
HAL Id: inria-00105606
https://inria.hal.science/inria-00105606

Submitted on 11 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Isabelle formalization of protocol-independent
secrecy with an application to e-commerce

Frédéric Blanqui

To cite this version:
Frédéric Blanqui. An Isabelle formalization of protocol-independent secrecy with an application to
e-commerce. 2002. �inria-00105606�

https://inria.hal.science/inria-00105606
https://hal.archives-ouvertes.fr


in
ri

a-
00

10
56

06
, v

er
si

on
 1

 -
 1

1 
O

ct
 2

00
6

An Isabelle formalization of

protocol-independent secrecy

with an application to e-commerce

Frédéric Blanqui

Laboratoire d’Informatique de l’École Polytechnique
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Abstract. A protocol-independent secrecy theorem is established and
applied to several non-trivial protocols. In particular, it is applied to
protocols proposed for protecting the computation results of free-roaming
mobile agents doing comparison shopping. All the results presented here
have been formally proved in Isabelle by building on Larry Paulson’s
inductive approach. This therefore provides a library of general theorems
that can be applied to other protocols.

1 Introduction

Cryptographic protocols are intended to ensure properties like secrecy, authenti-
cation, anonymity, integrity or non-repudiability. Initially proposed for securing
communications, they have been more recently proposed for protecting the com-
putation results of free-roaming mobile agents doing comparison shopping [26].
Experience shows that even simple protocols are difficult to set correctly [14].
Their correctness clearly needs to be checked by mechanical tools. But this can-
not be an easy task. For instance, secrecy has been shown undecidable even
under very weak assumptions [8]. And correctness is always with respect to a
given model. A protocol correct in a model may be incorrect in a richer model
[23]. As for the effectiveness of cryptography, which is often assumed perfect
in the formal versions of protocols, fortunately, it may be precisely related to
the one of real protocols [11]. Although we cannot expect formal methods to be
able to deal with every possible problem (like [25] for instance), yet they provide
better confidence and may serve in finding protocol-specific flows.

Many different approaches have been proposed so far. Approaches based on
model-checking are quite effective but the state explosion forces the model to
be kept simple, typically by limiting the number of agents and other param-
eters to one or two although, in some cases, checking can be done in a finite
model [13]. Approaches based on proof assistants allow a finer and more gen-
eral modelization but require much effort, typically of several days or weeks,
although the use of automated theorem provers may be very effective too [6].
Proof-assistants (Isabelle [18], PVS [24], etc.) can establish protocol-independent
theorems whose conditions could be proved by means of specialized automatic
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tools, providing a really complete certification. In this spirit, Millen and Rueß
formalized a protocol-independent secrecy theorem [15] in PVS [16] and later
developed with Cortier an automatic proof search procedure [7].

In this paper, we develop in Isabelle a more general secrecy theorem based
on Paulson’s inductive approach [21], which has several advantages over the
previous approach. First, we require no additional information (spell or state

events) in order to be more general and also compatible with the libraries already
implemented in Isabelle by Paulson and Bella. Second, we establish a first secrecy
theorem (Section 3) which only involves the Isabelle theory of messages, and
thus is independent of any protocol formalization. It is based on the simple and
intuitive notion of guarded messages which, as opposed to the notion of coideal

used in [15], distinguishes between what must be kept secret (a key or a nonce
n) from how this secret is ensured (the set Ks of the keys whose inverses are used
for encrypting n). It simply says that, if someone can get n by decomposing and
decrypting a set of guarded messages, then he must also be able to get one of
the key of Ks. Therefore, if the keys of Ks are not compromised, then the spy
cannot get n.

Then, we establish a second theorem (Section 4) showing that, for proving
the guardedness of a nonce or a key n used in a protocol, and hence that n is
kept secret, it is sufficient to prove that each rule of the protocol indeed preserve
the guardedness of n, without having to care about what the spy can do (which
is taken into account once and for all in the proof of the theorem). This departs
from proofs in strand spaces [10] or with coideals [7] where it is necessary to step
back into the protocol rules, including the rules for the spy, in order to explore
every possibility of how certain message fields could have been published.

We applied our results to several well-known protocols: Needham-Schoeder-
Lowe [17,14], Otway-Rees [19] and Yahalom [1]. We also verified two protocols
proposed by Asokan, Gülcü and Karjoth [2] for protecting the computation re-
sults of free-roaming mobile agents doing comparison shopping. These have never
been formally certified before. The properties claimed by the authors (see Sec-
tion 5) not only include confidentiality properties but also non-repudiability and
integrity properties. This shows a new application of Isabelle.

The paper is organized as follows. In Section 2, we quickly present Paulson’s
inductive approach [21]. In Section 3, we present our notion of guarded message

for proving secrecy. In Section 4, we introduce a more precise formalization of
protocols and show how it helps to prove guardedness. In Section 5, we present
the protocols P1 and P2 proposed in [2] for protecting the computation results
of free-roaming agents. In Section 6, we explain the formal proof of their cor-
rectness.

