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A Tool for Lazy Verification of Security Protocols

Y. Chevalier, L. Vigneron

Abstract— We present the lazy strategy imple-
mented in a compiler of cryptographic protocols,
Casrul. The purpose of this compiler is to verify
protocols and to translate them into rewrite rules
that can be used by several kinds of automatic or
semi-automatic tools for finding flaws, or proving
properties. It is entirely automatic, and the effi-
ciency of the generated rules is guaranteed because
of the use of a lazy model of an Intruder behavior.
This efficiency is illustrated on several examples.

INTRODUCTION

The verification of cryptographic protocols has
been intensively studied these last years. A lot of
methods have been defined for analyzing particu-
lar protocols [14], [3], [5], [16], [20], [9]. Some tools
(Casper [11], CVS [8], CAPSL [6]) have also been
developed for automating one of the most sensi-
tive step: the translation of a protocol specifica-
tion into a low-level language that can be handled
by automated verification systems.

Our work is in this last line. We have designed
a protocols compiler, Casrul [10], that translates a
cryptographic protocol specification into a set of
rewrite rules.

This translation step permits, through static
analysis of the protocol, to rule out many errors
while being protocol independent. A comparison
of Casrul with systems such as CAPSL and Casper
can be found in [10]. But for short, let us say
that our tool handles infinite states models, and is
closer to the original Dolev-Yao model.

The output of our compiler can be used to get
a representation of protocols in various systems:
o As Horn clauses, it can be used by theorem
provers in first-order logic, or as a Prolog program.
« As rewrite rules, it can be used by inductive the-
orem provers, or as an ELAN program.
o As propositional formulas, it can be used by
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In our case, we use the theorem prover dalac
for trying to find flaws in protocols. The tech-
nique implemented in dalac is narrowing. This
unification-based technique permits us to handle
infinite states models, and also to guarantee the
freshness of the randomly generated nonces or
keys [10]. Note that there was a first approach
with narrowing by Meadows in [12].

The main objective of this paper is, after giving
a general presentation of Casrul in Section I, to
present in Section II an innovative model of the
Intruder behavior, based on the definition of a lazy
model. This lazy approach is completely different
and much more efficient than the model of the
Intruder presented in [10]. In Section III, we show
that our method can be successfully applied to
many different kinds of protocols. We explain the
results obtained for two protocols and we give a
summary of flaws found in other protocols.

I. InpuT PROTOCOLS

We present in this section the syntax used for
describing security protocols, illustrated in Fig-
ure 1. This syntax has been fully detailed in [10],
and is close to one of CAPSL [13] or Casper [11]
though it differs on some points — for instance, on
those in Casper which concern CSP. All the notions
we will use for protocols are classical and can be
found in [19].

We also present some algorithms for verifying the
correctness and run-ability of the protocol.

These algorithms are implemented in our com-
piler, Casrul!, that transforms a protocol given as
in Figure 1 into a set of rewrite rules. In [10],
we have proved that this compilation defines a
non-ambiguous operational semantics for proto-
cols and Intruder behavior.

The information given for describing a protocol
can be decomposed into two parts: the descrip-

"http://www.loria.fr/equipes/protheo/SOFTWARES/CASRUL/



Protocol WLMA;

Identifiers

Q,P,S : User;

Np,Ngq : Number;,

Kpq,Kps,Kqs : Symmetric_key;

Knowledge

Q : P, S, Kgs;

P : @, S, Kps;

S 1 P,Q, Kps, Kgs;

Messages

1.P - @Q : PNp

2.Q - P : Q,Ngq

3.P - @ : {P,Q,Np,Nq}Kps

4.Q —- S : {P,Q,Np, Nq}Kps,
{P,Q,Np,Nq}Kqs

58 = Q : {Q, Np, Nq, Kpq} Kps,
{P,Np,Nq, Kpq}Kqs

6.Q - P :{Q,Np,Nq,Kpq}Kps,{Np, Nq}Kpq

7P = Q : {Nq}Kpq

Session_instances

[P:a;Q:1;S : se; Kqs : kis; Kps : kas]

[P:1;Q :a;S : se; Kps : kis; Kqs : kas];

Intruder Divert, Impersonate;

Intruder_knowledge a, se, kis;

Goal Correspondence_between @) S;

Fig. 1. Woo and Lam Mutual Authentification Protocol.

tion of the protocol itself, and the instances and
strategies to be used for verifying it.

