. In these 2 cases, Khepera was in the position of some-
one asked to identify the color of an object by groping it.

The robot did not ever fail to recognize novelty (column 1) but for the first presentation of
object 7 which was recognized as object 3.

At the second presentation of each object the robot recognized the object except for object 7
which was always identified as 3 and but once for object 12 (the wood pyramid) which was also
recognized as 3.

Figure 11: The different objects presented to Khepera.

O Nlt Nrt Per Lrl⊗ ⊗ ⊗ δn 1– π-object⊗ ⊗|()P

1
Σ
--- Nlt O δn 1– π-object⊗ ⊗|()P× Nrt O δn 1– π-object⊗ ⊗|()P×=

. Per O δn 1– π-object⊗ ⊗|()P Lrl O δn 1– π-object⊗ ⊗|()P××

O

O nltn nrtn pern lr l n⊗ ⊗ ⊗ δn 1– π-object⊗ ⊗|()P

24 Lebeltel, Bessière, Diard & Mazer

Lesson 8: Categorization

The main lesson to retain from this experiment is that categorization of objects or situations may
be considered as developing some specific sensor. Indeed, the method used in this section for
object recognition is very similar to what was achieved for sensor fusion in Section 6. The
hypotheses are similar and the advantages are the same.

9. Temporal sequences

9.1 Goal and experimental protocol

In this section, to exemplify the Bayesian programming method, we choose a «night watchman
task». This may be obtained as temporal sequences of six simpler behaviors:

1 Idle: The robot is at its base, recharging its batteries. It waits for both an order and
enough energy to leave.

2 Patrol: It wanders around its environment and sounds an alarm if it detects any move-
ment.

3 Recognition: The robot tours object to identify them.
4 Fire-intervention: Khepera tries to extinguish fires by blowing on them using its

micro-turbine.
5 Homing: It goes to its base when ordered to do so.
6 Recharge: When low on energy, it goes to its base to recharge.

The purpose of this section is to show how such temporal sequences may be specified in the

F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14

1 4

2 4

3 1 4 4 1

4 4

5 4

6 4

7 0

8 4

9 4

10 4

11 4

12 3

13 4

14 4

15 4

Table 1: Situation Recognition.
The columns correspond to the «really» presented objects.

The first column (F) corresponds to the first presentation of an object and the lines to the
recognize objects.

Bayesian Robots Programming 25

Bayesian framework.

9.2 Specification

Variables

The first variable to consider is , which may take the six preceding values idle, patrol,
recognition, fire-intervention, homing and recharge. This variable will be used to select a given
behavior.

This selection will be made according to the values of the six following variables:
• : a binary variable, used to order the Khepera to work.
• : a variable that measures the level of available energy. may take four dif-

ferent values : very-high, high, low and very-low.
• : a binary variable, true if the robot is at its base.
• : a binary variable, true if the robot detects any fire.
• : a binary variable, used to order the Khepera to recognize an object.
• Finally, a variable taking the same six values as , used to memorize

which behavior was selected at time .
This may be summed up as usual :

[S9.1]

Decomposition

At each time step the robot will select a behavior knowing the values of these six variables by
answering the question:

[E9.1]

It is tempting to specify this distribution directly. It would correspond to the usual program-
ming method where the conditions at time establish what should be done at time .

We propose to do the exact opposite. Indeed, it is quite easy, knowing the behavior, to have
some notion of the possible values of the variables , , , , and . For
instance, if the Khepera is patrolling, it means that it has been necessarily ordered to do so and
that is true. Furthermore, we consider that knowing the behavior, these five variables are
independent. These assumptions lead to the following decomposition:

[S9.2]

Parametric forms

First we chose a uniform a priori value for :

[S9.3]

We chose to specify all the other terms of this decomposition as discrete distributions. Their
different values will be given a priori, one by one, using tables.

Behavior

Vigil

Energy Energy

Base

Fire

Identify

Behavior_t-1 Behavior

t 1–

Behavior idle patrol recognition fire intervention– homing recharge, , , , ,{ }∈ Behavior 6=,

Vigil true false,{ }∈ Vigil 2=,

Energy very high– high low very low–, , ,{ }∈ Energy 4=,

Base true false,{ }∈ Base 2=,

Fire true false,{ }∈ Fire 2=,

Identify true false,{ }∈ Identify 2=,

Behavior_t-1 idle patrol … recharge, , ,{ }∈ Behavior_t-1 6=,

Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P

t 1– t

Vigil Energy Base Fire Identify

Vigil

Behavior Vigil Energy Base Fire Identify Behavior_t-1⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-behavior|()P

Behavior_t-1 π-behavior|()P Behavior Behavior_t-1 π-behavior⊗|()P×=

. Vigil Behavior π-behavior⊗|()P Energy Behavior π-behavior⊗|()P××

. Base Behavior π-behavior⊗|()P Fire Behavior π-behavior⊗|()P××

. Identify Behavior π-behavior⊗|()P×

Behavior_t-1 π-behavior|()P

Behavior_t-1 π-behavior|()P Uniform≡

26 Lebeltel, Bessière, Diard & Mazer

For instance, is specified by table 2.
This table should be read by column. Each column corresponds to the probability of

knowing a certain behavior of the robot at time . Consequently, each column should sum to 1
to respect the normalization constraint.

For instance, the first column of table 3 specifies the probabilities of the variable
knowing that the behavior of the robot at time was idle. If Khepera was idle, then it may
stay idle with a high probability (90%), it may not directly change its behavior to either recogni-
tion, homing or recharge (probability 0), it may switch to patrol or fire-intervention with a low
probability (0.05 for both case obtained by normalization as specified by the «x»).

If the Khepera was in mode patrol (second column), the most probable behavior is that it
stays in this mode, although it can switch to any other one. If the Khepera was in mode recogni-
tion (third column) we set a very high probability for it to stay in this mode because we do not
want it to be easily distracted from this task and we preclude any possibility of switching to idle.
In mode fire-intervention (column 4) we exclude any switch to idle, recognition or homing.
Finally, when in mode homing or recharge, the most probable behavior is to stay in the current
mode, although nothing is definitely excluded.

