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A simple genetic algorithm for the optimization of multidomain
protein homology models driven by NMR residual dipolar

coupling and small angle X-ray scattering data

Fabien Mareuil, Christina Sizun, Javier Perez, Marc Schoenauer; Jean-Yves Lallemand,  François Bontems

Abstract Most proteins comprise several domains and/or

participate in functional complexes. Owing to ongoing

structural genomic projects, it is likely that it will soon

be possible to predict, with reasonable accuracy, the con-

served regions of most structural domains. Under these

circumstances, it will be important to have methods, based

on simple-to-acquire experimental data, that allow to build

and refine structures of multi-domain proteins or of protein

complexes from homology models of the individual do-

mains/proteins. It has been recently shown that small angle

X-ray scattering (SAXS) and NMR residual dipolar cou-

pling (RDC) data can be combined to determine the

architecture of such objects when the X-ray structures of

the domains are known and can be considered as rigid

objects. We developed a simple genetic algorithm to

achieve the same goal, but by using homology models of

the domains considered as deformable objects. We applied

it to two model systems, an S1KH bi-domain of the NusA

protein and the cS-crystallin protein. Despite its simplicity

our algorithm is able to generate good solutions when

driven by SAXS and RDC data.

Keywords Genetic algorithm � Residual dipolar coupling �
SAXS � Multi-domain protein � Homology models

Introduction

Built on the success of genome sequencing projects,

structural genomic projects aim at collecting extensive data

about the relationships between protein sequences, struc-

tures and functions. Rapid large-scale protein structure

determination has benefited from fast data acquisition and

analysis as well as high-throughput screening for protein

expression and purification. But structure determination of

all gene products is out of reach. In fact, structural ge-

nomics rely on the paradigm that the number of protein

folds is finite. Along with the principle objectives of the

projects, one common objective is to produce representa-

tive structures of all sequence families (Todd et al. 2005)

with the hope that the satisfaction of this objective will

allow the prediction by homology of any protein structure.

This strategy is facing two problems. First, even if a

similarity between two sequences as low as 30% is suffi-

cient to ensure that they correspond to similar folds, the

quality of the structure prediction falls drastically with the

similarity score between the sequences (Ginalski 2006). In

addition, modeling of loops remains challenging. Second,

so far structural efforts have mainly concentrated on

compact globular single domains. But most genes encode

for multi-domain proteins. Determination of relative do-

main arrangement has remained difficult for both X-ray

diffraction and nuclear magnetic resonance. On the one

hand, the influence of crystal packing forces raises ques-

tions about the relevance of quaternary structure deter-

mined by X-ray analysis. On the other hand, intermolecular

nOe measured between domains are generally scarce and
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Methods

Organization of the genetic algorithm

We chose a genetic algorithm among various optimization

techniques because this inverse method requires only

evaluation of an objective function and not of its gradient.

In addition, it is easily adaptable and additional informa-

tion sources can be taken into account by simply modifying

the objective function.

Genetic algorithms are stochastic numerical optimiza-

tion procedure roughly inspired from population genetics

principles (Eiben and Smith 2003). A population of can-

didate solutions (individuals or chromosomes) is submitted

to variation and selection cycles, resulting in its enrichment

in better and better solutions. The variations result from the

application of unary mutation and binary recombination

operators. Selection relies on comparative ‘‘fitness’’ (value

of the objective function). The detailed scheme used here

is presented in Fig. 1. The individuals are encoded as

PDB files. The N (typically 25) parental structures are first

mutated, each leading to n (typically five) children. The

children are recombined with each another. The fitness of

the n*N individuals is evaluated and a new set of N parents

is selected by a tournament method. To be easily modifi-

able and portable, the algorithm is written as a C-shell that

manages variables and files, and launches the modification,

evaluation and selection procedures. Mutation and recom-

bination are realized by X-PLOR scripts (Brünger 1992),

RDC and SAXS evaluations by a home-written SVD pro-

cedure and by the Crysol software (Svergun et al. 1995)

respectively, and selection by a python script. All proce-

dures communicate through ASCII files.

