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Road Selection using Multi-Criteria Fusion for 

the Road-Matching Problem 

Maan E. El Najjar and Phippe Bonnifait, Member, IEEE

 

Abstract�  This paper presents a road selection strategy for 

novel road-matching methods designed to support real-time 

navigational features within Advanced Driving-Assistance 

Systems. Selecting the most likely segment(s) is a crucial issue for 

the road-matching problem. The selection strategy merges 

several criteria using Belief Theory. Particular attention is given 

to the development of Belief functions from measurements and 

estimations of relative distances, headings and velocities. 

Experimental results, using data from ABS sensors, differential 

GPS receiver and accurate digital roadmap, illustrate the 

performances of this approach, especially in ambiguous 

situations. 

 
Index Terms� Localization, Sensor fusion, Belief Theory, 

Geographical Information System, Global Positioning System. 

 

I. INTRODUCTION 

NTELLIGENT Autonomous Vehicles currently hold the 

attention of many researchers because they can provide 

solutions in many applications related to Intelligent 

Transportation Systems. One example of such a system is 

the transport of passengers in urban environments using a 

CyCab [16]. For navigational needs the vehicle first needs to 

know its position on the road network, and then to retrieve 

attributes from the appropriate databases. Examples of 

attributes are maximum authorized speed, width of the road, 

presence of landmarks for precise localization, etc. 

Unfortunately, the precise localization on a map cannot be 

guaranteed because there will often be errors in the 

estimation of position arising from sensor imprecision and 

because the map represents a deformed view of the real 

world: roads are represented by points � nodes and shaping 

points- that describe the geometry of the center line.  

Vehicle localization on a map has two meanings in the 

literature of this domain. In many works [2], [11], [13], [18], 

[19], Erreur ! Source du renvoi introuvable. it refers to the 

projection of the absolute position estimate onto a segment of 

the road network stored in the database. In this case, the 

vehicle is localized when the curvilinear abscissa along the 

segment are known from the starting node. These �arc-

matching� methods therefore introduce geometric distortions, 

since the model of the world is a set of segments, usually with 

a 10-meter absolute error and a 1-meter relative error. 

Alternatively, vehicle localization can refer to absolute 

localization in the map reference frame. In this case, the 

localization of the vehicle does not need a projection onto the 

segments representing the road in the database. Absolute 

localization can be very useful for the following reasons. In 

several kinds of databases, including those of the National 

French Institute of Geography (IGN), attributes, instead of 

being attached to the arcs representing the roads, can be stored 

in the database as point objects with an absolute position. 

Moreover, it is imprecise to suppose that the real trajectory of 

the vehicle can be modeled by linear arcs. The distortion 

introduced by such an assumption is amplified if the network 

database is not accurate. In reality, roads have a non-

negligible width and define areas (and not lines) within which 

the vehicle can navigate. Furthermore, arc-matching methods 

are not adapted to the automatic guidance control of vehicles 

since lateral variation is not observable: only longitudinal 

control is possible using speed values attached to the arcs.  

The approach presented in this paper is an absolute 

localization method. The global positions provided by a GPS 

receiver are converted into the map frame and not projected 

onto the segments. Therefore, the key issue is the selection of 

the most likely road from the database: this is what from now 

on we shall refer to as �road-matching�. The fusion of the 

selected segment with the estimated pose is not detailed in this 

paper. It can be performed recursively by using Kalman 

filtering as done in [8] when there is no ambiguity. 

Generally, road selection first involves applying a filter 

which selects all the segments close to the estimated position 

of the vehicle. The goal is then to select the most likely 

segment(s) from this subset. Nowadays, since the geometry of 

roadmaps is more and more detailed, the number of segments 

representing roads is increasing. The road selection module is 

an important stage in the vehicle localization process because 

the robustness of the localization depends mainly on this 

stage. The road selection stage is also important because it 

reduces the number of roads to be processed, which is 

essential for a real-time implementation. In order to be 

focused on this point, an accurate map Géoroute V2 provided 

by the IGN was used in this work. Its absolute precision is 

estimated to be several meters in detailed city format. The 

selection strategy proposed is based on the merging of several 

criteria using distance, direction and velocity measurements 

within the framework of Belief Theory. 

In order to develop such an approach it is important to 

estimate continuously the pose � position and heading � of the 

vehicle in the frame of the map using GPS, because of its 

affordability and convenience. However, GPS suffers from 

satellite outages occurring in urban environments, under 
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bridges, tunnels or in forests. GPS can thus be seen as an 

intermittently-available positioning system that needs to be 

backed up by a dead-reckoning system [1]. In this work, a 

low-cost odometric method based on the use of encoders 

attached to the rear wheels is proposed. A dead-reckoned 

estimated pose is obtained by integrating the elementary 

rotations of the wheels starting from a given pose. The 

multisensor fusion of GPS and odometry is performed by an 

Extended Kalman Filter (EKF). This kind of formalism is also 

useful in quantifying the imprecision associated with each 

estimated pose. As we show in this paper, this information is 

of particular relevance when quantifying the selection criteria.  