A. Main Information

The description of a protocol is the composi-
tion of three types of information: the identifiers,
the messages, and the initial knowledge. Let us
present each of these.

A1 Identifiers.

This section contains the declaration of all the
identifiers used in the protocol messages. This in-
cludes principals (users), keys (symmetric, pub-
lic/private, table), random numbers (also called
nonces), hash functions. Some of those identifiers
will be used as fresh information, i.e. they will be
generated during the execution of the protocol.
Let us give more details about the three kinds of
keys:

« A symmetric key is a key that is used to decode
what it has encoded. For instance, if a message M
is encoded by a symmetric key K, written {M } g,
then {{M}k}k is equal to M.

o A public key is a key known by everybody; to
each public key K corresponds a unique private
key K~! able to decode what K has encoded:

{{M}k} k-1 is equal to M. In general, a private
key is associated to a principal and can be used as
a signature: {{M}g-1}x is equal to M.

« A table T associates a public and a private key
to the name of a principal A: T[A] and T[A] .
Initially, only the owner of the table knows those
keys.

A.2 Initial knowledge.

The last information needed for a complete de-
scription of a protocol is the list of initial knowl-
edge of each principal.

An identifier (key or number) that is not in any
initial knowledge will be used as a fresh informa-
tion, created at its first use.

A.3 Messages.

They describe the different steps of the proto-
col with, for each one, its index, the name of its
sender, the name of its receiver, and the body of
the message itself. The syntax is very classical for
encoding: {M}x means the message M encode
by the key K. We also allow Xor encryption with
the notation (M)xor(T'), in which we assume M
and T are two expressions of the same size, thus
getting rid of bloc properties of zor encryption.

All this information brings a precise view of the
proposed protocol, and at this point we should be
able to run the protocol. However, the model of
a principal is not complete: we have to check the
protocol is correct and runnable, by verifying the
evolution of the knowledge of each principal.

B. Correctness of the Protocol

The knowledge of the principals in a protocol is
always changing. One has to verify that all the
messages can be composed and sent to the right
person, to guarantee the protocol can be run.
The knowledge of each participant can be decom-
posed into three parts:

« the initial knowledge, declared in the protocol,
« the acquired knowledge, obtained by decompo-
sition of the received messages,

« the generated knowledge, created for composing
a message (fresh knowledge).

A protocol is correct and runnable if each prin-
cipal can compose the messages it is supposed to
send. For some messages, principals will use parts



compose(U, M,1) =
t if M is known by U and named ¢

COT)’LpOS@(U, <M1 ) Mg), 7’) =
(compose(U, My, 1), compose(U, Mg, 1))
(

compose(U, (M;)xor(Mg),1) =

(compose(U, My, i))xor(compose(U, Mz, 1))
compose(U,{M}k,i) =

{compose( U7 M: i)}compose(U,K,i)
compose(U, T[A],i) =

compose(U, T, i)[compose(U, A, 1))
compose(U, T[A]1,i) =

compose(U, T, i)[compose(U, A, )]~ !

compose(U, M, i) =

nonce(Teime) if M is a nonce

compose(U, M,i) = Fail else

Fig. 2. The function compose

of the received messages. So, a principal has to up-
date its knowledge as soon as it receives a message:
it has to store the new information, and check if
it can be used for decoding old ciphers (i.e. parts
of received messages it could not decode because
it did not have the key).

The following function describes the composi-
tion of a message M by a principal U at step 1.
Its knowledge is therefore the union of its initial
knowledge and the information it could get in the
received and sent messages, until step ¢ — 1 (in-
cluded). For an easier reuse of this knowledge, a
name is assigned to each information.

As the message M will be sent by U at step ¢, any
problem will generate a failure in this function.