Mutation

Inside the mutation procedure, cartesian coordinates are

converted to internal coordinates, edited, and converted

back to cartesian. After minimization of its side-chain en-

ergy, a mutated structure is accepted or rejected according

to a predefined energy threshold. The procedure is repeated

until the correct number of mutations per child and children

per parent is obtained. Two kinds of mutations can be

applied. A global mutation consists of a random pertur-

bation of the backbone torsion angles (u,/) of a residue,

introducing a displacement of all following residues. A

local mutation induces the perturbation of a small portion

of the protein chain without modifying the rest of the

structure. Like in a global mutation, the (u,/) torsion an-

gles of a residue are perturbed, but the resulting structure is

recombined with its parent three to five residues down-

stream and the geometry of the modified segment is

not sufficient to constraint a multi-domain protein struc-
ture. Under these circumstances, we believe that it is 
important to have a disposal of methods that allow the 
refinement of homology predicted domain structures and 
the relative positioning of domains in multi-domain pro-
teins from data easily accessible in solutions, in particular 
from residual dipolar coupling and small angle X-ray 
scattering data.

Residual dipolar coupling (RDCs) measured in aniso-
tropic solvent (Tjandra and Bax 1997) have prompted a 
large interest in the NMR community (Bax 2003; Lipsitz 
and Tjandra 2004; Prestegard et al. 2004). RDCs contain 
information about the orientations of internuclear vectors 
with respect to the magnetic field, not accessible by other 
methods. They can be used to constrain the relative 
orientations of protein fragments, e.g. peptidic planes, 
residues, secondary structural elements or domains (in 
multi-domain proteins). Moreover, they mostly rely on 
backbone atom resonances, which can be easily assigned 
even in large perdeuterated proteins, and they require only 
little measurement time. Accordingly, RDCs have been 
widely used to refine protein structures in complement of 
nOe restraints. They have also been shown to be of par-
ticular interest for protein/domain docking in conjunction 
with SAXS data (Mattinen et al. 2002; Grishaev et al. 
2005; Gabel et al. 2006). As the SAXS curve is the 
Fourier transform of the distance distribution function of 
the complex/protein, it provides translational information 
about the relative positioning of the proteins/domains that 
complements the orientational restraints obtained from 
RDCs. So far, all reported examples have used experi-
mentally determined high-resolution structures of the 
proteins/domains to be associated. The proteins/domains 
were considered as rigid and RDC and SAXS information 
contributed only to positioning. When imperfect homol-

ogy models are used, the proteins/domains have to be 
allowed to deform and RDCs and SAXS should also 
contribute to their refinement. In addition, the interpreta-
tion of RDCs in terms of orientation requires the accurate 
determination of the alignment tensor. Which is not trivial 
when the starting structures of the proteins/domains are 
approximate.

In this paper, we present a simple genetic algorithm to 
calculate bi-domain protein structures, based on homol-

ogy models of the individual domains and driven by 
RDC and SAXS data. We tested our procedure on two 
systems. The first uses only simulated data. The second 
uses experimental RDCs extracted from the BMRB data 
bank. We show that when using this tool it is indeed 
possible to find good models in both cases. We also 
discuss the limits and the possible improvements of the 
procedure.
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repaired by a simple minimization. The mutation kind,

position and amplitude are adapted to the structural context

and to the local quality of the structure. Three types of

regions are defined in the protein and encoded in the B

factor. The well predicted regions in the initial homology

models, typically secondary structure elements, are en-

coded by B = 1 (first domain) and B = 2 (second domain).

The poorly predicted regions, generally loops, are encoded

by B = 0 and the linker by B = –1. Two out of three

mutations are introduced in the linker (B = –1); 70% of the

remaining in the poorly predicted segments (B = 0) and

30% in the well predicted regions (B = 1 or 2). In the

linker, all mutations are global, The local agreement be-

tween the structures and the experimental data is encoded

in the Q factor. The (u,/) angle perturbations are generated

by choosing a Gaussian random number with 0 mean and

standard deviation defined by K*<Q>reg/<Q>prot where K

is a small predefined value, <Q>reg is the mean Q factor

averaged over the perturbed region, and <Q>prot is the

mean Q factor averaged over the whole structure.

Recombination

In the recombination scripts, the well-predicted regions of

one domain (B = 1 or B = 2) of two parents are superim-

posed. Two recombination points are chosen randomly in

the superimposed domains, the fragments are exchanged

and the side-chain energy is minimized. The procedure is

repeated until an acceptable structure (residual energy

lower than a threshold) is obtained. A residue is eligible as

recombination point when it belongs to a three-residue

fragment for which the distance between the backbone

atoms of the two parental structures is less than 1.0 Å.