All the Isabelle files are freely available on our web page.

2 Paulson’s inductive approach

The inductive approach has been introduced by Paulson [21] and applied to many
non-trivial protocols within the generic proof assistant Isabelle [18]: Kerberos IV



[3], TLS [22], SET [20], etc. All these results are part of the Isabelle distribution
and can be freely used to certify other protocols.

In this approach, a protocol is represented as the set of all the possible
sequences of events that can occur by following the protocol steps and by having
a spy able to send fake messages built from the analysis of past traffic. An infinite
number of agents is assumed:

datatype agent = Server | Friend nat | Spy

Messages are represented as the elements of the following inductive data type:

datatype msg = Number nat (* guessable *) | Nonce nat (* not guessable *)

| Agent agent | Key nat | Hash msg | {|msg, msg|} | Crypt key msg

This has several important consequences:

• Encryption is assumed to be perfect: decryption can only be done by using
the inverse of the key used for encryption. Within a public-key infrastructure,
the inverse of the public key of an agent A, pubK A, is its private key priK A.
Otherwise, each agent A is assumed to have a symmetric key shrK A whose
inverse is itself.

• Hashing is collision-free: two distinct messages give two distinct hash codes.
This comes from the fact that the constructors of an inductive data type are
injective.

• Each kind of message is recognizable and hence cannot be confused with an-
other one: an agent name Agent A is distinct from a key Key K or an encrypted
message Crypt K X, etc. This comes from the fact that the constructors of an
inductive data type have distinct images. This implies that encryption schemes
for which there are relations between encrypted messages like XOR (Crypt
K (Crypt K X) = X) or RSA (Crypt K (Crypt K’ X) = Crypt K’ (Crypt K X))
cannot be formalized.

Then, Paulson introduces three important functions:

• The function parts H returns the set of all the actual sub-components of a set
H of messages (X is not a sub-component of Hash X):

consts parts :: "msg set ⇒ msg set"

inductive "parts H" intros

Inj: "X ∈ H =⇒ X ∈ parts H"

Fst: "{|X,Y|} ∈ parts H =⇒ X ∈ parts H"

Snd: "{|X,Y|} ∈ parts H =⇒ Y ∈ parts H"

Body: "Crypt K X ∈ parts H =⇒ X ∈ parts H"

• The function analz H returns the set of all the sub-components that can be
obtained by decomposing and decrypting (if the necessary key has itself been
obtained) all the messages of the set H:

consts analz :: "msg set => msg set"

inductive "analz H" intros

Inj: "X ∈ H =⇒ X ∈ analz H"

Fst: "{|X,Y|} ∈ analz H =⇒ X ∈ analz H"

Snd: "{|X,Y|} ∈ analz H =⇒ Y ∈ analz H"



Decrypt: "[[Crypt K X ∈ analz H; Key(invKey K) ∈ analz H]]

=⇒ X ∈ analz H"

• The function synth returns the set of all the messages that can be synthesized
from a set H of messages (new nonces and new keys cannot be synthesized):

consts synth :: "msg set ⇒ msg set"

inductive "synth H" intros

Inj: "X ∈ H =⇒ X ∈ synth H"

Agent: "Agent agt ∈ synth H"

Number: "Number n ∈ synth H"

Hash: "X ∈ synth H =⇒ Hash X ∈ synth H"

Pair: "[[X ∈ synth H; Y ∈ synth H]] =⇒ {|X,Y|} ∈ synth H"

Crypt: "[[X ∈ synth H; Key K ∈ H]] =⇒ Crypt K X ∈ synth H"

Finally, the fact that an agent A sends to another agent B a message X is
represented by the event Says A B X.

As an example, we give the formalization of the Needham-Schroeder-Lowe
protocol [14]:

1. A → B : {Na, A}Kb

2. B → A : {Na, Nb, B}Ka

3. A → B : {Nb}Kb

consts nsl :: "event list set"

inductive nsl intros

Nil: "[] ∈ nsl"

Fake: "[[evs ∈ nsl; X ∈ synth(analz(spies evs))]]

=⇒ Says Spy B X # evs ∈ nsl"

NS1: "[[evs ∈ nsl; Nonce NA /∈ used evs]]

=⇒ Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) # evs ∈ nsl"

NS2: "[[evs ∈ nsl; Nonce NB /∈ used evs;

Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs]]

=⇒ Says B A (Crypt (pubK A) {|Nonce NA,Nonce NB,Agent B|}) # evs ∈ nsl"

NS3: "[[evs∈ nsl; Says A B (Crypt (pubK B) {|Nonce NA,Agent A|}) ∈ set evs;

Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs]]

=⇒ Says A B (Crypt (pubK B) (Nonce NB)) # evs ∈ nsl"

The first two rules are in any protocol. Nil means that the empty trace []

is in the protocol. Fake means that the spy can send fake messages built from
the analysis of past traffic. The next rules are the rules of the protocol. set evs

is the set of all the messages sent so far. used evs denotes the parts of all the
messages sent so far. ev # evs is the list of head ev and tail evs.

