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Abstract

This paper presents a parallel hardware implementation of
a well-known navigation control method on reconfigurable
digital circuits. Trajectories are estimated after an iterated
computation of the harmonic functions, given the goal and
obstacle positions of the navigation problem. The proposed
massively distributed implementation locally computes the
direction to choose to get to the goal position at any point of
the environment. Changes in this environment may be im-
mediately taken into account, for example when obstacles
are discovered during an on-line exploration. The imple-
mentation results show that the proposed architecture si-
multaneously improves speed, power consumption, preci-
sion, and environment size.

1 Introduction

Trajectory planning consists in finding a way to get from a
starting position to a goal position while avoiding obstacles
within a given environment or navigation space.

Harmonic functions have been proposed as potential
fields for trajectory planning in [3]. This “harmonic con-
trol” approach was motivated by the fact that harmonic
functions do not have local extrema (unlike other poten-
tial based methods as in [9]). In this approach, obstacles
correspond to maxima of the potential, while goals corre-
spond to minima. Control algorithms then reduce tolocally
descend the potential until they reach aglobalminimum.

Harmonic control has had some impact on the
robotics community [10, 16, 1, 5, 7, 8, 12, 14]. Neverthe-
less, very few hardware implementations have been pro-
posed. They are usually analog, therefore they suffer from
a very long and complex design process, and a lack of flexi-
bility (environment size, precision). This paper proposesan
embeddable digital implementation on reconfigurable cir-
cuits, so as to reduce design time and to improve flexibility.

The proposed implementation maps the massively
distributed structure of the space-discretized estimation of
the harmonic function onto the circuit. An area-saving se-
rial arithmetic is used, within a global scheme that simul-
taneously ensures pipelining and parallelism of the itera-
tive computations. The decision process is also taken into
account, through local estimations of the direction to take
from any point.

Though the speed performance reported in this paper
outperform software implementations, the main advantages
of the described architecture is to provide low-power and
scalable solutions that are able to handle the very large pre-
cisions required by harmonic control within large naviga-
tion environments.

Section 2 describes the principles of harmonic func-
tions and of their use for trajectory planning. Section 3
summarizes the advantages of hardware parallel implemen-
tations on FPGAs for embedded navigation in autonomous
systems, and it justifies the choice of serial arithmetics, es-
pecially with respect to the precision requirements of har-
monic control. The proposed hardware architecture and its
implementation results are described in section 4.

2 Harmonic control

In this part, we begin by a brief reminder of harmonic func-
tions and some of their properties after which we will dis-
cuss their application to the navigation problem.

2.1 Harmonic functions

Let Ω be an open subset of IRn, ∂Ω its boundary and̄Ω its
closure such that̄Ω = Ω ∪ ∂Ω.

Definition Let u : Ω̄ → IR be a real function, twice con-
tinuously differentiable, andΩ ⊆ IRn with n > 1. The
functionu is harmonic iff∆u =

∑n

i=1

∂2u
∂x2

i

= 0.

This equation is known as Laplace’s equation. Harmonic
functions satisfy interesting properties:

• The maximum principle states that: ifu is a non-
constant continuous function on̄Ω that is harmonic on
Ω, thenu attains its maximum and minimum values
overΩ̄ on∂Ω.

• Applying the divergence theorem on harmonic func-

tions, the following equation holds:
∫

s

~∇u · ~n ds = 0

wheres is the boundary of a closed region strictly in
Ω and~n is a normal vector ofs. This equation ex-
presses that the normal flux of the gradient vector field
through the region bounded bys is zero. It follows
that there can be no local minimum or maximum of
the potential inside a bounded region ofΩ.



Figure 1. Trajectories generated by harmonic control
(100× 100 grid, equally spread starting points, two goals).