Table 3 mainly says that patrol and recognition suppose that Vigil is true and that homing
supposes that Vigil is false. When idle the probability that Vigil is true is not 0, because the
Khepera may be idle to recharge its batteries even when ordered to work.

Table 4 specifies that when idle it is more probable that Energy is low than high. It also says
that patrol and recognition suppose a high Energy and recharge the opposite.

Table 5 says that idle imposes that Base is true, when patrol, recognition, homing and

Behavior /
Behavior_t-1

idle patrol recognition fire-interv. homing recharge

idle 0.9 x 0 0 x x

patrol x 0.9 x x x x

recognition 0 x 0.99 0 x x

fire-interv. x x x x x x

homing 0 x x 0 0.9 x

recharge 0 x x x x 0.9

Table 2:

Vigil / Behavior idle patrol recognition fire-interv. homing recharge

false 0.9 0 0 x 1 x

true 0.1 1 1 x 0 x

Table 3:

Energy / Behavior idle patrol recognition fire-interv. homing recharge

very-low 0.325 0 0 x x 0.8

low 0.325 0.1 0.1 x x 0.2

high 0.25 x x x x 0

very-high 0.1 x x x x 0

Table 4:

Behavior Behavior_t-1 π-behavior⊗|()P

Behavior

t 1–

Behavior

t 1–

Behavior Behavior_t-1 π-behavior⊗|()P

Vigil Behavior π-behavior⊗|()P

Energy Behavior π-behavior⊗|()P

Bayesian Robots Programming 27

recharge suppose with a high probability that Khepera is not at its base.

Table 6 means that when Khepera is facing a fire, it is necessarily in mode fire-intervention.

Finally, Table 7 says recognition imposes that Khepera has been ordered to do so (Identify is
true).

9.3 Identification

No identification is required, as there are no free parameters in .

9.4 Utilization

The robot chooses its behavior with the following query:

[E9.1]

that can be easily computed:

[E9.2]

9.5 Results, lessons and comments

Results

Using these techniques, Khepera obtains temporal sequences of behaviors that appear convinc-
ing to a human observer (an instance of such a sequence will be given in the next section, see
Movie 517).

For instance, these sequences are stable. Khepera does not behave like a weathercock that
changes its mind every second.

Base/ Behavior idle patrol recognition fire-interv. homing recharge

false 0 0.99 0.99 x 0.99 0.99

true 1 0.01 0.01 x 0.01 0.01

Table 5:

Fire / Behavior idle patrol recognition fire-interv. homing recharge

false 1 1 1 0 1 1

true 0 0 0 1 0 0

Table 6:

Identify /
Behavior

idle patrol recognition fire-interv. homing recharge

false x x 0 x x x

true x x 1 x x x

Table 7:

17. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/Semaine-Science/Trans12/T12.small.mov

Base Behavior π-behavior⊗|()P

Fire Behavior π-behavior⊗|()P

Identify Behavior π-behavior⊗|()P

π-behavior

Draw Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P()

Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P

1
Σ
--- Behavior_t-1 π-behavior|()P× Behavior Behavior_t-1 π-behavior⊗|()P×=

. Vigil Behavior π-behavior⊗|()P Energy Behavior π-behavior⊗|()P××

. Base Behavior π-behavior⊗|()P Fire Behavior π-behavior⊗|()P Identify Behavior π-behavior⊗|()P×××

28 Lebeltel, Bessière, Diard & Mazer

Lesson 9: Inverse programming

This experiment demonstrates a completely new method of specifying temporal sequences of
tasks that could be called «inverse temporal programming». Indeed, the programmer does not
specify, as usual, the necessary conditions for an action. On the contrary, he or she specifies for
each action the expected observations and assumes that knowing the action these observations
are independent.

Inverse programming presents two main advantages.
• It is robust to unforeseen situations. A sequence of actions is always produced, even in

cases that the programmer did not explicitly take into account.
• Due to the conditional independence assumption, the number of cases to take into

account grows only linearly with the number of conditioning variables.
The a priori specification of the probability distributions of the observed variables knowing

the behavior may be a difficulty. However it is possible to learn these distributions (see Diard &
Lebeltel, 1999).

Furthermore, the stability of the behavior according to the values in the tables is a critical
question. We do not have yet any quantified results to answer this question but we are trying to
set up an experimental protocol to evaluate it.

10. Integration: A Night watchman Task

10.1 Goal and experimental protocol

The practical goal and experimental protocol of the night watchman task has already been pre-
sented in Section 9.1.

The scientific purpose of this last experiment is to prove that Bayesian robot programming is
an efficient constructive methodology and that all the previous descriptions may be integrated
into a single synthetic one.

Three descriptions and a few corresponding variables necessary for the night watchman task
have not yet been presented to keep the paper short:

1 - used by Khepera to decide if it is at its
base

2 - another temporal sequencing
description required because some of the behaviors are successions of reactive move-
ments.

3 - built on
the reactive behaviors to finally decide the rotation and translation speeds.

10.2 Specification

Variables

The nightwatchman task requires 41 variables:
• Thirty-three «sensory» variables that Khepera may read every tenth of a second. When

convenient, we will summarize these 33 variables by their conjunction (a variable
named).

[E10.1]

• Five internal variables:
• Three «motor» variables that Khepera must compute. These three variables are the

rotation speed , the translation speed and the identity of the object .

Base Px1 … Px8 L1 … L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-base()P

Move Behavior Move_t-1 Tempo Tour⊗ ⊗ ⊗ ⊗ π-move|()P

Vrot Vtrans Move H Dir Prox DirL ProxL Vtrans_c Theta2⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-speed|()P

Sensory-variables

Sensory-variables Px1 … Px8 L1 … L8⊗ ⊗ ⊗ ⊗ ⊗≡

. Vigil Energy Fire Identify Behavior_t-1⊗ ⊗ ⊗ ⊗ ⊗

. Move_t-1 Tempo Tour Dir Prox DirL ProxL Vtrans_c⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

. Nlt Nrt Per Lrl⊗ ⊗ ⊗ ⊗

Base Theta2 Behavior Move H, , , ,

Vrot Vtrans O

Bayesian Robots Programming 29

Decomposition and parametric forms

The decomposition of the joint distribution on these 41 variables is a product of a uniform distri-
bution on the sensory variables () and eight questions addressed to
the previously defined descriptions:

[E10.2]

10.3 Identification

No identification is required.