In addition to being able to compose the mes-
sages, a principal has also to be able to verify the
information received in messages: if it is supposed
to receive an information it already knew, it has to
check it is really the same. A principal also knows
the shape of the messages it receives. So it has to
be able to check that everything it can access in a
received message corresponds to what it expected.
These verifications are done by the following func-
tion, where a principal U tries to compose an ex-
pected message M using its knowledge before step
1, the step when he will receive this message. All
the unknown ciphers are replaced by new vari-
ables.

expect(U, M,i) =

compose(U, M, i) if no Fail

expect(U, (M, Mg),1) =
(expect(U, My, 1), expect(U, Mo, 1))

expect(U, (M;)xor(Mg),i) =
(compose(U, My, i))xor(expect(U, Mg, 1)) if no Fail

expect(U, (M;)xor(Mg),) =
(expect(U, My, i))xor(compose(U, Mg, 1)) if no Fail

expect(U,{M}k,i) =

{expect(U, M, i)} compose(U,k~1,i)~1 if no Fail
expect(U,{M}g-1,i) =

{expect(U, M, i)} compose(U, K i)~ if no Fail
expect(U,{M}sk,i) =

{exPGCt( U,M, i)}compose(U,SK,i) if no Fail
expect(U, M,3) = zu,m,i else

Fig. 3. The function expect

Note that K stands for a public key, K~ for a
private key (possibly through the use of a table),
and SK for a symmetric key.

These algorithms (and others) are implemented
in Casrul. This compiler can therefore generate
rewrite rules that model the behavior of principals:
to wait for a message and then to send a new one.

expect(U, M;, i) = compose(U, M;y;,i+ 1)

This kind of model was already used by Dolev and
Yao in [7].

C. Additional Information

Verifying a protocol consists in trying to sim-
ulate what an Intruder could do for disturbing
the run of the protocol, without some participants
knowing. In this purpose, we require more infor-
mation in the protocol description.

(C.1 Session instances.

This field proposes some possible values to be
assigned to the persistent identifiers and thus
describes the different systems (in the sense of
Casper [11]) for running the protocol. The differ-
ent sessions can take place concurrently or sequen-
tially an arbitrary number of times. Note that we
can mention that some sessions are between hon-
est principals, and some other sessions involve the



Intruder (I), playing the role of one of the princi-
pals.

C.2 Intruder.

The Intruder field describes which strate-
gies the Intruder can wuse, among passive
eaves_dropping, divert and impersonate. If
nothing is specified, this means that we want a
simulation of the protocol without Intruder.

The Intruder can record all the messages spread
over the net. In addition, if divert is selected,
it can remove messages; if eaves_dropping is se-
lected, it cannot.

The Intruder is then able to reconstruct terms as
it wishes, using all the information it got. It can
send arbitrary messages in his own name.

If moreover impersonate is selected, then it can
fake others identity in sent messages.

We will focus on the case where the Intruder
may divert messages and impersonate principals.

C.3 Intruder knowledge.

The Intruder_knowledge is the list of informa-
tion known from the beginning by the Intruder.
Contrarily to the initial knowledge of others prin-
cipals, each element of the Intruder knowledge has
to have been introduced in Session_instances,
as an effective knowledge (and not a formal one
used for describing the messages).

C.4 Goal.

This field gives the kind of flaw we want
to detect. There are two families of goals,
Correspondence_between and Secrecy_of.
Secrecy means that some secret information (e.g.
a key or a number) exchanged during the protocol
is kept secret.

Correspondence means that every principal was
really involved in the protocol execution, i.e. that
mutual authentication is ensured.

We do not detail here how those goals are specified
by Casrul, and how they are checked. This does
not differ from the specifications given in [10].

II. INTRUDER’S MODEL

One of the biggest problem in the area of cryp-
tographic protocols verification is the definition of
the Intruder. The Dolev-Yao’s model of an In-
truder [7] is not scalable, since there are rules for

composing messages, and these rules such as build-
ing a couple from two terms, do not terminate:
given a term, it is possible to build a couple with
two copies of this term, and to do it again with
that couple.