The outline is as follows. In section II, the EKF formalism 

used in performing the sensor fusion of DGPS and odometry 

is described. The fusion provides a continuous estimation of 

the heading of the vehicle and quantifies the estimation error 

regarding the pose: these two quantities are key parameters for 

the road selection problem. Next, the architecture of a usual 

roadmap matching algorithm is laid out. The road selection 

method is presented in section III. The proposed strategy fuses 

two criteria using Belief Theory with a fuzzy representation of 

sensor information. The final section is the experimental 

analysis of several tests carried out with our experimental car.  

II. ARCHITECTURE OF THE ROAD-MATCHING STRATEGY 

At present, there would seem to be no ideal solution to the 

road-matching problem. All the methods which have been 

developed have their advantages and their drawbacks, and 

they were optimized for the particular application for which 

they were designed [22], Erreur ! Source du renvoi 

introuvable.. For the needs of turn-by-turn navigation 

systems, many of them would appear adequate. However, 

safety applications dedicated to Advanced Driving Assistance 

Systems (ADAS) require the ability to estimate the confidence 

in the road-matched positions. If the confidence is too low, the 

information retrieved from the Geographical Information 

System (GIS) won�t be used. 

Arc-matching methods consist in localizing the vehicle on 

the road network modeled by linear arcs. Several approaches 

have been proposed in the literature. Geometric approaches 

[2], [9], [11], [13] rely on the correlation of the estimated 

trajectory with the shape of the road network. Fuzzy 

techniques [14], [21] use models and rules to take into account 

map and sensor errors. These techniques are able to detect off-

road situations. In the framework of Bayesian filtering, 

Kalman approaches [3], [15], [26] and particle filter [10] 

techniques have been developed. The matching relies in this 

case on a map pose-tracking paradigm in which the map data 

is treated as an observation. The ability to characterize several 

solutions in ambiguous situations is a new preoccupation 

which can be formulated with a multi-hypothesis scheme [17] 

or with a multi-modal density probability [10].  

In this paper, we propose a new formulation to solve the 

problem. Given an estimated absolute localization with high 

availability in the frame of the map, the road-matching is 

reduced to the selection of the most likely segment of the 

database. According to this approach, there is no projection on 

the segments representing the roads. If a projection is needed 

to retrieve the attributes attached to the segment, this 

projection is performed afterwards. The key issue is to have a 

good estimate of the pose error for the fusion process. 

Obviously, better is estimated the pose, less ambiguousness is 

the selection process.  
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Road selection 
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Localization on 
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(If necessary) 

DGPS

{Si } ⊂ { S1,� Sn} 

GIS 

 

Fig. .  Schematic diagram of the proposed road-matching algorithm 

The road selection process can be described as in Figure 1 

where v denotes the mean speed of the rear wheels. Multi-

sensor fusion gives an estimation of the pose X=(x,y,θ)t with 

its associated covariance matrix P. The question is then to 

select the most likely segment(s) using a GIS. In order to 

accelerate processing (a map contains thousands of roads, 

each made up of several segments), an initial filter selects the 

n road segments {S1,� , Sn} that are located within an interest 

window choosen for considerations of real-time or reliability. 

The center of the circle is the estimation of the current 

position (x, y) of the car. This initial filter can be applied at 

low frequency and interpreted as a cache memory as in [27]. 

Next, the road selection stage selects the credible segments. If 

necessary, the location on the segment can be done by 

projection. This final stage is called usually map-matching.  

A. Road selection 

This problem consists in selecting the 'good' segments from 

the subset {S1,� , Sn}. This problem is also called Road 

Reduction Filter in [8] and [23].  

This stage is difficult because, 

• The position is estimated with errors which can be 

magnified by multi-path effects. In addition, the 

transformation between the GPS coordinates (WGS84 

system of reference) and the projection frame of the 

map (here the French NTF Lambert coordinates 

system) can induce errors. 
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• The coordinates of the segments are falsified by errors 

due to terrain measurements carried out by 

cartographers and also due to numerical approximation.  

• The road network in the database does not always 

correspond to reality, i.e. it can contain old roads which 

no longer exist, or new roads which are not yet in the 

database. 

• The map does not contain all road network details. For 

example, a roundabout can be represented as a simple 

point. 

• The vehicle is moving on a 3D surface whereas the 

map represents a planar view. 

• The vehicle does not travel exactly on the segments 

representing the roads. 

Section III will present a strategy using Belief Theory. 