Then, one may prove for example that, if B sends the message of step 2
and receives the message of step 3, and if the private keys of A and B are not
compromised (A and B do not belong to the set bad of bad agents), then the
protocol must have been initiated by A:

lemma "[[A /∈ bad; B /∈ bad; evs ∈ nsl;

Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;



Says A’ B (Crypt(pubK B) (Nonce NB)) ∈ set evs]]

=⇒ Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs"

As most authentication properties, it relies on the fact that the nonces used
by the agents and encrypted with their public keys are not known by the spy:

lemma "[[A /∈ bad; B /∈ bad; evs ∈ nsl;

Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs]]

=⇒ Nonce NA /∈ analz(spies evs)"

This is why, in the following, we concentrate on secrecy proofs.

3 Guarded messages

The idea of the protocol-independent secrecy theorem is simple and intuitive. In
any protocol, secrecy is ensured by using cryptography and by making sure that
the key used for the encryption is indeed safe. We simply turn this into a formal
definition, the notion of guarded message, and formally prove that getting the
secret indeed requires to know the key used for encryption (normally safe).

Definition 1 (Guarded messages). A nonce or a key n is guarded in a mes-

sage X by a set of keys Ks if every occurrence of n in X is inside a sub-message

encrypted by the inverse of a key of Ks. We denote by guard n Ks the set of

messages in which n is guarded by Ks.

consts guard :: "nat ⇒ key set ⇒ msg set"

inductive "guard n Ks" intros

No Nonce: "Nonce n /∈ parts X =⇒ X ∈ guard n Ks"

Guard: "invKey K ∈ Ks =⇒ Crypt K X ∈ guard n Ks"

Crypt: "X ∈ guard n Ks =⇒ Crypt K X ∈ guard n Ks"

Pair: "[[X ∈ guard n Ks; Y ∈ guard n Ks]] =⇒ {|X,Y|} ∈ guard n Ks"

The secrecy theorem can then be stated as follows:

Theorem 2 (Secrecy). Let G be a set of messages where Nonce n is guarded

by a set of keys Ks. If Nonce n belongs to analz G then there exists a key K in Ks

that belongs to analz G:

theorem Guard invKey: "[[Nonce n ∈ analz G; Guard n Ks G]]

=⇒ ∃ K. K ∈ Ks & Key K ∈ analz G"

Proof. Although this result may seem obvious, it is not straightforward to prove
in Isabelle or in any other proof assistant. We explain how our formal proof
proceeds.

First, only a finite part of G needs to be analyzed to get Nonce n. Therefore,
we can assume that G is finite. We then associate to any finite set G a measure
µ(G) which is the number of encrypted messages in G. We can then reason by
induction on µ(G).

Second, to help reason about analz, we proved the following very useful
decomposition theorem: analz G = pparts G ∪ analz (kparts G), where pparts



G is all the pairs of G, their components that are themselves pairs and so on, and
kparts G is all the components that are not pairs.

Now, since all the messages in G are guarded, to get Nonce n, there must be
an encrypted message Crypt K Y in kparts G such that Key (invKey K) belongs to
kparts G also: we must decrypt at least one encrypted message for reaching Nonce

n. If K is a key of Ks then we are done. Otherwise, let H = kparts G \ {Crypt K

Y}. Then, by definition of analz, Nonce n must belong to analz (H ∪ {Y}) whose
measure is strictly smaller than the one of G. Therefore, we can conclude by
induction hypothesis. ⊓⊔

Our notion of guardedness has several advantages over the notion of coideal
of Millen and Rueß [15]. First, it is defined inductively while a coideal is defined
as the complement of an ideal [9] (which is defined inductively). Second, it is
more general in the sense that the coideal of {Nonce n} ∪ Ks is included in guard

n Ks but not the converse. For instance, while Key K is guarded by {K} in Crypt

(invKey K) (Key K), it does not belong to the coideal of {K}. This is due to the
fact that there is no separation between what must be kept secret (n in guard n

Ks) and how it must be kept secret (Ks in guard n Ks). Third, guardedness enjoys
a nice monotonicity property:

lemma guard extend: "Ks ⊆ Ks’ =⇒ guard n Ks ⊆ guard n Ks’"

which is very useful in the case of protocols like Yahalom where a nonce must be
guarded by a session key issued by a server (see below). This is not the case with
coideals. For instance, {|Crypt (pubK A) (Nonce n), Key K|}, in which Nonce n is
guarded by {Nonce n, priK A}, hence by {Nonce n, priK A, Key K} too, belongs
to the coideal of {Nonce n, priK A} but not to the coideal of {Nonce n, priK A,

Key K}. So, guardedness is a finer and more intuitive notion than the one of
coideals.