In some approaches people try to bound the
size of the messages, but these bounds are valid
only when one considers specific kinds of proto-
cols and/or executions. We want to be able to
study all the protocols definable within the Casrul
syntax, and to get a system that is as independent
as possible of the number of sessions. Thus, those
bounds are not relevant in our approach, and this
led us to bring a new model of the Intruder.

A proposed approach to deal with this infinite-

space problem is to use a lazy model while testing
the protocol by model-checking [2]. Though in
a different approach, our work can be connected
to this since we have developed a lazy version of
Dolev-Yao’s Intruder: we replace the terms build-
ing step of the Intruder by a step in which, at
the same time, the Intruder analyzes its knowl-
edge and tests if it can build a term matching the
message awaited by a principal; the pattern of the
awaited message is given by the principal, instead
of being blindly composed by the Intruder, thus
defining our model as a lazy one.
This strategy may look similar to the one de-
scribed in [17] (Chapter 15), but our lazy model
is applied dynamically during the execution of the
protocol, while Roscoe’s model consists in looking
for the messages that can be composed by the In-
truder before the execution of the protocol, thus
preparing those messages in advance, statically.
One advantage of our method is that we can find
some type flaws (in the Otway-Rees protocol, for
instance) that cannot be found at the compilation
time.

In the following, we first briefly present the sys-
tem testing if terms can be built. Then, we define
a system for decomposing the Intruder’s knowl-
edge, relying on the testing system. It is re-
markable that the knowledge decomposition using
this system now allows decomposition of ciphers
with composed key (see the Otway-Rees exam-
ple in Section III-B) and even the xor-encryption,
whereas other similar models such as [1] only al-
low atomic symmetric keys.



For the next two sections, we have to give the
meaning of the terms in the rewrite rules generated
by Casrul.

« Atomic terms are those constants declared in the
Session_instances field;

o Some unary operators are used to type those
constants, such as mr to describe a principal; we
also use r for representing any of those operators;
« The ¢ operator stands for coupling;

e crYPT, scrypT and xcrypr operators stand respec-
tively for public or private key encryption, sym-
metric key encryption and zor-encryption.

We also use other operators whose meaning should
be clear from the name, e.g. the Comp operator,
except maybe for the “.” operator, which is not
a list constructor, but an AC operator.

A. Test of the Composition of a Term

The heart of our Intruder’s model is to test if a
term matching a term ¢ can be composed from a
knowledge set C'. The rewriting system described
in Figure 4 tries to reduce Comp(t) from C ; Id,
building a substitution 7.

Comp(t).T fromt.C ; 7 —

T fromt.C; 1 (1)

Comp(r).T froms.C ; 7 "7 5%

To from so.Co ; 10

(2)

Comp(c(ty,t2)).T from C ; 7 —

Comp(t1). Comp(te).T from C ; (3)

Comp(crYPT(t1,1t2)).T from C ; 7 —

Comp(ty). Comp(ts).T from C ; T (4)

Comp(scrypr(ty,t2)).T from C ; 7 —

Comp(ty). Comp(ts).T from C ; T (5)

Comp(xcrypPr(t1,t2)).T from C ; 7 —

Comp(t1). Comp(te).T from C ; (6)
Fig. 4. System to test if a term may be composed from
some knowledge.

This system, being complete in the sense that
it can find all the ways of composing a term, can-
not be confluent since two different ways will lead
to two different normal forms. It also heavily re-
lies on the fact that we do not use the rule (2)
when the term ¢ is a variable, thereby reducing
the test of the composability of a term to the test
of the composability of some of its variables, which
can then be instantiated later. This restriction is

mandatory in our system, since the Intruder could

otherwise build terms of unbounded depth.
For example, from the Intruder’s knowledge
mr(a).scryer(sk(k,), nonce(Na)), we may test if a

term matching crver(c(Mr(a), z1), scrver(sk(k,), x2))
can be built:

Comp(cryPT(c(MR(a), z1),SCRYPT(sk(ky), z2)))
from Mr(a).scrYPT(sk(k,), nonce(Na)) ; Id