2.2 Application to navigation

To solve the navigation problem using harmonic functions,
we consider the problem as a Dirichlet problem: its solu-
tion is to find the functionu that is harmonic onΩ (the
navigation space) and that satisfies boundary conditions on
∂Ω (obstacles and navigation goal):

{

∀x ∈ Ω, ∆u (x) = 0
∀x ∈ ∂Ω, u (x) = g (x)

where the functiong : ∂Ω → IR represents boundary con-
ditions on∂Ω. These conditions define the values of the
navigation function on obstacles and goals. Without loss of
generality we chooseg(x) = 1 for obstacles andg(x) = 0
for goals. Solving the Dirichlet problem consists in finding
the functionu that is harmonic onΩ and that has value 1
on obstacle positions and value 0 on goal positions.

The navigation problem is then solved as follows: a
simple descent along the gradient ofu provides a trajectory
towards a given goal from any starting position. The prop-
erties of harmonic functions ensure that such a path exists
and it is free of local optima.

2.2.1 Numerical method to solve Laplace’s equation

In this part we consider the case whereΩ = IR2. Tradi-
tionally, Laplace’s equation is solved using methods from
finite differences on a regular grid (discrete sampling ofΩ).
Using a Taylor approximation of the second derivatives we
obtain the following discrete form ofu (x1, x2):

∆δu (x1, x2) =
1

δ2
[u(x1 + δ, x2) + u(x1 − δ, y1)

+u(x1, x2 + δ) + u(x1, x2 − δ) − 4u (x1, x2)]

whereδ is the sampling of the grid that representsΩ. In this
form, the equation can be solved using relaxation methods

such as Jacobi or Gauss-Seidel whose principle is to itera-
tively replace each grid point value with the simple average
of its four neighbors. Figure 1 shows different trajectories
generated by simulations using this numerical scheme.

2.2.2 Properties of harmonic navigation functions

Harmonic navigation functions have many interesting
properties which motivated their use in numerous applica-
tions especially in robotics [13, 4, 7, 5, 16, 14, 10, 12, 1, 8]:

Global navigation: Complete trajectories may be gener-
ated towards a goal position from anywhere in the environ-
ment, since there are no local minima.

Dynamic trajectory planning: Unexpected updates of
the environment may be taken into account, since harmonic
functions are computed by iterative relaxation methods.
Therefore newly detected obstacles may be integrated in
the model as new boundary conditions during computation,
so that harmonic control is available in dynamic environ-
ments or in environments explored on-line [16, 2].

Parallel computation: An interesting property of the
computations described above is their massively parallel
distribution. Computing grid point values only requires lo-
cal information of the neighboring cells. Fine-grain parallel
implementations appear as an opportunity, as discussed in
the next section.

3 Towards an embedded implementation

The results shown in figure 1 were obtained from software
simulations carried out on a PC. The aim of our work is
to design an embedded system for robot navigation. Com-
putation speed is not the only criterion (trajectory decision
must be performed in real time). Power consumption is
also essential for autonomous systems. Moreover, compu-
tation precision and scalability appear as critical issuesfor
harmonic control, as discussed below. These combined as-
pects motivate the design of a parallel hardware implemen-
tation. In such a work, the number of inputs/outputs and
above all the level of parallelism have a direct influence
on the obtained implementation consumption and speed. A
massively parallel implementation is a real challenge, tak-
ing into account constraints such as precision, grid size,
dynamic updates, etc.

3.1 Implementation environment

Since the appearance of programmable circuits, such as
field programmable gate arrays(FPGAs), algorithms may
be implemented on fast integrated circuits with software-
like design principles. Usual VLSI designs lead to very
high performances. But the time needed to realize an ASIC
(application specific integrated circuit) is too long, espe-
cially when different configurations must be tested. The
chip production time is usually very long (up to 6 months).



FPGAs, such as Xilinx FGPA ([15]), are based on
a matrix ofconfigurable logic blocks(CLBs). Each CLB
is able to implement small logical functions (4 or 5 in-
puts) with a few elementary memory devices (flip-flops
or latches) and some multiplexors. Each CLB is inde-
pendently programmable. Similarly, the routing structure
that connect the CLBs can be configured. A FPGA ap-
proach simply adapts to the handled application, whereas a
usual VLSI implementation requires costly rebuildings of
the whole circuit when changing some characteristics. A
design on FPGAs requires the description of several op-
erating blocks. Then the control and the communication
schemes are added to the description, and an automatic
“compiling” tool maps the described circuit onto the chip.