In the case of the Needham-Schroeder-Lowe protocol, one can formally prove
that NA and NB are both guarded by {priK A,priK B}. Therefore, after our the-
orem, if the private keys of A and B are not compromised then the spy cannot
have access to NA and NB.

lemma Guard NA: "[[evs ∈ nsl; A /∈ bad; B /∈ bad;

Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs]]
=⇒ Guard NA {priK A,priK B} (spies evs)"

lemma Guard NB: "[[evs ∈ nsl; A /∈ bad; B /∈ bad;

Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs]]

=⇒ Guard NB {priK A,priK B} (spies evs)"

We applied our theorem to other well known protocols: the Otway-Rees sym-
metric-key protocol [19] and the Yahalom symmetric-key protocol [1]. By doing
so, we noticed a much shorter development time compared with the direct proofs
done by Paulson [21]. Of course, this is not as fast as automatic tools like TAPS
[6] but we expect to define tactics to automate these guardedness proofs.

The Yahalom protocol is interesting since it is a simple case of dependency
between secrets [23]. We recall the informal definition of the protocol (S denotes
the server):



1. A → B : A, Na

2. B → S : B, {A, Na, Nb}Kb

3. S → A : {B, K, Na, Nb}Ka, {A, K}Kb

4. B → A : {A, K}Kb, {Nb}K

One can prove that the session key K is guarded by the keys of A and B, and
that the nonce NB is guarded by the keys of A and B and all the session keys
issued by the server:

lemma Guard KAB: "[[evs ∈ ya; A /∈ bad; B /∈ bad;

Says Server A {|Crypt (shrK A) {|Agent B, Key K, Nonce NA, Nonce NB|},
Crypt (shrK B) {|Agent A, Key K|}|} ∈ set evs]]
=⇒ Guard K {shrK A,shrK B} (spies evs)"

lemma Guard NB: "[[evs ∈ ya; A /∈ bad; B /∈ bad; Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|} ∈ set evs]]
=⇒ Guard NB ({shrK A,shrK B} ∪ keys A B NA NB evs) (spies evs)"

keys A B NA NB evs = {K. Says Server A {|Crypt (shrK A) {|Agent B, Key K,

Nonce NA, Nonce NB|}, Crypt (shrK B) {|Agent A, Key K|}|} ∈ set evs}

In our formalization, the server may issue several session keys for the same
request by repeating step 3. This may be avoided by checking whether step 3
has already been done. Note also that the set of keys Ks used here takes care of
two different states of the protocol: if no session key has been issued yet then,
indeed, only the keys of A and B are sufficient for protecting NB.

4 Guardedness proofs

In order to ease guardedness proofs, we have developed other theorems inspired
by the work of Millen and Rueß [15]. The idea is to reduce the proof for all
possible traces to a proof that all the protocol rules preserve the guardedness
condition. This requires to introduce a more precise formalization of the notion
of protocol.

Definition 3 (Protocol rule). A message pattern is a message with variables

of distinct types for agents, nonces, keys, etc. Event patterns are defined simi-

larly. A substitution s is an application which associates an agent to each agent

variable, a nonce to each nonce variable, etc. Replacing each variable of a mes-

sage pattern X by its image in a substitution s gives a message denoted by apm s

X. For an event pattern ev, the substitution is denoted by ap s ev.

A rule R is a pair made of a set of event patterns fst R, the preconditions,
and an event pattern snd R. The set of new nonces of a rule R, newn R, is the set

of nonce variables that occur in snd R and in no precondition.

Now, a protocol will be seen as a set of rules:

types proto = "(event set * event) set"

Then, the traces generated by a protocol are inductively defined as follows:

consts tr :: "proto ⇒ event list set"

inductive "tr p" intros



Nil: "[] ∈ tr p"

Fake: "[[evs ∈ tr p; X ∈ synth(analz(spies evs))]]

=⇒ Says Spy B X # evs ∈ tr p"

Rule: "[[evs ∈ tr p; R ∈ p; ok evs R s]] =⇒ ap s (snd R) # evs ∈ tr p"

An s-instance of a rule R can be added to a trace evs if the s-instance of
every precondition occurs in evs and the s-instance of every new nonce has not
been used yet:

ok evs R s = (∀ x. x ∈ fst R −→ ap s x ∈ set evs)

& (∀ n. n ∈ newn R −→ ap s n /∈ used evs)

Definition 4 (Freshness). We will denote by fresh R’ s’ n Ks evs the fact

that a nonce n is introduced in a trace evs by an s’-instance of a rule R’ in

which it is guarded by a set of keys Ks.