—@ Comp(c(mr(a), z1)). Comp(scrypr(sk(k,), 2))
from Mr(a).scryPT(sk(k,),nonce(Na)) ; Id

—G) Comp(Mr(a)). Comp(x1). Comp(scrypr(sk(k,), z2))
from mr(a).scrypr(sk(k,),nonce(Na)) ; Id

- Comp(xy). Comp(scryPr(sk(k,),z2))
from mr(a).scrypPT(sk(k,),nonce(Na)) ; Id

—2) Comp(zy)
from mr(a).scryPT(sk(k,),nonce(Na)) ; o

The test is successful, generating the substitution
0 : Ty < noxce(Na) in the last step. This is the
only solution. In general, we have to explore all
the possible solutions. Note that we stop, accept-
ing the composition, as soon as there are only vari-
ables left in the Comp terms.

B. Decomposition of the Intruder’s Knowledge

In Dolev-Yao’s model, all the messages sent by
the principals acting in the protocol are sent to
the Intruder. The Intruder has then the possibil-
ity to decompose the terms he knows, including
the last message, and build a new one, faked so
as it appears it has been sent by another princi-
pal (chosen by the Intruder). We define a system
that keeps in a predicate, UFO, the data that are
not already treated by the Intruder, and moves
the non-decomposed knowledge out of UFO. For
the decryption of a cipher (but this should also
apply to hash functions), we use a predicate and
a conditional rewrite rule. The resulting system
described in Figure 5 only deals with decompos-
ing the knowledge of the Intruder, where we are
always using, together with the fourth rule, the
equality t 1! =¢.

We note this system with A(¢,C,0), a predi-
cate that is true whenever the term ¢ can be build
from the knowledge C using a substitution o. The
system of Figure 4 shows that this predicate can
be implemented with rewrite rules similar to those
that are used to test if a principal can compose a



C.UFO(r(t).C") —
C.r(t).UFO(C")

C.UFO(C(tl, tg)cl) —
C.UFO(t;.t5.C")

C.UFO(crypr(t1,12).C") —
C.crypr(ty, ta).UFO(tEst(crypr(t1,t2)).C")

if Aty C,0) :
C.UFO(tEst(crypr(t1,19)).C") —
C.UFO(t5.C")o

C.UFO(scrypr(ty, t3).C") —
C.scrypr(t1, t2) . UFO(TEST(scrypr (21, t2)).C")

ifA(tla C: 0) :
C.UFO(rtest(scryer(ty, t3)).C") —
C.UFO(t3.C")o

C.UFO(xcrypr(ty,t2).C") —
C.xcrypr(ty, t2). UFO(TEST(XCRYPT(t1, t2)).C")

’ifA(tl,C, O') :

C.UFO(test(xcryer(ty, t3)).C") —
C.UFO(ty.C")o

if A(te,C, o) :
C.UFO(tEst(xcryer(ty, t3)).C") —
C.UFO(t,.C")o

Fig. 5. Knowledge Simplifications System.

9)

message that matches the pattern of an awaited
message.

C. Use of this Model for Flaws Detection

We can decompose the sequence of steps the
Intruder uses to send a message:

1. First, it chooses a principal, which gives a pat-
tern m that the Intruder’s message should match.
At the same time, it can give the pattern of the
message t that the Intruder will receive if it suc-
ceeds in sending a message;

2. Second, the Intruder analyzes its knowledge
and tests if it can compose a message matching
this pattern m;

3. If it can send a message matching the pattern
m, it goes back to step 1.

The only thing to add is that, in our model, the
Intruder has to keep track of all the previously sent
messages. Thus, we maintain a list of previously
sent messages with the knowledge at the time the

messages were sent:

| et (Ty from Cy) : ... : (T, from C,)

This is used, for instance in the example of
Section II-A, to prove it is sound to substitute
Nonce(Na) for xy.

We also maintain a set of knowledge C' represent-
ing the Intruder’s knowledge evolution whenever it
succeeds in sending an appropriate message. We
model a protocol step with the rule:

(C,1) = (C.t,l: (m from C))

Comparing this model to an execution model
where an Oracle tells a message (ground term)
that is accepted by the principal, and the Intruder
has to verify it can send this message, this ex-
haustive exploration system turns out to be both
sound and complete as long as we consider only a
bounded number of sessions. The variables here
are untyped, thus allowing the discovery of type
flaws and messages of unbounded size.