RDC and SAXS evaluation

The fitness function is calculated as the weighted sum of

the SAXS and RDC evaluation functions. The RDC eval-

uation function is the root mean-square deviation between

experimental values and those calculated from the molec-

ular alignment tensor A determined for each structure:

Dij

Dmax
ij

¼ 1

2
SAa 3 cos2 h� 1

� �

þ 3

2
SAr sin

2 h cos 2/

� �

Dmax
ij ¼ � l0

4p2
�h
cicj

r3ij

ð1Þ

h and / are the polar coordinates of an internuclear vector

ij relative to the principal axis system of A. The alignment

tensor (axial component Aa, rhombicity R = Ar/Aa and the

3 Euler angles giving the orientation of the molecular

frame in the principal axis system) is obtained by a singular

value decomposition (SVD) algorithm, as first proposed by

Prestegard et al. (Losonczi et al. 1999), adapted from the

Numerical Recipes subroutines in C (Press et al. 1992) and

optimized by a Monte-Carlo procedure. SVD is only

performed on the first module for residues with B = 1. The

deviation between experimental and calculated RDCs for

Mutations
global mutation: modification of the (ϕ,φ) angles of 1 residue

(affects the whole structure)

local mutation: modification of the (ϕ,φ) angles of 3-5 residues 

(without affecting the remaining of the structure)

mutation type and amplitude depend on the local quality

Initial population of 25 homology models

Selected population of 25 new parents

Fitness evaluation 
χ2(SAXS) + w.χ2(RDC)

Selection
(tournament method)

Side-chain energy

minimization

Recombinations
Exchange of a fragment between 2 structures

Side-chain energy

minimization

Increased population of 125 children

Fig. 1 Flow chart of the genetic

algorithm
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each residue is stored in the structural Q-factor. For the

SAXS curve, the deviation is calculated according to Eq. 2

(Press et al. 1992). The value was normalized, in the

Figs. 3–5, by the result obtained with the target structures.

v2 ¼
X

i

ffiffiffi

S
R

q

Ri �
ffiffiffi

R
S

q

Si

� �2

Ri þ Si
with

R ¼
X

i

Ri and S ¼
X

i

Si ð2Þ

Selection

In the first 200 calculation cycles, the objective is to enrich

the population with good individuals while preserving

large variability. To fulfill this, the selection is based on a

tournament method: small groups of individuals (two in

our case) are randomly uniformly extracted from the mu-

tated-recombined population and the best of each group

survives to the next generation. However, with such a low

selection pressure, the procedure generally does not reach a

minimum. Accordingly, a second stage of 100 calculation

cycles is added with a higher selective pressure: the

parental population is regenerated by selecting the best

individuals in the mutated-recombined population. In

addition, to ensure that this procedure always leads to an

improvement of the population, the parents are included in

the mutated-recombined population.

Initial data generation

RDC and SAXS data

In the case of cS-crystallin, we extracted the H-N, Ca-C¢

and N-C¢ couplings of one of the two RDC constraint sets

deposited at the BMRB. In the case of the S1KH bi-module

of T. martima NusA (Tm-S1KH), we generated synthetic

N-H, Ca-Ha, N-C¢ and Ca-C¢ dipolar couplings from the

order parameters published for human ubiquitin (Saa = 8.3

10–4 and SAr = 1.4 10–4) to which we added a random

noise (10% of the maximal value). In both cases, we cal-

culated a SAXS curve with the CRYSOL software (Q

between 0.2 and 5 nm–1), to which we added a realistic

random noise following a normalized Gaussian distribu-

tion. To stick to what experimental measurement would

have given, the width of the noise distribution was taken

proportional to 1
ffiffiffi

Q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIsolðQÞ þ IBufÞ
p

; where IBuf is the

Q = 5 nm–1. The 1
ffiffiffi

Q
p factor arises from the fact that a 2D

detection is considered.