B. GPS and ABS fusion  

High availability positioning is a basic necessity in the 

road-matching process. As GPS is subject to satellite outages, 

we propose to use the ABS sensors of the rear wheels of a car 

to provide a continuous positioning. As most modern cars 

have an ABS system, it is a very cheap solution that does not 

require additional sensors. In this section, the fusion of GPS 

and odometry with an EKF is described. 

Let consider a car-like vehicle with front-wheel drive. The 

mobile frame is chosen with its origin M attached to the center 

of the rear axle. The x-axis is aligned with the longitudinal 

axis of the car (see Fig. 2). 

 

 x0

 θk  M  yk 

 xk 

 y0 

 M 

 

Fig. .  The mobile frame attached to the car 

A time index tk, the vehicle position is represented by the 

(xk,yk) Cartesian coordinates of M in a world frame. The 

heading angle is denoted θk. If the road is perfectly planar and  

horizontal and, if the motion is locally circular, the evolution 

model is expressed by [4]: 
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Where  is the length of the circular arc followed by M, 

 the elementary rotation of the mobile frame. These values 

are computed using the ABS measurements of the rear wheels. 

In this formulation, the values of the scale factors of the ABS 

sensors are supposed to be precisely known after a calibration 

stage.  

kΔ
kω

Let denote uk=[Δk, ωk]
t and Xk=[xk, yk, θk]

t, αk , γk 

respectively the model noise and the ABS noise. Eq. (1) can 

be rewritten as: 

 Xk+1 = f(Xk, uk, γk) + αk (2) 

When a GPS fix is available, it is first converted from 

geographical co-ordinates into Cartesian co-ordinates Yk, by a 

projection in the frame of the map (here French Lambert I). 

Then, a correction of the odometric estimate is performed 

using an EKF thanks to the following observation model: 
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βk denotes the GPS measurement noise. The covariance 

matrix Qβ can be estimated in real time using the NMEA 

sentence "GST" provided by the Trimble AgGPS132 receiver 

that was used in the experiments. Therefore, the noise βk is not 

stationary. It will be noticed that a differential GPS receiver 

(whose precision is well adapted to the use of a precise 

roadmap) was used.  

This architecture can be seen as a �loosely-coupled fusion 

system�. The heading θ is not directly measured since the 

GPS is used as a position sensor. Let us study its 

observability.  

From Eq. (1), we have:  

          )cos(.xx k
kkkk

2
1

ωθΔ ++=+  and  (4) kkk ωθθ +=+1

Then, 

         and kkk ωθθ −= +1 )cos(xx k
kkkk

2
11

ωθΔ −⋅+= ++   (5) 

By making a change of index, the heading θk can be 

expressed by the formula:  
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Therefore, the heading is expressed as a combination of 

(xk, xk-1, Δk-1, ωk-1). Since x is observable (directly measured by 

the GPS), θ is observable also. Nevertheless, the mathematical 

expression is not defined when the speed is zero, which 

demonstrates that the heading is observable when the vehicle 

is moving. When the vehicle is motionless, the heading is not 

observable and does not need to be estimated. 

The EKF follows a predictor/estimator paradigm at a 

frequency of 1 Hz using the Pulse per Second (PPS) signal. 

The prediction stage is computed using the ABS 

measurements, if there is a displacement of the vehicle. This 

guarantees that the EKF correctly reconstructs the heading 

angle, since its observable. Then, in the estimation stage, the 

GPS corrects the drift of the dead-reckoned pose. In order to 

use good GPS fixes with a good precision, the GPS receiver 
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has to be tuned with very selective masks (DOP, elevation and 

signal/noise ratio). For this reason, the GPS data is 

intermittent but one can give a high belief in this information 

when it is present. 

The equations are not described here but details can be found 

in [8]. Hereafter, we report the results of a test performed over 

a 4.5 km route (see Fig 3). 

 

 
Fig. .  Top view of the experimental run (in black). 

The behavior of the filter can be characterized by 

examining the x and y innovations (differences between the 

DGPS measurements and the predicted measurements). It can 

be seen from Fig. 4 that the x innovation is zero mean. This 

figure also shows the probability distribution of the x 

innovation errors, which confirms its zero-mean behavior. 

Moreover, the autocorrelation is close to white noise since the 

sampling period equals one second. This global behavior 

indicates that the filter is correctly tuned. 
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Fig. .  Autocorrelation and distribution of the x innovation of the EKF 

In the framework of the ARCOS French research program, 

this system was validated in relation to a centimeter-level 

accuracy PPK GPS system. The horizontal precision is in the 

order of 2 meters (1-σ) when the GPS employs a differential 

pseudo-range correction [12]. 