10.4 Utilization

The ultimate question that Khepera must answer is:

[E10.3]

«What order should be sent to the motors, knowing the sensory state, and ignoring the values
of the internal variables?»

The answer to that question is obtained, as usual, by summing over the five ignored vari-
ables. This leads to the following result:

[E10.4]

This expression may seem complex. In fact, it exactly reflects the structure of the reasoning
required to solve the problem.

• Recognizing the object is independent of the Khepera control.
• The innermost sum searches the ignoring

[E10.5]

• The intermediary sum searches the movement ignoring the and .
• The position of the light source () is estimated by the fusion of the light sensors

information.
• The command variable is estimated according to the value of .
• The outermost sum searches for and ignoring the precise values of the five

internal variables.

Sensory-variablesπ-watchman()P

Sensory-variables

Base Theta2 Behavior Move H⊗ ⊗ ⊗ ⊗

Vrot Vtrans O⊗ ⊗

π-watchman
 
 
 
 

P

Sensory-variablesπ-watchman()P=

. Base Px1 … Px8 L1 … L8 π-base⊗ ⊗ ⊗ ⊗ ⊗ ⊗()P×

. Theta2 L1 L2 L3 L4 L5 L6 L7 L8 π-fusion⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P×

. Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P×

. Move Behavior Move_t-1 Tempo Tourπ-move⊗ ⊗ ⊗ ⊗|()P×

. H Prox π-home⊗|()P×

. Vrot Vtrans⊗ Move H Dir Prox DirL ProxL Vtrans_c Theta2 π-speed⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P×

. O Nlt Nrt Per Lrl⊗ ⊗ ⊗ π-object⊗|()P×

Vrot Vtrans O⊗ ⊗ Sensory-variables π-watchman⊗|()P

Vrot Vtrans O⊗ ⊗ Sensory-variables π-watchman⊗|()P

1
Σ
--- O Nlt Nrt Per Lrl⊗ ⊗ ⊗ π-object⊗|()P×=

.

Move Behavior … Tour π-move⊗ ⊗ ⊗|()P .×

Behavior Vigil … Behavior_t-1 π-behavior⊗ ⊗ ⊗|()P

. Base Px1 L8 π-base⊗ ⊗ ⊗()P× 
 

Base
∑ 

 
 
 

Behavior
∑

. Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|()P×

. H Prox π-home⊗|()P×

. Vrot Vtrans⊗ Move … Theta2 π-speed⊗ ⊗ ⊗|()P× 
 
 
 
 
 
 
 
 

Move

Theta2

H

∑×

Behavior Base

Behavior Vigil … Behavior_t-1 π-behavior⊗ ⊗ ⊗|()P

. Base Px1 … L8 π-base⊗ ⊗ ⊗()P× 
 

Base
∑

Behavior Vigil … Behavior_t-1 Px1 … L8 π-watchman⊗ ⊗ ⊗ ⊗ ⊗ ⊗|()P=

Behavior Base

Theta2

H Prox

Vrot Vtrans

30 Lebeltel, Bessière, Diard & Mazer

No decision is made except the ultimate one about and . Uncertainty is propagated
from the innermost level to the outermost. All the available information is taken into account.
The resulting observed robot behavior is, indeed, a probabilistic mixture of the different compo-
nent descriptions.

Discarding no information has an obvious computational cost. The evaluation of the three
levels of cascading sums may be very time consuming. Thus, the programmer may choose to
make decisions on any intermediary variables. This choice will always trade a gain of efficiency
for a loss of information. For instance, the most efficient possible program would make a deci-
sion for all the internal variables:

1 - to decide if the robot is at its base,
2 - to decide the knowing ,
3 - to chosoe a movement knowing the

,
4 - to decide the position of the light
source,
5 - to decide between avoidance and phototaxy,
6 - and finally, to control the robot.

10.5 Results, lessons and comments

The results obtained are satisfactory to a human observer. The Khepera performed this task hun-
dreds of time in various environments and conditions. The behavior was very robust; for
instance, this experiment ran without interruption, 10 hours a day for three days as a demonstra-
tion during a public science fair.

The Movie 517 shows the Khepera during one of these experiments. It successively shows:
• Khepera identifying an object,
• Khepera aborting its object recognition due to a possible fire detection,
• Khepera verifying that it is really facing a fire by trying to blow it,
• Khepera extinguishing the fire,
• Khepera patrolling the environment (it stops occasionally to detect movement and

sounds an alarm if it succeeds),
• Khepera returning to its base.

Figure 12: The night watchman task.

Vrot Vtrans

Draw Base Px1 … L8 π-base⊗ ⊗ ⊗()P()
Draw Behavior … Base … π-behavior⊗ ⊗ ⊗|()P() Behavior Base
Draw Move Behavior … π-move⊗ ⊗|()P()

Behavior
Draw Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|()P()

Draw H Prox π-home⊗|()P()
Draw Vrot Vtrans⊗ … π-speed⊗|()P()

Bayesian Robots Programming 31

11. Synthesis

11.1 Principles, theoretical foundation and methodology

Principles

The dominant paradigm in robotics may be caricatured by Figure 13.

The programmer of the robot has an abstract conception of its environment. He or she may
describe the environment in geometrical terms because the shape of objects and the map of the
world can be specified. He or she may described the environment in analytical terms because
laws of physics that govern this world are known. The environment may also be described in
symbolic terms because both the objects and their characteristics can be named.

The programmer uses this abstract representation to program the robot. The programs use
these geometric, analytic and symbolic notions. In a way, the programmer imposes on the robot
his or her own conception of the environment.

The difficulties of this approach appear when the robot needs to link these abstract concepts
with the raw signals it obtains from its sensors and sends to its actuators.