Model building

We needed large families of initial structures as seed for

the genetic algorithm. We could have modeled the whole

bi-domain, by using the structures of S1KH of M. tuber-

culosis NusA (Mt-S1KH) to model Tm-S1KH and bB2-

crystallin to model cS-crystallin. However, to address a

more general situation, we modeled each domain inde-

pendently. The alignments are presented in Fig. 2. For S1

and KH, we used only one template for each domain

(structures of Mt-S1 and Mt-KH). Accordingly, we only

imposed the conservation of the secondary structure

elements and left the loops free. In the case of the two

cS-crystallin domains, we used two (for domain 2) and

three (for domain 1) templates. The template sequences

were first aligned on the basis of the superimposition of the

template structures. The target sequences were then aligned

using the MALIGN routine of the Modeller software (Sali

and Blundell 1993). In both cases, the structure of the

linker regions was not imposed. The Modeller software

was further used to build 1000 models of each domain,

which were oriented with respect to the alignment tensor

determined from the RDCs of the well-predicted regions

(B = 1 or B = 2). A priori, four orientations are possible

for each domain, due to the degeneracy of the RDCs. One

of these orientations was chosen for S1 and the first

cS-crystallin domain, while the four orientations were

conserved for KH and the second cS-crystallin domain.

Initial bi-domain structures were built by randomly

selecting structures for the first and the second domains.

The C-terminus of the first domain was brought in the

vicinity of the N-terminus of the second by translation and

the structure of the linker region was minimized. Structures

for which the interaction energy between the two domains

was negative or null were conserved. They were then

clustered on the basis of the relative orientation of the

domains. Only two orientations were possible for S1KH

and three for cS-crystallin, the others systematically lead-

ing to domain overlap. The final structures (250 for each

orientation) were divided into initial populations of 25

individuals that were optimized in parallel.

Results

Starting from the bi-domain structure

We first examined to what extent residual dipolar coupling

(RDC) and small angle X-ray scattering (SAXS) data were

constant scattering intensity from the buffer and ISol(Q)
(=ICry(Q) +  IBuf) is the scattering intensity from the protein 
solution. ICry (Q) is the curve given by CRYSOL. Realis-
tically, IBuf was taken as ten times the value of ICry(Q) at
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able to define the structures to be optimized. To address

this question, we first ran a series of calculations starting

with the target structures (Tm-S1KH and cS-crystallin)

and we looked at their deformation after 200 cycles of

the genetic algorithm with low selective pressure and after

100 additional cycles with high selective pressure (see

‘‘Methods’’). In the case of cS-crystallin, the data set was

composed of experimental RDCs and of a simulated SAXS

curve with noise In the case of S1KH, we simulated RDC

and SAXS data sets with noise.

As illustrated by Fig. 3, we observed a divergence of the

structures, reflected by an increase of the backbone rmsd

calculated between the ‘‘optimized’’ and the target struc-

tures. At the end of the first 200 low selective pressure

cycles the divergence is significant. The rmsd spread is 1–

4 Å for S1KH and 1–6 Å for cS-crystallin. If the results are

restricted to the structures with the best fitnesses, the spread

is less, but there are still equivalent solutions up to 3 Å. It

should be noted that the fitnesses at the end of this stage are

always much larger than those determined for the targets

(43 for S1KH, 104 for cS-crystallin). The SAXS curve, in

particular, is never correctly fitted with the low selection

pressure. This is not surprising if we consider that low

pressure was deliberately chosen to favor variability among

the populations. The situation is improving after additional

100 high selective pressure cycles. The fitnesses remain

larger than those of the targets, but much better solutions

are retrieved. The rmsd spreads are now 1.5–2.5 Å for

S1KH and 1.7–4 Å for cS-crystallin. Moreover, the two

lowest fitness S1KH families (fitness = 129 and 132) have

rmsds calculated over the family of 1.51 and 1.71 Å.

Similarly, the four lowest fitness cS-crystallin families

(fitness = 202, 220, 224 and 230) have rmsds of 1.70, 1.79,

1.44 and 1.59 Å respectively.