Finally, using the odometric model, the EKF estimates 

continuously the X vector and the covariance matrix P of the 

estimated error, even when the satellite signal is blocked by 

bridges, tunnels, buildings, etc. In such a situation, the pose is 

predicted thanks to Eq. (1) and the ABS sensors. In this case, 

the drift depends only on the travelled distance and not on 

time. It has been estimated to 10 percents of the travelled 

distance which is sufficient for short GPS outages. Fig. 5 

illustrates the lateral drift during small GPS outages. The 3-

sigma bound proves the consistency of the filter. 
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Fig. . Drift of ABS-only localization during small GPS outages. 

III. ROAD SELECTION USING MULTI-CRITERIA FUSION 

Intuitively, taking many factors into consideration makes it 

possible to avoid matching errors that easily result from a 

single point of view selection. Therefore, in order to improve 

map-matching methods, different information sources have to 

be merged to provide better selection criteria for deciding the 

best match. For example, Quddus et al. [18] have used the 

�GPS position relative to the road link� and an �intersection 

relation between the GPS trace and the road links�. Syed and 

Cannon [21] have used the �average distance travelled on 

current link� and the �large distance traveled on current road 

link�. In addition, if the base road network contains detailed 

road attributes (speed limits, one way lanes, etc.) that 

potentially restrict a certain routing behavior, they can 

potentially be utilized to further filter inappropriate road links. 

Current trends in map matching development have begun to 

incorporate probabilistic and fuzzy elements which are more 

tolerant with uncertainty (confidence in given information), 

imprecision (noises) and model approximations. Uncertainty 

typically exists in the database street map.  

Several approaches can be followed to fuse multi-

dimensional selection criteria. The commonly used one 

combines selection factors with a weighting scheme. The 

weighting factors are typically derived empirically from data 

testing or from adaptive-fuzzy-network-based training [14]. A 

different approach can be implemented in the framework of 

Belief Theory which allows partial knowledge to be taken into 

account. The Dempster-Shafer�s rule can be used to fuse the 

criteria. Moreover, because of its commutativity and 

associativity, it is possible to incorporate any criterion and to 

fuse it in any order. Belief Theory also facilitates the 

estimation of the degree of belief in a selected road. The 

detection of off-road travels, for instance, is characterized by 
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the fact that all the segments have a low belief. 

The following of this section first presents the concepts 

used in Belief Theory. The selection criteria will next be 

described, and finally the fusion of these criteria will be 

illustrated by a real example. 

A. Belief Theory Concepts 

Belief Theory admits uncertainty into the reasoning process 

and suggests a way for combining uncertain data. This theory 

was introduced by Dempster [5] and mathematically 

formalized by Shafer in 1976 Erreur ! Source du renvoi 

introuvable.. It is the generalization of Bayes Theory in the 

treatment of uncertainty. Generally, this theory is used in a 

multi-sensor context to fuse heterogeneous information in 

order to obtain the best decision. 

The basic entity is a set of all possible answers (also called 

hypotheses) to a specific question. This set is called the frame 

of discernment and is denoted Θ . All the hypotheses must be 

exclusive and exhaustive, and each subset of the frame of 

discernment can be a possible answer to the question. The 

degree of belief of each hypothesis is represented by a real 

number in [0,1] called mass function m(.). It satisfies the 

following rules: 

 ∑Θ⊆
=

=
A

Am

m

1)(

0)(φ
 (7) 

A mass function is defined for each different piece of 

evidence. Each piece of evidence A, for which m(A) ≠ 0, is 

called a focal element. The notion of mass is very close to the 

notion of probabilistic mass, except that it is not limited to a 

single hypothesis, but it is possible to attribute a mass for a 

union of hypotheses: this is the main difference with respect to 

Bayesian Theory. 

Belief Theory requires the affectation of elementary 

probabilistic masses defined on [0,1]. The mass assignment is 

computed on the definition referential 2Θ. 

 2Θ={∅,H1,H2,�Hn,H1∪H2,�,Hi∪Hj∪Hk∪Hl∪�Hn} (8) 

This distribution is a function of the knowledge about the 

source. The whole mass obtained is called �basic mass 

assignment�. The sum of the component masses is equal to 

one. Each expert - also called source of information - defines a 

mass assignment according to its opinion about the situation. 

Associated with each basic assignment, belief (Bel) and 

plausibility (Pl) are defined by: 

  (9) ∑=
∑=

≠∩
⊆

φAB

AB

BmAPl

BmABel

)()(

)()(

Belief and plausibility bound by the following relationship: 

 )(1)( ABelAPl −=  (10) 

Where A  denotes the complement of A. 

B. Application to the Road Selection 

We consider ADAS applications that are related to road 

safety like, for instance, Curve Warning Systems that inform 

the driver that he is approaching a curve with a too high 

speed. Therefore, only geometrical criteria are used because 

they are not influenced by human errors. This means that a 

criterion such as the speed of the vehicle is in accordance with 

the speed limit is not considered. 