III. EXPERIMENTATIONS

We give a few hints on how to use our system
through two examples of protocol analysis taken
from the literature. First, we study the Otway-
Rees un-amended protocol, which has a type flaw
leading to a secrecy flaw. The EKE protocol shows
how we deal with parallel sessions. Then we list
the results obtained for other protocols that can
be found in [4].

But first, let us give a short presentation of the
prover used.

A. The Prover dalac

For studying the protocols, we have used the
theorem prover dalac?, specialized for automated
deduction in first-order logic, with equality and
associative-commutative operators.  This last
property is important, since we use an AC op-
erator for representing the list of messages at a
given state. Hence, asking for one message in this
list consists in trying all the possible solutions. A
more pertinent use is the possibility we have to
express commutative properties of constructors.
This enables us, for example, to express the com-
mutativity of encryption in the RSA protocol.

*http://www.loria.fr/equipes/protheo/SOFTWARES/DATAC/



The deduction techniques used by dalac are Res-
olution and Paramodulation [18]. They are com-
bined with efficient simplification techniques for
eliminating redundant information. Another im-
portant property is that this theorem prover is
refutationnaly complete. Our model being com-
plete with respect to the Dolev-Yao’s model, we
are certain to find all expressible flaws.

For connecting Casrul and dalac, we have de-
signed a tiny tool, Casdat, running Casrul and
translating its output into a dalac input file.

B. The Otway-Rees Protocol

The Casrul specification of this well-known pro-
tocol is given in Figure 6. To study this pro-

Protocol Otway Rees;

Identifiers

A B,S : User;

Kas,Kbs, Kab : Symmetric_key;

M,Na,Nb,X : Number;

Knowledge

A : B, S, Kas;

B : S, Kbs;

S : A, B, Kas, Kbs;

Messages

1.A - B : M,A,B,{Na,M,A,B}Kas

2.B - S : M,A B,{Na,M, A, B}Kas,
{Nb,M, A, B}Kbs

3. - B : M,{Na,Kab}Kas,{Nb, Kab}Kbs

4. B - A : M,{Na,Kab}Kas

5.A - B : {X}Kab

Session_instances

[A:a;B:b;S: se; Kas: kas; Kbs : kbs];

Intruder Divert, Impersonate;

Intruder_knowledge a;

Goal Secrecy_Of X;

Fig. 6. Otway-Rees Protocol.

tocol, we only have to compile this specification
to dalac rules and to apply the theorem prover
dalac on the generated file, leaving the result in
the Otway-Rees.exe file:

% casdat Otway-Rees.cas
% rdatac -i Otway-Rees.dat -1 o Otway-Rees.exe

The trace of an execution is quite hard to ana-
lyze if one is not familiar with the techniques im-
plemented in dalac, but hopefully, the result is the
sequence of derivations leading to the discovery of
the flaw (in 1.5s):

> Inference steps to generate the empty clause:

60 = Resol (1,56) 60 = Simpl (11,60)
60 = Simpl (34,60)
63 = Resol (5,60) 63 = Simpl (11,63)
63 = Simpl (30,63)
66 = Resol (44,63) 66 = Simpl (14,66)
66 = Simpl (52,66)

66 = Clausal Simpl({45},66)

Now, we just have to look at the given trace to
figure out the scenario that leads to the secrecy
flaw. Only the clauses after each resolution mat-
ter, when all simplifications are done.