Starting with perfect domain structures

In a second step, we tested to what extent we were able to

determine the structure of a bi-module from the crystallo-

graphic structures of the domains. This time, we built

BB2-1 -----EHKIILYENPNFTGKKMEIVDDDVPSFHAHGYQEKVS-SVRVQSG-TWVGYQYPGYRGLQYLLEKGDYKDNSDFGAPHPQVQSVRRI-----RDM

gB -----TFRMRIYERDDFRGQMSEIT-ADCPSLQDRFHLTEVH-SLNVLEG-SWVLYEMPSYRGRQYLLRPGEYRRYLDWGAMNAKVGSLRRV-----MD-

bg -----KGEVFLYKHVNFQGDSWKVT-GNVYDFRSVSGLNDVVSSVKVGPNTKAFIFKDDRFNGNFIRLEESSQVTDLTTRNLNDAISSMIVA-----TFE

mod1 SKTGG--KISFYEDRNFQGRRYDCD-CDCADFRS--YLSRCN-SIRVEGG-TWAVYERPNFSGHMYILPQGEYPEYQRWMGLNDRLGSCR--AVHLS---

BB2-2 -----NPKIIIFEQENFQGHSHELSGPCPNLKET-GMEKAGSVLVQAGP---WVGYEQANCKGEQFVFEKGEYPRWDSWTSSRRTDSLSSLRP-----IK

bg -----KGEVFLYKHVNFQGDSWKVTGNVYDFRSVSGLNDVVS-SVKVGPNTKAFIFKDDRFNGNFIRLEESSQVTDLTTRN--LNDAISSMIVA---TFE

mod2 SGGQA--KIQVFEKGDFNGQMYETTEDCPSIMEQFHLREIHSCKVVEGT---WIFYELPNYRGRQYLLDKKEYRKPVDWGA--ASPAIQSFR--RIVE--

Mt_S1 STRE-------------GEIVAGVIQR---DSRANARG-LVVVRIGTETKASEGVIPAAEQVPGESYEH---------GNRLRCYVVGVTRG--AREPLITLSR---

Tm_S1 ----EKEKQFEKYSELKGTVTTAEVIRVMG--------EWADIRIG----KLETRLPKKE---------WIPGEEIKAGDLVKVYIIDVVKTTK--GPKILVS-RRV

Mt_KH THP---NLVRKLFSLEVPEIADGSVEIVAVARE---AGHRSKIAVRS-----NVAGLNAKGACIG---PMGQRVRNVMSEL---SGEKIDIID--YDD

Tm_KH ---RVPEFVIGLMKLEIPEVENGIVEIKAIAREPGV---RTKVAVASNDPNV-----DPIGACIGEGG---SRIAAILKELKGE---KLDVLKWS---

S1-KH bi-module of T maritima NuSA Models of the S1 and KH modules of T maritima NusA Initial population of the S1-KH bi-module

mod1-mod2 bi-module of γS-crystallin Models of the mod1 and mod2 modules of γS-crystallin Initial population of γS-crystallin

Fig. 2 Initial population building. The sequences of the templates

(S1 and KH domains of Mycobacterium tuberculosis: NusA Mt-S1

and Mt-KH; first and second domains of bB2-crystallin: BB2-1, BB2-

2; cB-crystallin: gB; bc-crystallin: bg) are aligned with those of

the targets (S1 and KH domains of Thermotoga maritima: Tm-S1,

Tm-KH; first and second domain of cS-crystallin: mod1, mod2). The

secondary elements of the templates are indicated in blue (a-helices)

and in red (b-strands). The regions constrained in the target modeling

are in green. The target structures (S1KH bi-module of T. maritima

and cS-crystallin) are displayed on the left side. A set of models for

the isolated domains is in the middle, and an initial family composed

of 25 structures is on the right side
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while the family in the fourth position (fitness = 156) has

an rmsd of 3.80 Å.

Finally, we remark that the best badly oriented family

(in terms of fitness) has a higher fitness (163) than the three

best correctly oriented. However, it is not sure that this

result would be reproducible and that this can be really

used to discriminate between the orientations.

Starting with individual domain homology models

Finally, we addressed the real situation by building the

initial populations from homology models of the domains.

For both proteins, we ran the genetic algorithm on ten

correctly and ten wrongly oriented populations. As ex-

pected in the light of the previous results, we found that we

were not able to discriminate between the different orien-

tations arising from the degeneracy of RDCs. So, we only

present the results obtained with the correct orientation in

Fig. 5.