The two criteria chosen in this article can be formulated as 

follows:  

- The vehicle location is close to a segment of the 

neighborhood. This criterion depends on the error ellipse. 

- The segments on which the vehicle can be located are 

those which have an angle close to the heading of the vehicle. 

This criterion depends on the estimated 3σ bound of the 

heading and on the speed of the car. 

To build mass assignments, the inaccuracy of the various 

information sources (GPS, odometer and digital map) is 

considered and certain physical observations, for instance that 

a car with a speed of 40 m/s cannot be orthogonal to the 

direction of the segment are modeled. With this approach, 

information sources (i.e. criteria) are worked out from sensor 

data. 

The problem of mass assignment for each criterion can be 

tackled in a global or a local way. The global strategy involves 

the simultaneous inspection of all the segments selected 

around an estimated position when affecting the masses. The 

local strategy treats each segment separately with respect to 

the criterion under consideration. Both strategies have been 

studied. We have concluded that the local strategy is more 

effective, especially for a real-time application. 

The frame of discernment that we use is Θ = {Yes, No}, 

corresponding to the answer to the following question: is this 

segment the good one? The definition referential is then 2Θ= 

{Yes, No, Perhaps}. 

 

1) Proximity Criterion 

The proximity criterion is based on the measurement of the 

Euclidean distance between the estimated position and each 

segment in the road database. In order to take into account the 

estimation error on the position, a Gaussian ellipse is built 

using the covariance matrix P of the state vector X [8]. The 

probability that a given state Xs is included in a 40% ellipse 

centered on the estimate X is expressed by the formula: 

 

( ) ( ⎟⎠
⎞⎜⎝

⎛ −−−⋅⋅= −−− XXsPXXsexpP)()Xs(p
T//n 1212

2

1
2π )  (11) 

 

The equiprobable states Xs that characterize a k% ellipse 

are given by the following equation 

 ( ) ( XXsPXXs
T −− −1 )  = k² (12) 
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The value of k defines the % of probability. In two 

dimensions 

 ⎟⎟⎠⎝ 2

For example, k=1 implies a 40% probability that the real 

position is effectively in the ellipse error. Conversely, given a 

chosen probability, the corresponding value of k can be 

computed. This value allows the semi-minor and semi-major 

axes of the ellipse to be determined. For the proximity 

criterion, the estimated error of the position is quantified by an 

ellipse of 99% equiprobability produced by the EKF (drawn in 

dark gray in Fi

⎞
⎜⎜
⎛−−= 1

2k
exp)Xs(p  (13) 

g. 6). The estimated position E is at the center 

of the ellipse.  
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Fig. .  Case of a non-credible segment 

Let d denote the distance between the segment and 

po

rve presented in Fig. 7 

assigns a mass to the Yes assumption. 

 

To allot a mass to a candidate segment [AB], we proceed as 

follows. 

int E. 

Point S� falls at the intersection between the segment [ES] 

and the ellipse. The distance dES� depends on angle β which 

forms segment [ES�] in the ellipse co-ordinates system. In the 

zone d < dES�, with a fuzzy modeling obtained by a 

probability-possibility transformation [6], [24], the degree of 

membership is quantified. The first cu
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dES� = f(β) 

 e 

1 

1 

 

Fig. .  Mass assignment of the proximity criterion 

tion is a step 

fu

ment of the proximity 

cri

istance d between the center of the ellipse and the 

tween the distance support and the major 

ax

f β 

tion of E exists inside segment 

[A

s not exist inside 

segment [AB], d = min(d1,d2,d3) (Fig. 8b). 

 

In complementing the mass of the Yes hypothesis, the mass 

to the Perhaps hypothesis is allotted. The mass of Perhaps 

remains constant (equals to one) for dES� < d < dES�+e, in 

order to consider the errors e on the segments coordinates of 

the database. Finally, the mass of the No assump

nction starting from the distance d = dES�+e. 

In conclusion, the mass assign

terion depends on two variables:  

- The d

segment, 

- The angle β be

is of the ellipse. 

The problem becomes more complicated when considering 

the width of the road. We propose modeling the road by a 

rectangle centered on the segment, the length of which is 

equal to the length of the segment. The exact influence of the 

width of the road l is difficult to take into account in the 

computations of the criterion because l modifies the values o

and d. To simplify, we have chosen the following strategy: 

1) If the orthogonal projec

B], d = dortho�l (Fig. 8a). 

2) If the orthogonal projection of E doe

d ortho 
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E

 l 
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(a) 
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Fig .  Com

 

those 

w

ed θ) 

dard deviation of the estimation error of 

the heading angle.  