The first one is pretty simple, since it is noth-
ing but the first principal sending its first message.
All the simplifications following correspond to the
decomposition of this message to Intruder’s knowl-
edge. We thus have:

‘ a — _ : M,a,b,{Na,M,a,b}kas ‘

The second resolution (63 = Resol(5,60)) is
much more exotic, since it is the reception of the
message labelled 4 in the protocol by principal a.
Using the protocol’s specification, it is first read
as:

a — _ : M,a,b,{Na, M,a,b}lkas
- a : M,{Na,z5}kas
a — : {X}25

At this point, we can only say that the Intruder
has tried to send to the principal ¢ a message
matching M, {Na, x5} Kas. It has no choice but to
unify (66 = Resol(44,63)) the term yielded after
the first message with the required pattern. Now,
the sequence of messages becomes:

a — _ : M,a,b,{Na, M,a,b}lkas
_ = oa : M,{Na,M,a,b}kas
a — _ : {X}(M,a,b)

The Intruder has proved that it can send a term
matching the pattern of awaited message, so we
can go on to the next step (66 = Simpl(52,66)).
But after that, decomposing what it knows, the In-
truder finds himself knowing X, that should have
remained secret. The last move (Clausal Simplifi-
cation) stamps this contradiction out, thus ending
the study of this protocol.

C. The Encrypted Key Exchange (EKE) Protocol

We shall now study the EKE protocol, known to
have a parallel correspondence-between-principals
attack. The Casrul specification of this protocol is



given in Figure 7.

Protocol EKE;

Identifiers

A, B : User;
Na,Nb : Number;

Ka : Public_key;
P R : Symmetric_key;
Knowledge

A : B, P;

B : P;
Messages

1.A - B : {Ka}P

2.B - A : {{R}Ka}P
3.A > B : {Na}lR

4. B - A : {Na,Nb}R
5 A - B : {Nb}R
Sessmn_mstances
[A:a;B:b;P:p]
[A:b;B:a;P:pl;

Intruder Divert, Impersonate;
Intruder_knowledge ;

Goal Correspondence_between A B;

Fig. 7. Encrypted Key Exchange Protocol.

The trace of execution is now a bit longer, but
it nonetheless leads to a flaw of correspondence
between principals:

> Inference steps to generate the empty clause:
87 = Resol (1,82) 87 = Simpl (12,87)
92 = Resol (2,87)
2 = Simpl (12,92)
92 = Simpl (31,92)
98 = Simpl (78,98)
105 = Simpl (12,105)
105 = Simpl (31,105)
118 = Simpl (49,118)
141 = Simpl (12,141)
141 = Simpl (31,141)
( )
( )
( )

98 = Resol (28,92)
105 = Resol (3,98)

118 = Resol (28,105)
141 = Resol (4,118)

172 = Resol (28,141)
172 = Simpl (74,172) 220 = Resol (5,172)
220 = Simpl (12,220
220 = Simpl (31,220
274 = Simpl (72,274)

274 = Clausal Simpl ({59},274)

274 = Resol (28,220)

We can study in deeper details this trace in or-
der to find the scenario of the attack. Since the
principals appear in two sessions, we’ll give, right
after the name of the principal, the number (1 or
2) of the protocol session the message belongs to.
First of all, the first principal of the first session
starts with sending its first message:

| a1) » . : {Ka}P |

Then, the Intruder tries to send a message to the
second principal of the second session (a again).
To find this, one has to look closer to the gener-

ated clauses and find in which session the message
was sent to:

a(l) = _ : {Ka}P
- = a(2) s {z }P
a(2) — _ : {{R}x1 }P

The Intruder now has to prove it could send the
message {z1}P, which is easily done through uni-
fication which the knowledge gained from the first
message (98 = Resol(28,92)). The messages sent
are now:

a(l) - _ : {Ka}P
- = a(2) : {Ka}P
a(2) — _ : {{R}Ka}P

and the Intruder can go on to the next message,
sending it to the principal a in the first session
(105 = Resol(3,98)):

a(l) » . : {Ka}P
- = a(2) : {Ka}P
a(2) — _ : {{R}Ka}P
- = a(1) : {{z1}Ka}P
a(l) = _ : {Na}z;

Then again, one can use unification (118 =
Resol(28,105)) to prove the Intruder could send
a matching message, thus yielding:

al) — _  : {Ka}P
— a(2) : {Ka}P
a(2) - - : {{R}Ka}P
— a(l) : {{R}Ka}P
a(l) - _ : {Na}lR