Theorem 5 (Guardedness). Assume that all the rules of the protocol preserve

the guardedness of n w.r.t. Ks if the keys of Ks are safe:

preserv p n Ks = ∀ evs R’ s’ R s. evs ∈ tr p −→ fresh R’ s’ n Ks evs

−→ Guard n Ks (spies evs) −→ safe Ks (spies evs)

−→ ok evs R s −→ ap s (snd R) ∈ guard n Ks

safe Ks (spies evs) = ∀ K. K ∈ Ks −→ K /∈ analz(spies evs)

Then, if n is also guarded in the initial knowledge of the spy, we get that n is

guarded in every possible trace:

theorem preserv Guard: "[[preserv p n Ks; evs ∈ tr p; fresh R’ s’ n Ks evs;

safe Ks (spies evs); Guard n Ks (init Spy)]] =⇒ Guard n Ks (spies evs)"

4.1 Examples

As an example, let us see the case of the Otway-Rees protocol [19]:

1. A → B : {Na, A, B, {Na, A, B}Ka}

2. B → S : {Na, A, B, {Na, A, B}Ka, {Na, Nb, A, B}Kb}

3. S → B : {Na, {Na, K}Ka, {Nb, K}Kb}

4. B → A : {Na, {Na, K}Ka}

The formal definition of the rules are:

OR1 = ({},
Says A B {|Nonce NA, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA, Agent A, Agent B|}|})
OR2 = ({Says A’ B {|Nonce NA, Agent A, Agent B, X|}},

Says B Server {|Nonce NA, Agent A, Agent B, X,

Crypt (shrK B) {|Nonce NA, Nonce NB, Agent A, Agent B|}|})
OR3 = ({Says B’ Server {|Nonce NA, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA,Agent A, Agent B|},
Crypt (shrK B) {|Nonce NA, Nonce NB, Agent A, Agent B|}|}},
Says Server B {|Nonce NA, Crypt (shrK A) {|Nonce NA, Key KAB|},
Crypt (shrK B) {|Nonce NB, Key KAB|}|})



OR4 = ({Says B Server {|Nonce NA, Agent A, Agent B, X,

Crypt (shrK B) {|Nonce NA, Nonce NB, Agent A, Agent B|}|},

Says S B {|Nonce NA, Y, Crypt (shrK B) {|Nonce NB, Key KAB|}|}},

Says B A {|Nonce NA, Y|})

Let us prove the preservation property. We only detail the case of NB, the
case of NA is similar. Assume that NB has been introduced by an instance of OR2
and is guarded by {shrK B}.

OR1: Assuming that NA’ is a new nonce, we must prove that NB is guarded in P =
{|Nonce NA’, Agent A’, Agent B’, Crypt (shrK A’) {|Nonce NA’, Agent A’,

Agent B’|}|}. Since NA’ is new, it cannot be equal to NB. Guardedness is there-
fore immediate since NB does not occur in P.

OR2: Assuming that NB’ is a new nonce and that NB is guarded in {|Nonce NA’,

Agent A’, Agent B’, X|}, we must prove that NB is guarded in {|Nonce NA’,

Agent A’, Agent B’, X, Crypt (shrK B’) {|Nonce NA’, Nonce NB’, Agent A’,

Agent B’|}|}. Again, since NB’ is new, it cannot be equal to NB. Therefore, we
are left with the case when NA’ is equal to NB. But, since NB is guarded in
{|Nonce NA’, Agent A’, Agent B’, X|}, NA’ cannot be equal to NB and we are
done.

OR3: Assuming that NB is guarded in P = {|Nonce NA’, Agent A’, Agent B’,

Crypt (shrK A’) {|Nonce NA’,Agent A’,Agent B’|}, Crypt (shrK B’) {|Nonce

NA’,Nonce NB’,Agent A’,Agent B’|}|}, we must prove that NB is guarded in Q =
{|Nonce NA’, Crypt (shrK A’) {|Nonce NA’,Key KAB|}, Crypt (shrK B’) {|Nonce

NB’, Key KAB|}|}. Since NB is guarded in P, NA’ cannot be equal to NB because
NA’ is not guarded in P. Therefore, NB is guarded in Q.

OR4: Assuming that NB is guarded in {|Nonce NA’,Agent A’,Agent B’,X, Crypt

(shrK B’) {|Nonce NA’, Nonce NB’, Agent A’, Agent B’|}|} and in P = {|Nonce

NA’,Y,Crypt (shrK B’) {|Nonce NB’, Key KAB|}|}, we must prove that NB is
guarded in {|Nonce NA’,Y|}. Since NB is guarded in P, it cannot be equal to NA’

and it is guarded in Y also. Therefore, NB is guarded in Q.

With this protocol, the preservation of guardedness does not require any
extra property but, in general, it is necessary to have unicity lemmas [21,6]. Let
us see for instance the Needham-Schroeder-Lowe protocol. Assume that NA has
been introduced by an instance of NS1 and is guarded by {priK A, priK B}. The
case of NB is similar.

NS1: Assuming that NA’ is a new nonce, we must prove that NA is guarded in
P = Crypt (pubK B’) {|Nonce NA’, Agent A’|}. Since NA’ is new, it cannot be
equal to NA. Thus, NA is guarded in P.