. putation of the distance d with a rectangle rendering the road 

2) Angular Criterion 

In this section a mass-assignment function is proposed to 

reflect the fact that the most credible segments are 

hich have an angle close to the heading of the vehicle. 

Figure 9 presents the fuzzy modeling of the absolute value 

of the difference between the heading of the vehicle (denot

and the heading of the candidate segment (denoted α): ΔHeading = min(|α-θ| , |α-θ+π|)  with θ ∈[0,π] (14) 

This curve is adaptive and depends on the speed of the 

vehicle and the stan

 

ΔHeading

10° B(v)  90°

Yes 

 m 

Estimated 

position and 
heading 

θ S 

α 

 

ent of the Yes hypothesis for the angulaFig. .  Mass assignm r criterion. On the 

left, S represents a candidate segment. 
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Let m be the maximum belief which can be assigned to the 

 hypothesis (see FiYes g. 9). m varies according to 

θσ estimated by the EKF: 

 ⎭⎩ θπθ
This strategy has been developed to model the fact that an 

uncertain heading will not induce an important mass to the Yes 

hypothesis. Let suppose that 3σ

⎬⎫⎨⎧ −= 0
6

1  ,max)(m σσ  (15) 

e heading. I

other words, the real heading is in the interval

θ = π/2 represents the situation 

of total lack of knowledge on the estimation of th n 

⎥⎦⎢⎣ 22

In this case, the heading criterion must be reduced to the 

maximum: in Eq. (

⎤⎡ +− πθπθ �,� . 

the mass assignment to the Yes 

hy

e B fixes the angular limit tolerated at a 

 B(v) = π/2-λ.v  (16) 

  - Vmax the maximum speed of the vehicle.  

tween the heading and 

th

d 

reaches one when the angle is equal to 90 degrees (Fig. 10). 

15), 

pothesis equals zero. 

The scalar valu

given velocity v: 

With  

    - λ = (90°-10°).π /(Vmax.180°) 

  

 

Eq. (16) is a heuristic model that indicates that if the speed 

of the vehicle is high, the difference be

e segment direction should be small. 

The Perhaps mass assignment is determined by computing 

the complement of the mass of Yes. The mass of No starts 

from the limit angle tolerated for a given speed - B(v) - an

 

B (v) 

1 

Yes 

N o  

Perhaps 

90° 

1  

1 

d = f(B) 
ΔH eading  B (v)

1 

Y es 

No  

Perhaps 

90°

1 

1 

d = f(B) 

(a) 0=θσ  (b) 
2

πθσ =  

ΔH eading

 

Fig. .  Examples of mass assignment at a given velocity 

 

3) Criteria Fusion 

To improve the information obtained from two different 

single sources S1 and S2, a combination of their mass 

assignments can be performed according to Dempster-

Shafer�s rule. Let A, Ai and BB

e. The merging of the knowledge of S1 and S2 is given 

: 

 

i be assumptions of the reference 

fram

by ∑ ΘΘΘ =
=∩

j
S

i
S

BmAmAm )().()( 21  (17) 

he coefficient of re-normalization is called k

i
S

BmAmk ΘΘ

ABA ji

If there are some conjunctions that are not focal elements, a 

re-normalization step is necessary to satisfy the rule m(φ)=0. 

T θ and defined as: 

 )()( 21
j

S

BA ji =∩∑=θ  (18) 

ts the inco

φ
It represen herence between the different sources. 

If we se t θθ k
K −=

1
1 , the normalized expression of the 

ombination is given by: 

 ΘΘΘ ⋅= j
S

i
S

BmAmKAm )().()( 21θ  (19) 

bined, when more than two pieces 

of

scernment. More information 

ab

 a belief higher than the 

pl

ficant conflict. 

In

decision with small conflict will be called a credible segment.  

C. Illustrative Example: Approaching a Junction 

c

∑ =∩ ABA ji

This combination rule is independent of the order in which 

pieces of evidence are com

 evidence are involved. 

After the combination step, several decision rules can be 

used to obtain the final result. It is then possible to adjust a 

desired behavior. If an optimistic decision is desired, the 

maximum of plausibility should be used and, conversely, the 

maximum of belief should be used for a pessimistic decision. 

Many other decision rules exist in Belief Theory, especially 

for non-exhaustive frames of di

out them can be found in [7]. 

The decision-making strategy adopted here is to retain the 

most credible segments according the law of ideal decision. 

The likelihood of a singleton assumption is characterized by 

its belief and its plausibility, which are calculated using the set 

of masses. These quantities correspond respectively to the 

minimum probability and the maximum probability that an 

assumption is true. Consequently, a law of decision without 

ambiguity is when an assumption has

ausibility of any other assumption. 