The central origin of these difficulties is the irreducible incompleteness of the models.
Indeed, there are always some hidden variables, not taken into account in the model, that influ-
ence the phenomenon. The effect of these hidden variables is that the model and the phenome-
non never behave exactly the same. The hidden variables prevent the robot from relating the
abstract concepts and the raw sensory-motor data reliably. The sensory-motor data are then said
to be «noisy» or even «aberrant». A queer reversal of causality occurs that seem to consider that
the mathematical model is exact and that the physical world has some unknown flaws.

Compelling the environment is the usual answer to these difficulties. The programmer of the
robot looks for the causes of «noises» and modifies either the robot or the environment to sup-
press these «flaws». The environment is modified until it corresponds to its mathematical model.
This approach is both legitimate and efficient from an engineering point of view. A precise con-
trol of both the environment and the tasks ensures that industrial robots work properly.

Figure 13: The symbolic approach in robotics.

=
?

if (Obs=01)
then
turn:=true
else
...

AvoidObs()

Environment

O1

S

M

O1

Avoid Obstacle

32 Lebeltel, Bessière, Diard & Mazer

However, compelling the environment may not be possible when the robot must act in an
environment not specifically designed for it. In that case, completely different solutions must be
devised.

The purpose of this paper is to propose Bayesian Robot Programming (BRP) as a possible
solution.

Figure 14 presents the principles of this approach.
The fundamental notion is to place side by side the programmer’s conception of the task (the

preliminary knowledge) and the experimental data to obtain the programming resources called
«descriptions». As seen in the different examples described in this paper, both the preliminary
knowledge and the descriptions may be expressed easily and efficiently in probabilistic terms.

The preliminary knowledge gives some hints to the robot about what it may expect to
observe. The preliminary knowledge is not a fixed and rigid model purporting completeness.
Rather, it is a gauge, with open parameters, waiting to be molded by the experimental data.
Learning is the means of setting these parameters. The resulting descriptions result from both
the views of the programmer and the physical specificities of each robot and environment. Even
the influence of the hidden variables is taken into account and quantified; the more important
their effects, the more noisy the data, the more uncertain the resulting descriptions.

However, Bayesian robot programming preserves two very important merits of the symbolic
approach. Thanks to the preliminary knowledge, the descriptions are comprehensible to the pro-
grammer. Thanks to Bayesian inference, complex reasoning is possible.

Theoretical foundations

The theoretical foundations of Bayesian robot programming may be summed up by Figure 15.

The first step transforms the irreducible incompleteness to uncertainty. Starting from the
preliminary knowledge and the experimental data, learning builds probability distributions.

Figure 14: The BRP approach in robotics.

S

M

ππππ
Preliminary
Knowledge

δδδδ
Experimental

Data

Avoid Obstacle

P(M ⊗ S | δ ⊗ π)

S

M

Environment

P(M ⊗ S | δ ⊗ π)

Bayesian Robots Programming 33

The maximum entropy principle is the theoretical foundation of this first step. Given some
preliminary knowledge and some data, the probability distribution that maximizes the entropy is
the distribution that best represents this couple. Entropy gives a precise, mathematical and quan-
tifiable meaning to the «quality» of a distribution (for justifications of the maximum entropy
principle see, for instance, Jaynes, 1982; Robert, 1990; Bessière et al., 1998b).

Two extreme examples may help to understand what occurs:
• Suppose that we are studying a formal phenomenon. There are no hidden variables. A

complete model may be proposed. If we select this model as the preliminary knowl-
edge, any data set will lead to a description made of Diracs. There is no uncertainty,
any question may be answered either by true or false. Logic appears as a special case
of the Bayesian approach in that particular context (see Cox, 1979).

• On the opposite extreme, suppose that preliminary knowledge consists of very poor
hypotheses about the modeled phenomenon. Learning will lead to «flat» distributions,
containing no information. No relevant decisions can be made, only completely ran-
dom ones.

Hopefully, most common cases are somewhere in between these two extremes. Preliminary
knowledge, even imperfect and incomplete, is relevant and provides interesting hints about the
observed phenomenon. The resulting descriptions are neither Diracs nor uniform distributions.
They give no certitudes, although they provide a means of taking the best possible decision
according to the available information.

The second step consists of reasoning with the probability distributions obtained by the first
step.

To do so, we only require the two basic rules of Bayesian inference (see Section 3). These
two rules are to Bayesian inference what the resolution principle is to logical reasoning (see
Robinson, 1965; Robinson, 1979; Robinson & Sibert, 1983a; Robinson & Sibert, 1983b). These
inferences may be as complex and subtle as those usually achieved with logical inference tools,
as illustrated in the different examples in this paper.

11.2 Advantages

In this section we survey, comment and briefly discuss the advantages of the BRP method pro-
posed in this paper.

• Ability to treat incomplete and uncertain information: The basis of this work is related

Figure 15: Theoretical foundation.

Incompletness

Maximum Entropy
Principle

-Σ pi ln(pi)

Preliminary Knowledge
+

Experimental Data
=

Probability Distributions

Uncertainty

Decision

P(a∧b |π) = P(a |π)P(b |a∧π)=P(b |π)P(a |b∧π)

P(¬a |π)+P(¬a |π) = 1�
Bayesian Inference

34 Lebeltel, Bessière, Diard & Mazer

to the fundamental difficulty of robot programming in real environment. For us this
difficulty is the direct consequence of the irreducible incompleteness of models. Con-
sequently, the first advantage of BRP is its ability to take into account this incomplete-
ness and the resulting uncertainty. This is obtained in three steps, thanks to the
following three abilities of the method:
° Ability to convert incompleteness to uncertainty by learning, as demonstrated in the

numerous instances where the free parameters of preliminary knowledge are identi-
fied from experimental data (see, for instance, Section 5 concerning reactive behav-
iors or Section 8 concerning object recognition). Object recognition, for instance,
shows that with simple preliminary knowledge, we are able to learn descriptions suf-
ficient for classification. However, in this task there are numerous ignored variables
such as, for instance, the color and material of the objects, the global lighting of the
room, the approximate quality of the contour following behavior or the position from
where the robot has started.

° Ability to reason despite uncertainty, as demonstrated by all the experiments requir-
ing inference (see, for instance, Section 6 about sensor fusion or Section 8 about
object recognition). The «nightwatchman» task (see Section 10) shows the complex-
ity of the possible reasoning (41 variables, 12 descriptions, four hierarchical levels).