3.2 Technological choices

The main issues when a massively distributed model is
mapped onto a FPGA are the huge number of operators,
and the routing problems due to the dense interconnections.
A first standard technological choice to solve these prob-
lems is to use serial arithmetics: smaller operators may be
implemented, and they require less connection wires. An-
other essential technological choice is to estimate the mini-
mum precision required to keep satisfactory results with as
small as possible operators and memory resources.

3.2.1 Serial arithmetics

Serial arithmetics correspond to computation architectures
where digits are provided digit after digit. Serial arith-
metics lead to operators that need small implementation ar-
eas and less inputs/outputs, and that easily handle different
precisions, without an excessive increase of the implemen-
tation area. Serial systems are characterised by their delay,
i.e, the numberδ such thatp digits of the result are deduced
from p + δ digits of the input values.

Two main kinds of serial arithmetics are available:
LSBF or MSBF (least/most significant bit first). Standard
serial operators work in a LSBF mode. Though our model
requires the computation of a minimum value (gradient de-
scent), that may only be computed in a MSBF mode, we
use standard serial operators to optimize the required area1.

3.2.2 Computation precision

Software simulation are usually performed to study the pre-
cision that is required by an application before its hard-
ware implementation. Precision issues appear as a critical
problem for harmonic control, that has already been men-
tioned as a major limitation for analog implementations
[13]. Computing a harmonic potential over a large grid
may result in gradients that are too small to use because
the allowable precision is easily reached. Connolly [4]

1The only existing radix-2 MSBF serial arithmetics is calledon-line
arithmetics. It uses a redundant number representations system, which
induces less area-saving operators.

presents a relationship between the precision required for
floating point representation on a computer and the number
of nodes on the grid. He argues that the precision should
at least represent1

N
, whereN is the total number of grid

points, to circumvent precision problems. This further mo-
tivates the use of an embeded implementation in which we
can allow very high precisions (see 4.3).

We have carried out experimental simulations with
different navigation spaces. They have shown that for some
50 × 50 grids, a 22-bit precision is required at least to en-
sure significant differences between neighboring grid point
values so as to generate correct trajectories. Other simu-
lations have shown that very large grids may require more
than 64-bit precision numbers. It should be pointed out that
in case of insufficient precision, large areas of the grid may
share the same value, which results in wrong trajectories.

Implementations based on serial arithmetics may be
more easily extended to larger precisions than implemen-
tations based on parallel arithmetics. Since the size of se-
rial adders and comparators does not depend on precision
(unlike multipliers and elementary functions), our imple-
mentation may handle large precisions by means of rather
simple changes in the control modules.

4 Hardware implementation of harmonic
control

Though harmonic control has been widely used in robotics,
few hardware implementations have been proposed. Their
technological choices are mostly motivated by the fact that
analog resistive grids may easily compute the harmonic
function as in 2.2.1. For example in [11] an analog im-
plementation of a16 × 16 grid is proposed. The main
limitation of this work is the precision (as for most analog
implementations). To our knowledge, digital FPGA-based
implementations have not yet been proposed.

In this work, the discretized computation of the har-
monic function is performed to make navigation decisions
for a robot in an environment that may be explored on-line.
Navigation orders are also discretized: at each position, the
robot is ordered to move north, east, west or south. This
simplification implies that the optimal trajectory along the
gradient is only roughly estimated by elementary move-
ments along the axis’. It still results in global trajectories
towards the goal position from any starting point.

4.1 General architecture

The fine grain pipelined internal structure of the proposed
digital architecture was implemented using fixed point
arithmetic. Since grid point values range from 0 to 1, an
unsigned representation with 25 bits is chosen, with a 24-
bit fractional part. As mentioned above, larger wordlengths
may easily be handled.