NS2: Assuming that NB’ is a new nonce and that NA is guarded in Crypt (pubK

B’) {|Nonce NA’, Agent A’|}, we must prove that NA is guarded in P = Crypt

(pubK A’) {|Nonce NA’, Nonce NB’, Agent B’|}. Again, since NB’ is new, it can-
not be equal to NA. So, we are left with the case when NA’ = NA. But then,
the trace contains two messages: Crypt (pubK B’) {|Nonce NA, Agent A’|} and
Crypt (pubK B) {|Nonce NA, Agent A|} for NA has been introduced with NS1.



Since NA is not known to the spy (the trace is assumed to be guarded), this
cannot happen: we must have A = A’ (see below). Hence, NA is guarded in P.

NS3: Assuming that NA is guarded in Crypt (pubK B’) {|Nonce NA’, Agent A’|}

and in Crypt (pubK A’) {|Nonce NA’, Nonce NB’, Agent B’|}, we must prove
that it is guarded in P = Crypt (pubK B’) (Nonce NB’). Assume that NB’ = NA.
Then, the trace contains two messages: Crypt (pubK A’) {|Nonce NA’, Nonce

NA, Agent B’|} and Crypt (pubK B) {|Nonce NA, Agent A|} for NA has been in-
troduced with NS1. Since NA is not known to the spy, this cannot happen (see
below). Therefore, we must have NB’ 6= NA and NA is guarded in P.

To prove the guardedness, we used the following two unicity lemmas, which
are easily proved:

lemma "[[evs ∈ nsl; Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts(spies evs);

Crypt (pubK B’) {|Nonce NA, Agent A’|} ∈ parts(spies evs);

Nonce NA /∈ analz (spies evs)]] =⇒ A=A’ & B=B’"

lemma "[[evs ∈ nsl; Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts(spies evs);

Crypt(pubK B’) {|Nonce NA’, Nonce NA, Agent A’|} ∈ parts(spies evs)]]

=⇒ Nonce NA ∈ analz (spies evs)"

Similar lemmas hold for NB. They can be seen as two distinct instances of
the same unicity lemma: if two rules that should introduce new nonces in fact
introduce the same nonce in two guarded messages, and if this nonce is not
known to the spy, then the two messages must be equal.

4.2 Comparaison with Cortier, Millen and Rueß’ work

In [15], the proof of unicity lemmas is avoided by introducing additional infor-
mation in the definition of protocols, the spell events, that indicate the nonces
and keys that must be kept secret and the agents allowed to have access to them,
and by enforcing the disjointness of spell events.

The guardedness proofs often follow the same pattern and use the same
lemmas (that a new nonce is distinct from the nonce for which we want to
prove the guardedness condition, the unicity lemmas, etc.). We therefore expect
to turn this into an Isabelle tactic which would try to prove the guardedness
automatically by using these lemmas.

Cortier, Millen and Rueß [7] define a search procedure for proving a similar
property, the occultness. But, since it does not take into account the origin of
a secret (the fresh predicate in our formalization), it needs to step back into
the protocol rules and the Fake rule of the spy to get sufficient information for
concluding, and this may not terminate. Furthermore, they require yet other
information in the definitions of protocols, the state events, whose usefulness for
occultness proofs is not clear.

5 Protocols P1 and P2

As an important and new application, we used our theorem to formally certify
in Isabelle the correctness of some of the protocols proposed by Asokan, Gülcü



and Karjoth in [2] for protecting the computation results of free-roaming agents.
These protocols tolerate collusion between servers and unfixed itineraries. They
formalize and extend protocols proposed by Yee [26]. Application areas of these
protocols include comparison shopping, bidding and network routing [5]. Follow-
ing the authors, we will use the vocabulary of comparison shopping, hence using
the word “shop” to denote a server, and the word “offer” to denote the answer
of a shop to an agent’s request.

These protocols are not concerned with the security problems raised by the
use of mobile agents: aside from the correctness of the implementations of servers
and mobile agents, that servers indeed execute the mobile agents code, and that
servers and agents are indeed protected against malicious agents [26,4,12].

The jump of an agent from a server S1 to a server S2 can be seen as S1

sending to S2 a message representing the state of the agent. It therefore fits with
our model. The difficulty here is that the itinerary is not known a priori: the set
of servers to be visited can be chosen and extended by the agent itself. This is
the case when an agent is programmed to go to some information servers which
may provide it with addresses of shops or other information servers.

Asokan, Gülcü and Karjoth propose four protocols called P1, P2, P3 and
P4 depending on the properties one would like and the available infrastructure.
P1 and P2 require a public-key infrastructure. In P1, the author of an offer is
not kept secret and the integrity of data is publicly verifiable while, in P2, the
author of an offer can only be known to the owner of the agent. P3 and P4 do
not assume a public-key infrastructure and use message authentication codes
(MAC) instead. These last two protocols do not ensure non-repudiability. We
formally proved all the properties claimed by the authors for P1 and P2. We left
for future work the proof of P3 and P4.