° Ability to decide, taking uncertainty into account: The decision strategy selected in
this work has been to draw the values of the searched variables from the distributions
obtained by the preceding inference step. This strategy «renders» uncertainty, the
decision are nearly deterministic when the distributions are sharp, and conversely,
nearly random when they are flat.

• Simple and sound theoretical bases: The proposed approach is founded on simple the-
oretical bases. Essential questions may be asked clearly and formally and eventually
answered by mathematical reasoning. For instance, one may consider to fairly com-
pare Bayesian inference and logic as two possible models of reasoning. Thanks to
these theoretical bases, the experimental results (successes or even more enlightening
failures) may be analyzed and understood in detail.

• Generic, systematic and simple programming method: BRP is simple, systematic and
generic. Simple, as this method may be learned and mastered easily. Systematic, as it
may be applied with rigor and efficiency. Generic, as this method may be also used in
numerous other domains than robot programming.

• Homogeneity of representations and resolution processes: BRP is based on a unique
data structure, called a description, associated with two inference rules. This homoge-
neity leads to simple and generic program development.

• Obligation to state all hypothesis: Choosing a description as the only data structure to
specify robotics programs and following a systematic method to do so compel the pro-
grammer to exhaustively express his knowledge about the task. Everything that should
be known about a given robotic problem is in its description: the synthesis between the
preliminary knowledge and the experimental data. There is no hidden knowledge in
either the inference program or the decision algorithm. As the description encapsulates
all the relevant information, exchanging, sharing or discussing models is easy and rig-
orous.

• Large capacity of expression: Descriptions offer a large capacity of expression to spec-
ify models and to question them as well.
° Specification capacity: The different experiments described in this paper prove that

descriptions may be used to specify numerous different models. Let us recall that we
used descriptions to learn simple reactive behaviors (Section 5), to combine them
(Section 6), to hierarchically compose them (Section 8), to merge sensor informa-
tion (Section 6), to recognize situations (Section 8), to carry out temporal
sequencing (Section 9) and finally, to specify a task integrating all the previously
defined descriptions (Section 10).

° Question capacity: Let us also recall that any question may be asked to a joint distri-
bution. Mathematically, all variables appearing in a joint distribution play the exact

Bayesian Robots Programming 35

same role. They may all, indifferently, be known, unknown or searched. The descrip-
tion is neither a direct nor an inverse model. Sensor fusion (Section 6), situation rec-
ognition (Section 8) or inverse programming (Section 9) offer instances where the
questions asked do not correspond to the specification order. Furthermore, there is no
ill-posed problem. If a question may have several solutions, the probabilistic answer
will simply have several peaks. Some instances of sensor fusion exemplified this
point (see Section 6.3).

• Ability for real incremental development of robots: Bayesian Robot Programming,
thanks to its clear theoretical foundations and to its rigorous programming methodol-
ogy, appears to be an incremental method of developing robot programs that can really
be used in practice. The final experiment (Section 10) demonstrates that point.
° Ability to combine descriptions: The first incremental development tool is descrip-

tion combination (Section 6). With this tool it is possible to define new behaviors as
weighted mixtures of different simpler ones.

° Ability to compose descriptions: The second incremental development tool is hierar-
chical description composition (Section 8). It is in some senses similar to calling
sub-procedures in classical programming, as some of the parametric forms appearing
in a decomposition may be questions addressed to more basic descriptions.

° Description = Resource: More generally, a description, as an internal representation
of a physical phenomenon, may be considered as a programming ressource. For
instance, a description may offer new variables to be used in other descriptions. This
is the case with the variable that identifies the object, provided by the object rec-
ognition description (Section 8). Object recognition also proposes another example
of the use of a description as a programming resource. Indeed, the countour follow-
ing behavior is a necessary tool to be able for computing the four variables , ,

 and used by the object recognition description. Numerous other possibilities
for enhancing the capacity of a robot using descriptions as resources may be found in
Dedieu’s PhD. thesis (Dedieu, 1995).

11.3 BRP in practice

BRP is a very simple, practical and efficient way to program robots for the 3 main following rea-
sons:

• BRP proposes a generic methodology for robot programming:
1 - Specification: define the preliminary knowledge.
1.1 - Choose the pertinent variables.
1.2 - Decompose the joint distribution.
1.3 - Define the parametric forms.

2 - Identification : identify the free parameters of the preliminary knowledge
3 - Utilization: ask a question of the joint distribution.

• The conditional independences are used to break the complexity and keep the computation
tractable.

• BRP may really be considered as a programming language because it proposes three main
tools to build complex programs from simpler ones:
° Calling Bayesian subroutines.
° Probabilistic if-then-else.
° Inverse programming to sequence behaviors.

11.4 Scalability

This paper presented only very simple instances of robot programming for didactic purposes.
The goal was to illustrate the fundamental principles rather than to present applications.

Consequently two fundamental questions are still open: is BRP scalable? may it be used for
practical robotics applications?

Elements of answer to these two questions may be found in may be found in other works that
used the BRP approach:

• Kamel Mekhnacha build a Bayesian robotic CAD system which offers the usual capa-

O

Nlt Nrt

Per Lrl

36 Lebeltel, Bessière, Diard & Mazer

bilities of such a system but also handles the uncertainties. This system works with
hundreds of variables and tens of probability distributions (Mekhnacha, 1999; Mekh-
nacha, Mazer & Bessière, 2000; Mekhnacha, Mazer & Bessière, 2001)

• Julien Diard proposed in his PhD thesis the concept of Bayesian maps, which is a spe-
cialization of the BRP formalism, for representing the environment in navigation
tasks. In particular, the descriptions and the combination operators considered in this
work are special cases of the one presented here (Diard, 2003).

• Christophe Coué is using BRP for an Advanced Driving Assistance System (ADAS)
(Coué et al., 2002; Coué et al., 2003).

Ongoing works include manipulation with 6 DOF arms, pick and place problems, videogame
Bot programming, outdoor SLAM with automotive vehicles and indoor service robotics.