We first observe that the solutions have a higher fitness

than in the previous essay (207 at best compared to 151

when starting from the individual X-ray modules and to

129 from the target structure of S1KH; 264 compared to

202 when starting from the target structure of cS-crystal-

lin). Nevertheless, the procedure is able to generate solu-

tions with low rmsds (better than in the initial populations).

conserved (B=1 and B=2) regions] at the end of the 200 first

generations (left plot/color symbols; right plot/black symbols) and

after 100 supplementary generations with high selection-pressure

(right plot/color symbols). The displayed families are indicated by

arrows

Fig. 3 Result of the genetic algorithm when starting from the target 
structures of S1KH and cS-crystallin. Left side for each protein, the 
family of structures with the lowest fitness is displayed. The rmsd to 
the target, the fitness and the separate contributions of SAXS and RDC 
are indicated. Right side we plotted the fitness versus the rmsd 
[calculated on all backbone atoms after superimposition of the

initial populations from the T. maritima S1 and KH crys-
tallographic structures. The conformation of the last three 
amino-acids of S1 and the first three of KH was random-

ized and the domains were associated as described in the 
‘‘Methods’’ section. We also examined if it was possible to 
discriminate between the four relative orientations com-

patible with RDC data. In fact, only two were possible, the 
others systematically leading to sterical clashes. Consid-
ering that in a real case there could be structural differences 
between isolated and associated domains, we treated them 
at deformable (i.e. we introduced mutations inside them).

The results obtained after the first 200 low pressure and 
following 100 high pressure cycles are presented in 
Fig. 4. We first observe that the genetic algorithm really 
acts as an optimizer and not as a simple filter. While the 
initial correctly oriented populations contain only one 
structure with an rmsd below 3 Å , most of the structures 
have rmsds of about 2 Å at the end of the low selection 
pressure cycles. Although rmsds are spread between 1.8 
and 14 Å , the structures with the best fitnesses (160–200) 
are clustered around 2 Å . Similarly, at the end of the 100 
additional high selective pressure cycles, all solutions 
have rmsd between 1.3 and 12 Å , but the three best 
families (fitness = 145, 148 and 151) have rmsds of 1.96, 
2.41 and 2.31 Å . There is a family with a lower rmsd 
(1.30 Å ), but it only ranks fifth in term of fitness (159),

6



At the end of the first 200 cycles, the rmsd spread of the

low fitness solutions are 2–6 Å for S1KH and 3–7 Å for

cS-crystallin. After the 100 supplementary high selective

pressure cycles, the best three S1KH families (fitness =

208, 209 and 211) have rmsds of 2.67, 4.91 and 3.39 Å. In

the case of cS-crystallin, the situation is more complicated.

The two best families (fitness = 264 and 269) have rmsds

of 4.28 and 5.60 Å, respectively, but the two following

(both with a fitness = 272) have rmsds equal to 3.49 and

3.61 Å.

Discussion

Earlier multi-domain proteins have been assembled from

the structures of individual domains by combining SAXS

and RDC data. Annila et al. (Mattinen et al. 2002) have

studied the structural modifications induced on calmodulin

upon its binding by trifluoroperazin. Starting with the

coordinates of the free form of the protein, they first ori-

ented the N- and C-terminal domains with respect to the N-

HN RDCs by using an SVD procedure. They subsequently

Fig. 4 Results of the genetic

algorithm when starting from

the crystallographic structures

of the domains. The

crystallographic structures of

the isolated S1 and KH domains

were used, after randomization

of the linker regions, to form the

initial populations as described

in the text. Upper part the two

domains are oriented like in the

target structure. Lower part the

KH domain is orientated with a

180� rotation around the y-axis.

For each orientation, we

displayed the families with the

best fitness and with the best

rmsd. We plotted the fitness

versus the rmsd to the target in

the initial population (left plot),

at the end of the 200 first

generations (middle plot/color

symbols; right plot/black

symbols) and after 100

supplementary generations with

high selection-pressure (right

plot/color symbols). The

displayed families are indicated

by arrows

7



simulated SAXS curve. They found two solutions, one

corresponding to the target structure. But they also indi-

cated that the identification of the solution depended on the

crossing of two very similar curves, suggesting that in other

cases, especially when docking spherical proteins, solution

determination would be out of reach. Finally, Bax et al.