The conflict computed in the Dempster-Shafer fusion rule is 

large when the two criteria are in total confusion. Therefore, 

we eliminate the segments which present a signi

 our experiments, we used a threshold of 0.5. 

In the following, a segment that satisfies the law of ideal 

3 4 5 6 7   8   9   10   11 12 
2 

3 

4 

5 

6 

7 

8 

9

1 

3 
V = 80km/h

2   Estimated 

pose 
  

 

 heading of Fig. .  Estimated position and the vehicle and 3 candidates 

segments 

Let us take a real case study to illustrate the method. In 
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Figure 11, the vehicle is traveling on the road represented by 

segments 1 and 3, at a speed of 80 km/h. Estimation errors and 

digital map errors give rise to an erroneous estimated position 

which is closer to segment 2 than to the others. In the 

following, the mass attribution, the fusion and the decision 

st

, segment 2 

presents a total conflict between the two criteria. 

ages are described for each segment. 

Figures 12, 13 and 14 show the mass assignments generated 

by the Belief functions. It will be noticed that for segments 1 

and 3, the proximity and the heading criteria are in agreement, 

since both of them assign a high degree of belief to the Yes 

hypothesis, a low degree of belief to the Perhaps hypothesis 

and nothing to the No hypothesis. Conversely
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Fig. 12.  Mass assignment for segment 1 
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Fig.13  Mass assignment for segment 2 
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Fig. 14  Mass assignment for segment 3 
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Fig. .  Fusion results with normalization 

Figure 15 shows the results of the fusion of the criteria with 

the Dempster-Shafer rule without normalization. Notice that 

segment 2 presents a clear conflict. The fusion of the criteria 

concerning segments 1 and 3, however, indicates a strong 

belief on the Yes hypothesis. 

To decide if a segment is a good candidate the conflict 

generated by the fusion stage is first considered. As it is 

important for segment 2, this segment is eliminated. Next, the 

ideal decision law is applied after normalization of the masses. 

This law simply means here that if the Belief in the Yes 

hypothesis is greater than the sum of the No and Perhaps 

hypotheses, the segment in question is credible. Figure 16 

shows that segments 1 and 3 are selected. This result 

corresponds to the real situation. 

IV. EXPERIMENTAL RESULTS 

The algorithm works in real-time conditions with a 

frequency of 1Hz1. The GPS receiver used was a Trimble 

AgGPS132, L1-only, working with geostationary broadcasted 

pseudo-range corrections (Omnistar). 

Figure 17 presents an overhead view of an experimental test 

performed in Compiègne. The map data-base is managed and 

interfaced by the �Geoconcept� GIS software. 
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Fig. .  Fusion results without normalization 

  
1 using a Intel Pentium III 700 MHz processor 
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Fig. .  The car exiting the motorway (local frame) 
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Fig. .  The car on the exit ramp 
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Fig. .  The car on the exit ramp 

To illustrate the road selection method, let examine how it 

deals with ambiguous situations. The first situation involves a 

motorway exit (Fig. 18). This situation is very ambiguous 

because the angles of three segments (the motorway, the exit 

ramp and the entrance ramp) are close to the heading of the 

car. Moreover, they have a common point very close to the 

estimated position 

At the beginning, three segments are selected (in bold in 

Fig. 18). Two of them correspond to the motorway and one to 

the exit ramp. As we should expect, the entrance ramp 

(located on the opposite side of the road) is not selected, 

owing to the angular criterion. Afterwards, the situation is still 

ambiguous (Fig. 19) until the difference between the car�s 

heading and the angles of the motorway segments becomes 

significant. Then, the system is able to assert that the car is on 

the exit ramp (Fig. 20). 

In order to provide a complete view of the evolution of 

beliefs with respect to the exit ramp, Figure 21 shows the 

evolution of belief in selected segments for about 10 positions. 

One can notice that the evolution of belief represents reality 

well. When several segments are credible, at a given moment, 

the road selection is ambiguous. The level of ambiguity 

depends if the selected segments make part of the same road. 

For example, segments S3 and S4 are credible, at time index 

96. Obviously, this situation is less ambiguous than the one of 

time 91 during which three segments of two roads is credible. 
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Fig. .  Belief versus time. 

 

 400 m 

 Situation 1

 Situation 2

 

Fig. .  Over had view of the test trajectory 

Let us analyze the behavior of the method in another 

potentially ambiguous situation. In Figure 22, two critical 

situations occur. The first one corresponds to a junction of 

three roads: two present the same heading, while the third 

road has a 45-degree angle. In the second situation, three 

roads have the same heading and are very close to each other 

(<10m). The speed of the vehicle is about 70 km/h. 
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Fig. .  Credibles segments are in bold and the most credible is in large bold 

(French Lambert coordinates) 

Figure 23 shows how the system deals with the first critical 

situation: several credible roads are good candidates. First, it 

will be remarked that only the segments which represent the 

parallel road are selected. Moreover, as these segments belong 

to two different roads, the situation is ambiguous. If the 

application which uses the road-matching method can tolerate 

errors, the most credible segment can be output. In this 

particular case, the most credible segment corresponds to the 

right road, but this is purely fortuitous. 