References

Aji S. M. and McEliece R. J. ; (2000) ; The Generalized Distributive Law ; IEEE Trans. Information Theory, Vol.
46, No. 2Alami, R., Chatila, R., Fleury, S., Ghallab, M. & Ingrand, F. ; (1998) ; An Architecture for Auto-
nomy ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 315-337

Arulampalam, S., Maskell, S., Gordon, N. & Clapp, T. ; (2001) ; A Tutorial on Particle Filters for On-line Non-
linear/Non-Gaussian Bayesian Tracking ; IEEE Transactions on Signal Processing
citeseer.nj.nec.com/maskell01tutorial.html

Aycard, O.; (1998) ; Architecture de contrôle pour robot mobile en environnement intérieur structuré ; PhD. the-
sis, Univeristé Henri Poincaré, Nancy, France

Bernhardt, R. & Albright, S.L. (editors) ; (1993) ; Robot Calibration ; Chapman & Hall

Beetz, M. & Belker, T.; (2001); Learning strucured reactive navigation plans from executing MDP navigation
policies; in Proceedings of Agents 2001

Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E. & Mekhnacha, K. ; (1998a) ; Interprétation ou Description (I) :
Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs ; Intellectica ; Vol. 26-27,
pp. 257-311; Paris, France

Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E. & Mekhnacha, K. ; (1998a) ; Interprétation ou Description (I) :
Fondements mathématiques de l’approche F+D ; Intellectica ; Vol. 26-27, pp. 313-336 ; Paris, France

Bessière, Pierre; (2002) ; Procédé de détermination de la valeur à donner à différents paramètres d’un système ;
Demande de brevet d’invention n°0235541154.4 ; Institut Européen des Brevets

Bessière P. & the BIBA-INRIA Research Group ; (2003) ; Survey: Probabilistic Methodology and Techniques
for Artefact Conception and Devlopment ; INRIA Technical Report RR-4730, (http://www.inria.fr/rrrt/rr-
4730.html)

Borrelly, J-J., Coste, E., Espiau, B., Kapellos, K., Pissard-Gibollet, R., Simon, D. & Turro, N.; (1998) ; The
ORCCAD Architecture ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 338-359

Boutilier, C., Reiter, R., Soutchanski, M. & Thrun, S.; (2000); Decision-Theoretic, High-level Agent Program-
ming in the Situation Calculus; in Proceedings of AAAI 2000

Brafman, R.I., Latombe, J-C., Moses, Y. & Shoham, Y.; (1997) ; Applications of a logic of knowledge to motion
planning under uncertainty ; Journal of the ACM, vol.44(5), pp. 633-68

Bretthorst, G.L. ; (1988) ; Bayesian spectrum analysis and parameter estimation ; Spinger Verlag

Brooks, R.A. ; (1986) ; A robust layered control systems for a mobile robot ; IEEE Journal of Robotics and
Automation ; Vol. 2(1), pp. 14-23

Cooper, G. ; (1990) ; The computational complexity of probabilistic inference using Bayesian belief networks ;
Artificial Intelligence, Vol. 42, pp. 393-405

Coué, C. & Bessière, P. ; (2001) ; Chasing an elusive target with a mobile robot ; IEEE/IROS 2001 ; Maui,
Hawaii, USA

Coué, C., Fraichard, Th., Bessière, P. & Mazer, E.; (2002); Multi-Sensor Data Fusion Using Bayesian Program-
ming: an Automotive Application; Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems
(IROS)

Bayesian Robots Programming 37

Coué, C., Fraichard, Th., Bessière, P. & Mazer, E.; (2003); Using Bayesian Programming for Multi-Sensor
Multi-Target Tracking in Automotive Applications; Proc. of the IEEE Int. Conf. on Robotics and Automa-
tion (ICRA); in Press

Cox, R.T. ; (1961) ; The algebra of probable inference ; The John Hopkins Press, Baltimore, USA

Cox, R.T. ; (1979) ; Of inference and inquiry, an essay in inductive logic ; in The maximum entropy formalism,
edited by Raphael D. Levine & Myron Tribus ; M.I.T. Press, U.S.A.

Dagum, P. & Luby, M. ; (1993) ; Approximate probabilistic reasoning in Bayesian belief network is NP-Hard ;
Artificial Intelligence, Vol. 60, pp. 141-153

Darwiche, A. and Provan, G. ; (1997) ; Query DAGs: A Practical Paradigm for Implementing Belief-Network
Inference ; Journal of Artificial Intelligence Research (JAIR), Vol. 6, pp. 147-176

Dedieu, E. ; (1995) ; La représentation contingente : Vers une reconciliation des approches fonctionnelles et
structurelles de la robotique autonome. Thèse de troisième cycle INPG (Institut National Polytechnique de
Grenoble) ; Grenoble, France

Dekhil, M. & Henderson, T.C. ; (1998) ; Instrumented Sensor System Architecture ; International Journal for
Robotics Research (IJRR) ; Vol. 17(4), pp. 402-417

Delcher, A.L., Grove, A.J., Kasif, S. and Pearl, J. ; (1996) ; Logarithmic-Time Updates and Queries in Probabi-
listic Networks ; Journal of Artificial Intelligence Research (JAIR) ; Vol. 4, pp. 37-59

Diard, J. & Lebeltel, O. ; (1999) ; Bayesian Learning Experiments with a Khepera Robot in Experiments with
the Mini-Robot Khepera : Proceedings of the 1st International Khepera Workshop, December 1999, Löffler
Mondada Rückert (Editors), Paderborn, HNI-Verlagsschriftenreihe ; Band 64 ; Germany ; pp. 129-138 ;

Diard J. & Lebeltel O. (2000); Bayesian programming and hierarchical learning in robotics; Meyer, Berthoz,
Floreano, Roitblat and Wilson (Eds) ; SAB2000 Proceedings Supplement Book ; Publication of the Interna-
tional Society for Adaptive Behavior, Honolulu.