(Grishaev et al. 2005) reported the structure determination

of cS-crystallin by combining SAXS and NMR data. Using

‘‘globs’’ (i.e. small groups of atoms) and glob scattering

factors, together with an iterative correction procedure

allowing the minimization of the error introduced by their

Fig. 5 Results from the

homology models of the

domains. Homology models of

the domains were used to form

the initial populations. Upper

part results obtained on the

S1KH bi-domain. Lower part

results obtained on cS-

crystallin. In both cases, the

results correspond only to the

initial populations with a

relative orientation of the two

domains similar to that observed

in the target structures. We

displayed the structures having

the best and the second best

fitness (in the case of S1KH) and

the structures having the best

fitness and the best rmsd (in the

case of cS-crystallin). We

plotted the fitness versus the

rmsd to the target in the initial

population (left plot), at the end

of the 200 first generations

(middle plot/color symbols;

right plot/black symbols) and

after 100 supplementary

generations with high selection-

pressure (right plot/color

symbols). The displayed

families are indicated by arrows

positioned the two domains with respect to the SAXS data 
using a grid search. Their best solution has an rmsd, cal-
culated on the Ca atoms of residues 4–74 and 86–147, 
equal to 2.4 Å . Sattler et al. (Gabel et al. 2006) derived a 
parametric form of the beginning of SAXS curves (corre-
sponding to three times the Guinier range) that can be 
incorporated as an energy term in structure calculation 
protocols. They applied their approach to the determination 
of the barnase/barstar complex structure from high-reso-
lution structures of the free proteins, assuming that they 
could orient the proteins from RDC data, and using a

8



approximation, they were able to introduce a SAXS po-

tential and its gradient in CNS. They used this to calculate

the structure of cS–crystallin by simulated annealing in the

presence of a small number of NOE distances (179 HN-HN,

70 CH3-CH3 including 15 inter-domain restraints), a set of

RDCs recorded in two media (291 N-HN, 303 C-Ca, 273

N-C’, 246 Ca-Cb) and a set of (/,u) dihedral angle re-

straints obtained from molecular fragment replacement

(Kontaxis et al. 2005). In addition, their energy function

contained a backbone–backbone hydrogen bonding poten-

tial (Grishaev and Bax 2004). They observe that the

introduction of the SAXS potential induces a better

compaction of the protein, leading to a better agreement

between the NMR structure of cS-crystallin and the X-ray

structures of cB-crystallin (rmsd calculated on the module

backbone atoms of 1.31 Å in the presence of the SAXS

data instead of 1.91 in their absence) and of cD-crystallin

(rmsd of 1.18 Å instead of 1.89).

These approaches clearly demonstrate the power of

combining SAXS and RDC data for the calculation of

multi-domain protein structures. However, in all cases the

authors either used a rigid representation of the known

domain structures (Annila et al., Sattler et al.) or introduced

additional data to define them (Bax et al.). We were

interested to determine the structure of a bi-domain protein

without knowing the exact structures of the domains (but

with the assumption that homology models can be calcu-

lated) and by using only rather easily obtainable data.

Recording of SAXS curves only requires the preparation of

a concentration series of mono-disperse solutions to take

into proper account interparticle interactions. Interpretation

of RDCs only requires the assignment of backbone atom

resonance frequencies. We restricted RDC measurement to

a single medium at this stage and we did not consider the

introduction of chemical shift mapping information, as this

would require the production and purification of the inde-

pendent modules. We also omitted information on the /,u

angle that could be deduced from the backbone chemical

shifts (Wishart and Case 2001), but it could be easily

introduced, either during the homology modeling stage or

during the optimization procedure.

We wanted to build a versatile tool, in which it would be

easy to introduce any kind of additional information.

Accordingly, we used a genetic algorithm as optimizer and

chose a simple process: we limited the number of muta-

tional operators to two (local and global backbone dihedral

angle modifications), we built a fitness as a weighted sum

of the individual evaluation functions and we chose a

simple selection scheme. We also wanted to ensure that the

procedure only generated plausible protein structures. After

each mutation and recombination we minimized the

covalent and van-der-Waals (but not the electrostatic)

terms of the protein energy function and we introduced an

energy cut-off to reject the structures that were too de-

formed. Finally, we also assumed that the quality of a

homology model strongly varies along the sequence but

that it is generally possible to discriminate between the

well and less-well predicted regions. Accordingly, we

limited the modifications in the well-predicted regions

while we increased them in the others. We also took

advantage of the information on the local quality of the

structure given by the RDCs to modulate the mutation

amplitudes.