Figure 24 shows the result processing of the second critical 

situation. In this situation the vehicle is traveling on a wide 

road, represented by two arcs. A secondary road is parallel 

and very close to the main road. The road selection method 

extracts 4 segments. Once more, the situation is ambiguous 

because the segments belong to three different roads. 
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Fig. .  Credibles segments are in bold and the most credible is in large bold 

(French Lambert coordinates) 

Finally, we have tested the road-selection algorithm on the 

4.5-km route presented in section II.B (see Fig 3). On 

Figure 25, the dotted path represents the DGPS position 

provided by the Trimble receiver converted into the 2D frame 

of the map. Each point of the second plot (plotted with �+�) 

corresponds to the nearest point of the most credible segment 

to the estimated position provided by the EKF-fusion of GPS 

and odometry. The origin of Figure 25 has been translated in 

order to facilitate the readability of the scales of the axes. 

Even if all the credible segments are not indicated on this 

figure, it has been verified that the right segment was always 

in the list of the credible segments provided by the road 

selection method. One can notice that sometimes the most 

credible segment can be incorrect, especially in roundabouts, 

like the point surrounded by a circle. Since the road selection 

method is static (i.e. not recurrent), an incorrect selection has 

no effect on the next selection stage. This indicates a 

robustness to fault matching, if the most credible segment is 

considered as the matched segment. Nevertheless, we think 

that in case of ambiguity (i.e. the selected segments belong to 

different roads) a multi-hypotheses matching is preferable.  

In Figure 26, the distance from the DGPS position to the 

most credible road is plotted. It illustrates the good 

performance of the road selection method since this distance is 

in the order of several meters. We think this is mainly due to 

an offset between the map and the GPS navigation solution, 

clearly visible on the figure. The two large values (index ~150 

and index ~300) correspond to wrong selections, the second 

one being the one of Fig. 25. It is important to notice that the 

success of a map matching algorithm based uniquely on the 

selection of the most credible segment is contingent on the 

availability of accurate navigation solution and small offsets 

of the map. 

 

10/12 



T-ITS-04-07-0077.R4 
 

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

450

500

y (m) 

x (m)
 

Fig. .  GPS points (.)  and nearest points of  the candidate roads (+) 
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Fig. .  Distance between DGPS path and candidate roads 

 

V. CONCLUSION 

This article has presented a multi-criteria fusion technique 

for the selection of roads from a road network database, which 

is a key issue in road matching. The main contributions of this 

work are the formalization of this problem using the 

framework of Belief Theory, the development of assignment 

functions (called criteria), and an experimental validation with 

real data using a differential GPS and the ABS sensors. Two 

criteria have been proposed and developed. They use an 

estimated pose (position and heading) of the car obtained 

thanks to the fusion of GPS and ABS using an EKF. These 

criteria take into account the estimation error as well as 

geographical errors. It is interesting to note that in Belief 

Theory, the lack of knowledge concerning a criterion can be 

quantified (in this particular case, it is the Perhaps hypothesis) 

and managed in the fusion process. Moreover, as different 

decision laws can be applied, different behaviors can be 

obtained. If a reliable behavior is desired, the ideal decision 

law needs to be used, as used in this work.  

The main advantage of this strategy is that it is possible to 

detect an ambiguous situation, where different sources of error 

have led to several roads becoming indistinguishable. This 

method can, however, detect the fact that the vehicle is not on 

a road stored in the database. This situation can be 

encountered if the roadmap is not exhaustive. 

This approach is flexible and modular in the sense that it 

can easily integrate other criteria. The result of the fusion of 

two criteria can be fused with the masses assigned by a third 

criterion, and so on. It is therefore possible, using the same 

framework, to build and fuse other criteria testing, for 

example, the connectivity or the direction of the segments. 

This feature is interesting because adding other criteria is a 

way of increasing the robustness of the road selection. 

As the segments are dealt with one by one, the size of the 

frame of discernment is small and, therefore, the method is 

well adapted to real-time conditions. For example, it takes on 

average 50 ms to process 10 segments with an Intel Pentium 

III 700MHz computer.  

Finally, this method can be considered an excellent tool for 

improving positioning reliability, since it is possible to 

quantify the ambiguity of a situation and therefore the 

confidence in a road-match segment. This information is 

crucial for the development of fusion techniques that use the 

selected segments to improve the localization process.  
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