All the protocols have a common structure: first, the owner of the agent sends
his agent to the first server and, second, each server receiving the agent sends it
to the next server after having added his own offer, this last step being repeated
until the agent comes back to its owner. The difference between the protocols
lie in the way the messages containing the offers are built.

For describing the state of the agent in P1 and P2, we adopted the message
format {|Agent A, Number r, I, L|} where:

– Agent A is the owner of the agent,

– Number r is the agent’s request,

– I is the list of servers to be visited,

– L is the list of offers collected so far.

We choose to send the request and the list of servers to be visited in the clear.
This is not specified in [2] but we may assume that, in practice, the request is
implemented as a public data and the itinerary as a private data. However, a
malicious server executing the agent could easily know about the itinerary, even
though some encryption is used. So, there is no point in hiding this information.

On the other hand, we must keep in mind that a malicious server can get
important information from the itinerary stored in the agent and the way the
offers are stored also. Indeed, assume that two servers S1 and S2 collude. If S1



sends to S2 the itinerary and the offers of the agent when the agent was at S1,
then S2 can try to guess to whom belong the offers. As suggested in [2], a way
to make this more difficult is to shuffle the offers after each new offer.

Furthermore, even if a server does not try to alter the offers collected so far
by an agent, it may not give its best offer. Indeed, if it succeeds to know the
offers collected by the agent so far, it may give an offer which is just a little bit
better, but not as good as it could. This looks like a Vickery auction (the highest
bidder pays the second highest bid) but upside-down: the best server offers the
second lowest price [26].

Then, we formalized P1 and P2 as follows:

consts p :: "event list set"

inductive p intros

Nil: "[] ∈ p"

Fake: "[[evs ∈ p; X ∈ synth(analz(spies evs))]]

=⇒ Says Spy B X # evs ∈ p"

Req: "[[evs ∈ p; Nonce n /∈ used evs; I ∈ agl]]

=⇒ Says A B (reqm A r n I B) # evs ∈ p"

Prop: "[[evs ∈ p; I ∈ agl; J ∈ agl; Says A’ B {|Agent A,Number r,I,L|}

∈ set evs; isin (Agent C, app (J, del (Agent B, I))); Nonce ofr

/∈ used evs]] =⇒ Says B C (prom B ofr A r P I L J C) # evs ∈ p"

Nil and Fake are the usual rules for the empty trace and the spy respectively.
Req corresponds to the first step, the sending of the agent by its owner. We use
an unguessable message, Nonce n, to identify the session. Prop corresponds to the
second step, the addition of an offer by a server. The offer is represented by an
unguessable nonce, Nonce ofr. agl is the subset of messages representing lists of
agents. isin (Agent C, app (J, del (Agent B, I))) means that the next server
C is picked among the agents of I, except the first occurrence of B, or among
a new list of agents J. Finally, reqm and prom are the request message and the
proposition message respectively. They are specific to each protocol.

The properties claimed to hold for these two protocols are the following:

– Data confidentiality: only the owner of the agent can extract the offers.

– Non-repudiability: a shop cannot repudiate an offer once it has been received
by the owner of the agent.

– Forward privacy: (for P2) none of the identities of the shops can be extracted.

– Strong forward integrity: except the last one, offers cannot be modified.

– Publicly verifiable forward integrity: (for P1 only) anyone can verify the in-
tegrity of a list of offers.

– Insertion resilience: no offer can be inserted between two previous offers.

– Truncation resilience: the list of collected offers can be truncated only at an
offer whose author colludes with the attacker.

Note that forward privacy only means that no one can extract the identity
of the shops by looking only at the list of offers. This does not mean that the
identity of shops cannot be inferred by other means as described above.



The idea proposed by Asokan, Gülcü and Karjoth for ensuring insertion
resilience, truncation resilience and a stronger form of forward integrity than
the one proposed by Yee [26] is to add unforgeable dependencies between offers,
creating what they call a chaining relation:

– The agent starts with a hash of the message made of the identity of the first
server to be visited B, salted with some random number k: Hash {|Agent B,

Nonce k|}

– Then, within its offer, signed with its private key, each shop must add a hash
of the message made of the previous offer M together with the next server C to
be visited: Hash {|M, Agent C|}.

The complete definition of chain B ofr A L C is as follows for P1:

sign B {|Crypt (pubK A) (Nonce ofr), Hash {|head L,Agent C|}|}

and as follows for P2:

{|Crypt (pubK A) (sign B (Nonce ofr)), Hash {|head L,Agent C|}|}

where head L denotes the previous offer collected by the agent and sign is the sig-
nature function defined by sign B X = {|Agent B, X, Crypt (priK B) (Hash X)|}.
The start of the chaining relation, anchor, is defined as a particular case of chain
by anchor A n B = chain A n A (cons nil nil) B.