The first result of our test is that despite its simplicity,

our genetic algorithm is able to optimize the fitness of a bi-

domain structure and to provide better solutions than those

present in the initial population. However, the quality of

the results clearly depends on the starting structures. They

are better when starting from the X-ray structures of the

whole protein (S1KH: best fitness = 129; cS-crystallin:

best fitness = 202) or of the modules (S1KH: best fit-

ness = 145) than when starting from the homology models

(S1KH: best fitness = 207; cS-crystallin: best fit-

ness = 264). In addition, we were never able to reach the

values determined in the case of the target structures

(S1KH: fitness = 43; cS-crystallin: fitness = 104). This

suggests the existence of multiple minima in the evaluation

function that strongly perturbs the search of the global

minimum. But, by comparison with our first tests, we found

that running the genetic algorithm in two steps, with a high

selective pressure stage following a low selective pressure

stage (by crude analogy with a simulated annealing pro-

tocol), greatly improved the convergence of the method

and we expect that there is still room for improvement.

The second observation is that there is in all cases a net

improvement of the structures. In the case of the X-ray

domains of S1 and KH, all initial structures except one

have rmsds between 3 and 10 Å. At the end of the process,

four out of ten families contain structures with rmsds below

or around 2 Å and seven out of ten families contain

structures with rmsds below or around 4 Å. Similarly, all

initial structures built from S1 and KH domain homology

models have rmsds between 4 and 15 Å, while, at the end,

three families contain structures with rmsds below 4 Å and

nine rmsds below 6 Å. Finally, in the case of homology

models of cS-crystallin domains, the initial populations

contain structures with rmsds between 2 and 14 Å while all

final structures have rmsds between 3 and 6 Å (in this case,

the best structures of the initial populations were lost

during the process). In addition, in all cases, the family

with the best fitness has either the smallest value of rmsd

(when starting from the S1KH X-ray structure, and S1KH

homology models) or a value very close to the smallest

(when starting from S1KH X-ray domains, cS-crystallin

X-ray structure and cS-crystallin domain homology

models). We have not obtained solutions corresponding to

9
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the target structure and we are not always able to identify
the best solution by considering the fitness. However the
final fitness value is probably too high but it can be im-

proved by optimizing the selection pressures. It should be
noticed that Bax et al. showed that the introduction of
SAXS data leads to a precision of around 1 Å on their 
structure, but their structure was already well defined in the
absence of SAXS. Their result is not contradictory with
the idea that non-distinguishable minima could exist in the
vicinity of the solution. In agreement with this idea, in
the case of the study realized by Annila et al, the best
identified solution has an rmsd calculated on the Ca atoms of 
the conserved region of calmodulin equal to 2.4 Å . This  is in  
the same range than our result on S1KH when starting with
the X-ray modules (2.0 Å calculated on all backbone of the 
whole protein) or with the homology models (2.67 Å ).

In conclusion, we devised a versatile method based on a
simple genetic algorithm to build bi-domain protein models

from homologous structures on the basis of RDC and SAXS
data. In the case of the S1KH bi-domain of the NusA pro-
tein, we identified a solution at 2.7 Å of the target by 
selecting the family having the best fitness. In the case of
cS-crystallin, we miss the closest solution (3.5 Å ) but ob-
tain one at 4.3 Å . However, we used a very crude optimi-
zation scheme (a low selective pressure stage followed by a
very high selective pressure stage) that could probably be
improved. We are also not able to discriminate between the
different relative orientations of the domains compatible

with the RDC data. This can be solved by measuring RDCs
in a second medium or by comparing the experimentally

determined global alignment tensor with that obtained by
prediction programs. We also did not try to take into ac-
count the dynamics of the system and assumed a single
conformation, like in most studies. The point is that, by
using data averaged over an ensemble of conformations, we
do not expect to obtain a distribution of representative
structures, but rather a ‘‘mean’’ solution. This could be
possibly overcome by modifying the procedure and running
the calculation with ‘‘individuals’’ formed of set of two
structures. We will explore this possibility more deeply.
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