Diard, J.; (2003); La carte bayésienne : Un modèle probabiliste hiérarchique pour la navigation en robotique
mobile; PhD thesis, Institut National Polytechnique de Grenoble (INPG), 27 janvier 2003

Donald, B.R.; (1988) ; A geometric approach to error detection and recovery for robot motion planning with
uncertainty ; Artificial Intelligence, vol.37, pp. 223-271

Erickson, G.J. & Smith, C.R. ; (1988a) ; Maximum-Entropy and Bayesian methods in science and engineering ;
Volume 1 : Foundations ; Kluwer Academic Publishers

Erickson, G.J. & Smith, C.R. ; (1988b) ; Maximum-Entropy and Bayesian methods in science and engineering ;
Volume 2 : Applications ; Kluwer Academic Publishers

Frey, B.J. ; (1998) ; Graphical Models for Machine Learning and Digital Communication ; MIT Press

Fox, D., Burgard, W., Kruppa, H. & Thrun, S. ; (2000) ; A Probabilistic Approach to Collaborative Multi-Robot
Localization ; Autonomous Robots, Vol. 8, pp. 325-344

Fox, D., Thrun, S., Dellaert, F. & Burgard, W. ; (2001) ; Particle filters for mobile robot localization; in Doucet
A., de Freitas N. & Gordon N. (eds); Sequential Monte Carlo Methods in Practice; Spinger-Verlag, New
York, USA

Gutmann, J-S., Burgard, W., Fox, D. & Konolidge, K. ; (1998) ; Experimental comparison of localization
methods ; Interenational Conference on Intelligent Robots and Systems

Halpern, J.Y. ; (1999a) ; A Counterexample to Theorems of Cox and Fine ; Journal of Artificial Intelligence
Research (JAIR), Vol. 10, pp. 67-85.

Halpern, J.Y. ; (1999b) ; Cox's Theorem Revisited ; Journal of Artificial Intelligence Research (JAIR), Vol. 11,
pp. 429-435.

Jaakkola, T.S. and Jordan, M.I. ; (1999) ; Variational Probabilistic Inference and the QMR-DT Network ; Jour-
nal of Artificial Intelligence Research (JAIR), Vol. 10, pp. 291-322

Jaynes, E.T. ; (1979) ; Where do we Stand on Maximum Entropy? ; in The maximum entropy formalism ; edited
by Raphael D. Levine & Myron Tribus ; M.I.T. Press

Jaynes, E.T. ; (1982) ; On the rationale of maximum-entropy methods ; Proceedings of the IEEE

Jaynes, E.T. ; (2003) ; Probability theory - The logic of science ; Cambridge University Press (in press)

38 Lebeltel, Bessière, Diard & Mazer

Jensen, F., Lauritzen, S. & Olesen, K. ; (1990) ; Bayesian updating in recursive graphical models by local com-
putations ; Computational Statistical Quaterly, 4:269-282

Jordan MI and Jacobs RA (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation ;
Vol. 6, pp. 181-214.

Jordan, M. ; (1998) ; Learning in Graphical Models ; MIT Press

Jordan, M., Ghahramani, Z., Jaakkola, T.S. & Saul, L.K. ; (1999) ; An introduction to variational methods for
graphical models ; In press, Machine Learning

Kaelbling, L.P., Littman, M.L. & Cassandra, A.R.; (1996) ; Partially observable Markov decision processes for
artificial intelligence ; Reasoning with Uncertainty in Robotics. International Workshop, RUR'95, Procee-
dings pp.146-62 ; Springer-Verlag

Kaebling, L.P., Cassandra, A.R. & Kurien, J.A. ; (1996) ; Acting Under Uncertainty: Discrete Bayesian Models
for Mobile-Robot Navigation, in Proceedings of IEEE/RSJ International Conference onIntelligent Robots
and Systems

Kaebling, L.P., Littman, M.L. & Cassandra, A.R. ; (1998) ; Planning and Acting in Partially Observable Stochas-
tic Domains ; Artificial Intelligence, Vol. 101

Kapur, J.N., & Kesavan, H.K. ; (1992) ; Entropy optimization principles with applications ; Academic PressKoe-
ning, S. & Simmons, R.; (1998); A robot navigation architecture based on partially observable Markov deci-
sion process models; in Kortenkamp D., Bonasso, R.P. & Murphy, R. (eds); Mobile Robots and Artificial
Intelligence; AAAI Press

Koller, D., & Pfeffer, A. ; (1997) ; Object-Oriented Bayesian networks ; Proceedings of the 13th Annual Confer-
ence on Uncertainty in AI (UAI) ; Providence, Rhode Island, USA

Konolidge, K. ; (1997) ; Improved Occupancy Grids for Map Building ; Autonomous Robots, Vol. 4, pp. 351-367

Konolidge, K. & Chou, K. ; (1999) ; Markov Localization using Correlation ; International Joint Conference on
Artificial Intelligence, Stockolm, Sweden

Lane, T. & Kaebling, L.P. ; (2001) ; Toward hierachical decomposition for Planning in Uncertain Environments ;
Workshop on planning under Uncertainty and Incomplete Information at the 2001 International Joint Con-
ference on Artificial Intelligence (IJCAI-2001)

Laplace, Pierre Simon de (1774); Mémoire sur la probabilités des causes par les évènements; Mémoire de l’aca-
démie royale des sciences; Reprinted in Oeuvres complètes de Laplace, (vol. 8), Gauthier Villars, Paris,
France

Laplace, Pierre Simon de (1814); Essai philosphique sur les probabilités; Courcier Imprimeur, Paris; Reprinted
in Oeuvres complètes de Laplace, (vol. 7), Gauthier Villars, Paris, France

Lauritzen, S. & Spiegelhalter, D. ; (1988) ; Local computations with probabilities on graphical structures and
their application to expert systems ; Journal of the Royal Stastical Society B ; Vol. 50, pp. 157-224

Lauritzen, S. L. ; (1996) ; Graphical Models ; Oxford University Press

Lebeltel, O. ; (1999) ; Programmation Bayésienne des Robots ; PhD. Thesis, Institut National Polytechnique de
Grenoble (INPG); Grenoble, France

Lebeltel, O., Diard, J., Bessière, P. & Mazer, E. (2000); A bayesian framework for robotic programming; Twen-
tieth International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engi-
neering (MaxEnt 2000) ; Paris, France