Figure 2 illustrates the general architecture of the im-
plementation of harmonic control for an × n grid. It con-



obstacle X

Y
position module

x y
robot
control

border
nodes

nodes

NEWS

all enable signals
decision modulecontrol module

all NEWS signals

Figure 2. General architecture

sists of a grid ofn × n identical node modules (gathered
16 by 16 to handle on-chip data storage and access) sur-
rounded by border node modules, a control module, a de-
cision module, and a module to interact with the robot.

The role of each component is the following:
◦ Each node computes its corresponding grid point value,
as well as the direction (north, east, west or south) to follow
to get to the goal position. All nodes use loop computations
within an internal pipeline scheme. This scheme is particu-
larly efficient for serial implementations of iterated compu-
tations within massively distributed models ([6]). The con-
trol of these computations are synchronized in the whole
grid so that nodes may serially communicate their grid
point values to their neighbors. In order to simplify the
block-diagram of figure 2, only few buses and wires are
shown: the signals that carry the grid point values from
and to any neighboring node.

◦ The nodes are split in groups of 4×4 nodes that share
common storage resources: a single dual port SRAM block
stores the values of the 16 grid points, and its R/W accesses
are controlled by a single set of counters (see 4.2).

◦ The border nodes are very simple. They serially gener-
ate the grid point value of obstacles.

◦ The interaction with the robot has not yet been imple-
mented. It strongly depends on the exact configuration of
the robot and of the FPGA board. It includes a position

modules, which role is mainly to compute the coordinates
(X,Y) of the closest grid point around the real coordinates
(x,y) of the robot in its environment.

◦ The control module generates the enable signals that
are sent to all nodes to control their individual behaviour
when a non-synchronized event occurs:

• convergence of the computation of the harmonic func-
tion (it depends on the local convergence signals com-
puted by all nodes, see 4.2)

• detection of an unknown obstacle (at node(X,Y))

◦ The decision modules collects the navigation directions
locally indicated by each node, and it forwards the selected
direction of node(X,Y) to the robot.

In the following subsections, the hardware architec-
ture for the node model and its main components will be
described in some detail.

4.2 Node implementation

The architecture for the node model is shown in the
simplified block diagram on figure 3. It uses 1-
bit inputs and outputs to exchange data among nodes
and with the global modules. Inputs are mainly used
to receive the neighboring grid point values (signals
h_N,h_E,h_W,h_S) and global control signals (stan-
dard signalsclk,reset,enable, signalssel,sat
to indicate obstacle/goal changes, and SRAM controls
EN,R,W). Outputs are twofold: the local valueh of
the harmonic function is sent to all 4 neighbors (signals
to_N,to_E,to_W,to_S) and signalsNE andWS code
the 4 possible directions to which a robot located around
this grid point should move.

The proposed hardware node model is constituted by
five main modules: the iterative computation of the har-
monic function is performed by theUpdate module, the
local convergence of this computation is detected by the
Cvg module, the local navigation decision is performed by
theDirection module, the node receives orders to be-
have as an obstacle or a goal through theSaturation
module, and communication with the dual port SRAM
block that stores the grid point value is controled by the
Mem module. Figure 3 shows this architecture, as well as
its interaction with shared resources (the localCounters
andRAMmodules are shared by a group of4×4 nodes, and
theEnable module is part of the global control module).
The functionality of the main modules and their implemen-
tation details are described below.

Update: This module performs the iterated computation
of the harmonic function valuehi,j where(i, j) are the co-
ordinates of the node in the grid. As described in 2.2.1,
each iteration computes:

hi,j(t + 1) =
hi−1,j(t) + hi,j−1(t) + hi+1,j(t) + hi,j+1(t)

4
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Three standard Full-Adder cells compute this average,
without any shift or division operator, since the output
value is sent to the RAM with a write address that is de-
layed by 2 clock cycles (division by 4). Additional flip-
flops are required to store the carry values.

Cvg: This module serially compares the output of the it-
erated computation to the stored value (delayed by two flip-
flops in theMem module). This local convergence test is
then sent to a global NOR gate (see theEnable module)
to disable the computation loop after convergence.