Hence, if someone wants to modify or insert an offer, for the chaining relation
to be preserved, he must be able to modify as well all the following offers, which
is made a priori impossible by asking the shops to sign their offers with their
private keys. The two remaining possible attacks are the deletion of the offers
between two offers made by two colluding shops (or the same shop if the agent
goes twice to the same malicious shop) or the deletion of all the offers (denial-
of-service attack), and the addition of fake offers. So, a shop cannot even modify
its own offer unless it colludes with another shop visited later (which may be the
same) but, in this case, it must delete all the intermediate offers. For limiting
this difficult deletion/truncation problem, Asokan, Gülcü and Karjoth suggest a
few solutions like adding several next shops instead of just one.

In our formalization, we do not need to include the salt random numbers ri

used in [2] since the spy is not able to infer the content of encrypted messages
if he does not know the inverse of the keys used for encrypting them (analz
function).

We can know present the formal definitions of the requests and propositions:

reqm A r n I B = {|Agent A, Number r, cons (Agent A) (cons (Agent B) I),

cons (anchor A n B) nil|}

prom B ofr A r I L J C = {|Agent A,Number r, app (J, del (Agent B, I)),

cons (chain B ofr A L C) L|}

In the request, A and B (the first server to be visited) are added to the itinerary
I. In the proposition, B is deleted from I and a new list of servers J is added.



6 Correctness of P1 and P2

For proving the strong forward integrity, the insertion resilience and the trunca-
tion resilience, we need to define what is a valid chaining relation:

inductive "valid A n B" intros

Req: "cons (anchor A n B) nil ∈ valid A n B"

Prop: "L ∈ valid A n B

=⇒ cons (chain (next shop(head L)) ofr A L C) L ∈ valid A n B"

And to formalize the corresponding attacks, we use the following functions:

– ith(L,i) is the i+1-th element of L.

– repl(L,i,M) is the list L with its i+1-th element replaced by M.

– ins(L,i,M) is the list L with M inserted before the i+1-th element of L.

– trunc(L,i) truncates the i first elements of L.

The three properties are then easily proved by induction on valid:

lemma strong forward integrity: "[[L ∈ valid A n B; Suc i < len L;

repl(L,Suc i,M) ∈ valid A n B]] =⇒ M = ith(L,Suc i)"

lemma insertion resilience: "[[L ∈ valid A n B; Suc i < len L]]
=⇒ ins(L,Suc i,M) /∈ valid A n B"

lemma truncation resilience: "[[L ∈ valid A n B; Suc i < len L;

cons M (trunc(L,Suc i)) ∈ valid A n B]] =⇒ shop M = shop (ith(L,i))"

For the data confidentiality, we first prove that both a request n and an offer
ofr are guarded by the private key of the agent’s owner. Then:

lemma req notin spies: "[[evs ∈ p1; req A r n I B ∈ set evs; A /∈ bad]]
=⇒ Nonce n /∈ analz (spies evs)"

lemma pro notin spies: "[[evs ∈ p1; pro B ofr A r I L J C ∈ set evs;

A /∈ bad; B /∈ bad]] =⇒ Nonce ofr /∈ analz (spies evs)"

We also proved that requests and offers are not known by other agents (and
not only by the spy as it is commonly done). Although this is not very compli-
cated, this requires to extend the Isabelle libraries.

For the non-repudiability, we proved that the signature scheme is secure:

lemma "[[evs ∈ p1; A /∈ bad; sign A X ∈ parts(spies evs)]]

=⇒ ∃ B Y. Says A B Y ∈ set evs & sign A X ∈ parts Y"

We would like to point out that, although it was the first time we used
Isabelle, thanks to the way we formalized P1 and the power of the Isabelle
tactics (although, sometimes, we would like them to be less sensitive to some
syntactical aspects), once P1 has been proved, it took us only a few minutes to
formalize and prove P2 by essentially changing the definition of chain. It is easy
to experiment with changes in message formats.

7 Conclusion and future work

Approaches based on proof assistants like Paulson’s inductive approach [21] in
Isabelle [18] are known to require much effort, typically several days or weeks,



for certifying a protocol. Establishing general protocol-independent theorems like
the ones we presented in this paper helps to reduce this development time and
also to get a better understanding of protocol problems. To go further, automated
theorem provers could be used or tactics developed for automatically proving the
conditions of these theorems. In the case of our guardedness condition, it is clear
from the examples we give that the proofs follow similar patterns. This is why
we expect to define Isabelle tactics for doing that and also for proving the unicity
lemmas automatically.

Finally, we did not take into account in our formalizations what some au-
thors call the “oops” rule [23], that is, the fact that, for some protocols like
Yahalom, a particular session is not affected by the compromise of other ses-
sion keys. But, instead of adding the oops rule and doing the proof again, one
may look for conditions under which a secrecy property without oops implies
the same property with oops. This would provide another important and useful
protocol-independent result.
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