Lozano-Perez, T., Mason, M.T., Taylor, R.H.; (1984) ; Automatic synthesis of fine-motion strategies for robots ;
International Journal of Robotics Research, vol.3(1), pp. 3-24

MacKay, D.G. ; (1996) ; Introduction to Monte Carlo Methods ; Proc. of an Erice summer school, ed. M. Jordan

Maes, P. ; (1989) ; How to Do the Right Thing ; Connection Science Journal ; Vol. 1, N°3, pp. 291-323

Matalon, B. ; (1967) ; Epistémologie des probabilités ; in Logique et connaissance scientifique edited by Jean
Piaget ; Encyclopédie de la Pléiade ; Editions Gallimard ; Paris, France

Mazer, E., Boismain, G., Bonnet des Tuves, J., Douillard, Y., Geoffroy, S., Dubourdieu, J., Tounsi, M. & Verdot,
F.; (1998) ; START: an Industrial System for Teleoperation, Proc. of the IEEE Int. Conf. on Robotics and
Automation, Vol. 2, pp. 1154-1159, Leuven (BE)

Bayesian Robots Programming 39

McLachlan G.J. & Deep D. ; (2000) ; Finite Mixture Models ; Wiley, New York, USA

Mekhnacha, K. ; (1999) ; Méthodes probabilistes baysiennes pour la prise en compte des incertitudes géomé-
triques : Application à la CAO-robotique ; PhD. thesis INPG (Institut National Polytechnique de Grenoble),
Grenoble, France

Mekhnacha, K., Mazer, E. & Bessière, P. ; (2000) ; A Robotic CAD system using a Bayesian framework ; In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2000, Best Paper Award), Vol. 3,
pp. 1597-1604, Takamatsu, Japan

Mekhnacha, K., Mazer, E. & Bessière, P. ; (2001) ; The design and implementation of a Bayesian CAD modeler
for robotic applications ; Advanced Robotics, Vol. 15, N. 1

Mohammad-Djafari, A.& Demoment, G. ; (1992) ; Maximum entropy and bayesian methods ; Kluwer Academic
Publishers

Murphy, K. ; (1999) ; Bayesian Map Learning in Dynamic Environments ; in Proceedings of NIPS 99

Neal Radford M. ; (1993) ; Probabilistic inference using Markov chain Monte-Carlo Methods ; Technical
Report, CRG-TR-93-1, university of Toronto

Parr, R. & Russell, S.; (1998); Reinforcement Learning with Hierarchies of Machines; in Proceedings of NIPS
1998

Pearl, J. ; (1988) ; Probabilistic reasoning in intelligent systems : Networks of plausible inference ; Morgan
Kaufmann Publishers ; San Mateo, California, USA

Robert, C. ; (1990) ; An entropy concentration theorem: applications ; in artificial intelligence and descriptive
statistics ; Journal of Applied Probabilities

Robinson, J.A. ; (1965) ; A Machine Oriented Logic Based on the Resolution Principle ; Jour. Assoc. Comput.
Mach.; vol. 12

Robinson, J.A. ; (1979) ; Logic : Form and Function ; North-Holland, New York, USA

Robinson, J.A. & Sibert, E.E. ; (1983a) ; LOGLISP : an alternative to PROLOG ; Machine Intelligence, Vol. 10.

Robinson, J.A. & Sibert, E.E. ; (1983b) ; LOGLISP : Motivation, design and implementation ; Machine Intelli-
gence, Vol. 10.

Rosenblatt, J.K. ; (2000) ; Optimal Slection of Uncertain Actions by Maximizing Expected Utility ; Autonomous
Robots, Vol. 9, pp. 17-25

Roumeliotis S.I. and Bekey G. ; (2000) ; Collective localization: a distributed kalman filter approach to localiza-
tion of groups of mobile robots . In IEEE International Conference on Robotics and Automation

Roumeliotis S.I. and Bekey G.A. ; (2000) ; Bayesian estimation and Kalman Filtering: A unified framework for
Mobile Robot Localization . In Proc. IEEE Int. Conf. on Robotics and Automation, pages 2985-2992, San
Fransisco, CA.

Ruiz, A., Lopez-de-Teruel, P.E. and Garrido, M.C. ; (1998) ; Probabilistic Inference from Arbitrary Uncertainty
using Mixtures of Factorized Generalized Gaussians ; Journal of Artificial Intelligence Research (JAIR) ;
Vol. 9, pp. 167-217

Saul, L.K., Jaakkola, T. and Jordan, M.I. ; (1996) ; Mean Field Theory for Sigmoid Belief Networks ; Journal of
Artificial Intelligence Research (JAIR), Vol. 4, pp. 61-76

Schneider, S.A., Chen, V.W., Pardo-Castellote, G., Wang, H.H.; (1998) ; ControlShell: A Software Architecture
for Complex Electromechanical Systems ; International Journal for Robotics Research (IJRR) ; Vol. 17(4),
pp. 360-380

Hagit Shatkay ; (1998) ; Learning Models for Robot Navigation ;PhD. dissertation and Technical Report cs-98-
11, Brown University, Department of Computer Science, Providence, RI

Smith, C.R. & Grandy, W.T. Jr. ; (1985) ; Maximum-Entropy and bayesian methods in inverse problems ; D. Rei-
del Publishing Company

Tarentola, A. ; (1987) ; Inverse Problem Theory: Methods for data fitting and model parameters estimation ;
Elsevier ; New York, USA

Thrun, S.; (1998) ; Bayesian landmark learning for mobile robot localization ; Machine Learning, vol. 33(1),
pp.41-76

40 Lebeltel, Bessière, Diard & Mazer

Thrun, S., Burgard, W., Fox, D. ; (1998) ; A Probabilistic Approach to Concurrent Mapping and Localization for
Mobile Robots ; Autonomous Robots, Vol. 5, pp 253-271

Thrun, S. ; (2000) ; Towards programming tools for robots that integrate probabilistic computation and learning
; in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Zhang, N.L. and Poole, D. ; (1996) ; Exploiting Causal Independence in Bayesian Network Inference ; Journal
of Artificial Intelligence Research (JAIR), Vol. 5, pp. 301-328