Now, the Intruder can go on like this until it
arrives at this point:

a(l) - - : {Kal}P
> a2  : {Ka}P
a(2) - . : {{R}Ka}P
— a(1) : {{R}Ka}P
a(l) - _ : {Na}R
— a(2) : {Na}R
a(2) - _ : {Na,Nb}R
— a(1) : {Na,Nb}R
al) - - : {NBIR
Now, the first principal of the first ses-

sion has finished his part of the protocol, but
the second one hasn’t yet started. This is
a correspondence flaw between principals, indi-
cated by the last clausal simplification (274 =
Clausal Simpl(59,274)). The total time of ex-
ecution is less than 2 minutes.

We are now moving forward to replace the defi-
nition of severals sessions by the definition of only



one session, in which we test whether there is a
flaw or not, and adding only principals who al-
ways use the same nonces to help the Intruder (see
Section III-B).

D. Other Protocols Already Studied

The study of the protocols given in Table I is
straightforward, and is done in an automatic way
similar to the one used for the Otway-Rees proto-

col.
TABLE I

RESULTS OBTAINED WITH DAIAC FOR SEVERAL
CRYPTOGRAPHIC PROTOCOLS.

Protocol User Kind of Flaw
Time
Secure RPC 41s Compromised Key
Encrypted Key Ex- || 110s | Correspondence Be-
change tween Principals
Encrypted Key Ex- || 8s Correspondence Be-
change® tween Principals
NSPK Exchange 23s Correspondence Be-
tween Principals
TMN 18s Correspondence Be-
tween Principals
RSA 0.5s Secrecy Flaw
Woo-Lam (7) 22s Correspondence Be-
tween Principals
Woo-Lam (3) 4s Correspondence Be-
tween Principals
Woo-Lam  Mutual || 340s | Correspondence Be-
Authentification tween Principals
SPLICE/AS 59s Correspondence Be-
tween Principals
Neumann-Stubble- 2s Correspondence Be-
bine (Part 1) tween Principals
Kao Chow 24s Compromised Key
Otway-Rees 1.5s Secrecy

We point out that, in all protocols but one stud-
ied up to now, we have, every time, obtained an
attack when there is one, and we have not found
any attack when no attack was reported in the lit-
erature. All those results have been obtained with
a PC under Linux. One shall also note that the
number of explored clauses, using a breadth-first
search strategy, is always smaller than a few hun-
dreds. This demonstrates that our lazy model rep-
resented by the rewriting rules produced by Casrul
can be turned into a time efficient procedure.

3With roles in parallel simplification.

CONCLUSION

We have designed and implemented in Casrul a

compiler of cryptographic protocols, transforming
a general specification into a set of rewrite rules.
The user can specify some strategies for the verifi-
cation of the protocol, such as the number of par-
allel sessions, the initial knowledge and the general
behavior of the Intruder, and the kind of attack to
look for.
The transformation to rewrite rules is fully au-
tomatic and high level enough to permit further
extensions or case specific extensions. For exam-
ple, one can model specific key properties such as
key commutativity in the RSA protocol.

The protocol model generated is general enough

to be used for various verification methods: model-
checking, proof by induction, narrowing, ... In
addition, its lazy strategy makes it efficient for all
these kinds of methods.
In our case, we have used narrowing with the theo-
rem prover dalac. The AC properties proposed by
this system permit us to handle general rewrite
rules, simplifying the translation from the Casrul
output to the dalac input by Casdat.

We’re now moving on to add expressiveness to
the CAS syntax, as we just did in the case of
xor—encryption. As we are now moving on to
the study of more complex protocols, we have al-
ready added hash functions, modeled as free con-
structors. Another direction is to express parallel
sessions with simplified versions of the principals,
and demand-driven rules. It allows the use of an
unbounded number of such sessions, thus permit-
ting us a more refined study of protocols in which
our tool failed to find a flaw. We also plan to
work on the study of an unbounded number of
sequential sessions, which should be useful in the
study of One Time Password protocols, for exam-
ple. In this case, each session would have its own
nonces. But, because of undecidability results [15],
we would have to restrain our model in order to
keep implementability.
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