Direction: This module operates after convergence of
the iterations. It computes the minimum grid point value
among the 4 neighbors. Its output is the 2-bit code of the
direction to choose. This code is computed by theNEWS
module that receives the results of the three comparators.
This computation is performed in a MSBF mode, thanks to
the reverse address counterr_cnt.

Counters: This module is shared by 16 nodes. It gen-
erates the read (resp. write) addresses for the dual port
RAM by means of counterscntR (resp.cntW). The read
address is multiplexed with the reverse counterr_cnt to
change from LSBF to MSBF mode. When handlingd-bit
precision data, these counters are reset eachd + 2 cycles
(the RAM is written with a 2-clock cycles delay). Value 1
(for obstacles) is computed as a logical function ofcntR.

Mem and Saturation: The local grid point value is not
directly the output of theUpdate module. It may also

be a constant 0 or 1 (goal or obstacle). A multiplexer se-
lects the correct value with respect to a control given by
theSaturation module that memorizes thesat value
to be the constant value of the grid point when the node is
selected by the global control module (signalsel).

4.3 Implementation results

This work uses a PCI bus board equiped with a Vir-
tex XC2V6000-4FF1517 FPGA from Xilinx, with up to
6,000,000 system gates. Such a FPGA contains 67,584
logic cells, to be compared with the 200,448 ones of
the current largest Virtex-4. The design was synthesized,
placed and routed automatically in Xilinx Foundation ISE
7.1i. Each node requires 20 logic cells, so that each block
of 16 nodes requires 360 logic cells (counters included).
On a XC2V6000, 144 dual port SRAM blocks are avail-
able, that may be configured as1K×18 RAMs to be shared
by blocks of 16 nodes. The whole architecture implements
a 48 × 48 grid on less than 77 % of the XC2V6000 logic
cells. Larger grids (up to72× 72) may be implemented on
the current largest FPGAs with this approach (the available
SRAM blocks being the critical resource).

Software implementations of the harmonic function
computation on a microprocessor based computer, Pentium
4, 2 GHz, require around 100µs per iteration with a50×50
grid (100 to 1000 iterations are required to converge, de-
pending on the environment). In the proposed hardware
implementation, 27 clock cycles are required per iteration,
with an estimated clock frequency of 140 MHz. Thus, the



architecture provides a speed factor up to 500×, that would
even increase with the number of nodes in the grid (sequen-
tial vs parallel implementation). But the implementation
speed is not the main advantage of our implementation:
real-time computation is easily reached by software imple-
mentations for such precisions and size grids. Power con-
sumption is a key factor for embedded implementations,
and above all very large precisions may be easily handled
by the proposed serial implementation (up to 1K bits when
fully using the SRAM blocks).

5 Conclusion and future work

We have presented an embedded architecture to solve the
navigation problem in robotics, that computes trajectories
along a harmonic potential, using a FPGA implementation.
This architecture includes the iterated estimation of the har-
monic functions. The goals and obstacles of the navigation
problem may be changed during computation. The trajec-
tory decision is also performed on-chip, by means of local
computations of the preferred direction at each point of the
discretized environment. The proposed architecture uses a
massively distributed grid of identical nodes that interact
with each other within mutually dependant serial streams
of data to perform pipelined iterative updates of the local
harmonic function values until global convergence.

The proposed architecture enables us to handle very
large precisions using SRAM blocks, which is a benefit
over computer resolution of harmonic funtions. Furthe-
more, a greatly improved speed and a low power consump-
tion are other non-negligible advantages, since the goal is
to embed this implementation on mobile robots. The cur-
rent hardware model is already able to handle significantly
large discretized environments.

Future architecture improvements are already consid-
ered to extend the capacities of the model to navigation
within larger and more complex environments. A stud-
ied extention efficiently uses the available SRAM to handle
very large grid, by means of an iterated computation mode
that is both globally asynchronous and block-synchronous.
Current efforts are also made to extend our implementation
to optimal control, a more generic (and tunable) trajectory
planning method.
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