Partially complemented representations of digraphs - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2002

Partially complemented representations of digraphs

Résumé

A complementation operation on a vertex of a digraph changes all outgoing arcs into non-arcs, and outgoing non-arcs into arcs. This defines an equivalence relation where two digraphs are equivalent if one can be obtained from the other by a sequence of such operations. We show that given an adjacency-list representation of a digraph G, many fundamental graph algorithms can be carried out on any member G' of G's equivalence class in O(n+m) time, where m is the number of arcs in G, not the number of arcs in G' . This may have advantages when G' is much larger than G. We use this to generalize to digraphs a simple O(n + m log n) algorithm of McConnell and Spinrad for finding the modular decomposition of undirected graphs. A key step is finding the strongly-connected components of a digraph F in G's equivalence class, where F may have ~(m log n) arcs.
Fichier principal
Vignette du fichier
514.pdf (184.23 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

inria-00100846 , version 1 (26-11-2009)

Identifiants

Citer

Elias Dahlhaus, Jens Gustedt, Ross M. Mcconnell. Partially complemented representations of digraphs. Discrete Mathematics and Theoretical Computer Science, 2002, Vol. 5, pp.147-168. ⟨10.46298/dmtcs.303⟩. ⟨inria-00100846⟩
130 Consultations
1013 Téléchargements

Altmetric

Partager

More