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Strong Normalization of the Typed λ ws -calculus

The λws-calculus is a λ-calculus with explicit substitutions introduced in [4]. It satisfies the desired properties of such a calculus: step by step simulation of β, confluence on terms with meta-variables and preservation of the strong normalization. It was conjectured in [4] that simply typed terms of λws are strongly normalizable. This was proved in [7] by Di Cosmo & al. by using a translation of λws into the proof nets of linear logic. We give here a direct and elementary proof of this result. The strong normalization is also proved for terms typable with second order types (the extension of Girard's system F). This is a new result.

Introduction

Explicit substitutions provide an intermediate formalism which, by decomposing the β rule of the λ-calculus into more atomic steps, gives a better understanding of the execution models. The pioneer calculus with explicit substitutions, λσ, was introduced by Curien & al. in [START_REF] Abadi | Explicit substitutions[END_REF] as a bridge between the classical λ-calculus and concrete implementations of functional programming languages. Since Melliès [START_REF] Melliès | Typed λ-calculi with explicit substitutions may not terminate[END_REF] has shown that this calculus does not preserve strong normalization, even for typed terms, finding a system satisfying the following properties became a challenge:

-step by step simulation of β, -confluence on terms with meta-variables, -strong normalization of the calculus of substitutions, -preservation of strong normalization of the β-reduction.

During the last decade, various systems were presented in the literature but none of them satisfied simultaneously the previous properties. λ ws , the calculus we introduced in [START_REF] David | A λ-calculus with explicit weakening and explicit substitution[END_REF], has been the first satisfying all of them. In addition to explicit substitutions, the terms of λ ws are decorated with "labels". The typed version of the calculus (also introduced in [START_REF] David | A λ-calculus with explicit weakening and explicit substitution[END_REF]) shows that there is a strong link between the computational and the logical points of view: substitutions correspond to cuts and labels to weakenings. The proof that any pure λ-term which is β-strongly normalizable is still strongly normalizable in the λ ws -calculus was highly technical and uses ad-hoc methods. We conjectured that the typed terms are strongly normalizable (SN). Di Cosmo, Kesner and Polonovsky [START_REF] Kesner | Proof nets and explicit subsitutions[END_REF] understood the relation between λ ws and linear logic and, by using a translation of λ ws into proof nets, they proved this conjecture. We give here a direct and arithmetical proof of SN for simply typed terms. This proof is based on the one for the (usual) λ-calculus due to the first author [START_REF] David | A short proof of the strong normalization of the simply typed λ-calculus[END_REF][START_REF] David | Normalization without reducibility[END_REF]. We also prove, by using the standard notion of reducibility candidates, that terms typable with second order types (the extension of Girard's system F) are strongly normalizable. This result is new.

The general idea of the proofs is the following. We first give a simple characterization of strongly normalizing terms (theorem 3). This result, which is only concerned with the untyped calculus, is interesting by itself and may be used to prove other results on λ ws . It can be seen as a kind of standardization result. Theorem 3 mainly consists of commutation results. Note that permutation of rules is also the main ingredient in the proof of [START_REF] Kesner | Proof nets and explicit subsitutions[END_REF]. Then, for S, we use this characterization to prove, by a tricky induction, a substitution lemma (theorem 6) from which the result follows immediately. For F, we use this characterization to prove that if a term is typed then it belongs to the interpretation of its type.

The paper is organized as follows. Section 2 gives the main notations. In section 3 we introduce some useful notions and we prove the key technical result. It is used in section 4 to prove SN for simply typed terms and in section 5 for second order types.

2 The λ ws -calculus

The untyped calculus

We define here a variant of λ ws which is equivalent to the one in [START_REF] David | A λ-calculus with explicit weakening and explicit substitution[END_REF]: k is no more primitive but becomes the abbreviation of . . . , k many times and n is coded by n 0. Since the strong normalization of both formulations are equivalent (see proposition 1 below) and the proof is a bit simpler for the new one, we introduce here this calculus. Definition 1. The set of terms of λ ws is defined by the following grammar:

T = 0 | λT | (T T ) | T | [i/T, j]T where i, j ∈ N.
and the reduction rules of the λ ws -calculus are given in fig. 1. Remark 1. -The "logical" meaning of and [i/u, j]t is given by the typing rules. The "algorithmic" meaning is, intuitively, the following: k t means that each de Bruijn index in t is increased by k (as a consequence, there is no variable with de Brujin indices less than k in t) and [i/u, j]t represents the term t in which the variable indexed by i is substituted by u with a re-indexing commanded by j.

-It is clear that the version of λ ws presented here is a restriction of the one in [START_REF] David | A λ-calculus with explicit weakening and explicit substitution[END_REF]. For self completeness the terms and the rules of this calculus are given in the appendix. The translation φ from the latter to the present one is given by: φ(t) is obtained from t by replacing n by n 0 and then k by . . . , k many times. In particular, 0 is empty.

b -Note that, in this variant, the reduction rules become a bit simpler and some of them (m and n 3 in the original calculus) even disappear. Also note that rules b 1 and b 2 give a unique rule b which is in fact a family of rules since k represents a family of symbols.

( k λt u) -→ [0/u, k]t l [i/u, j]λt -→ λ[i + 1/u, j]t a [i/u, j](t v) -→ (([i/u, j]t) ([i/u, j]v)) e1 [0/u, j] t -→ j t e2 [i/u, j] t -→ [i -1/u, j]t i > 0 n1 [i/u, j]0 -→ 0 i > 0 n2 [0/u, j]0 -→ u c1 [i/u, j][k/v, l]t -→ [k/[i -k/u, j]v, j + l -1]t k ≤ i < k + l c2 [i/u, j][k/v, l]t -→ [k/[i -k/u, j]v, l][i -l + 1/u, j]t k + l ≤ i
Proposition 1. If t → t ′ then φ(t) → + φ(t ′ ).
In particular, the strong normalization of both versions of λ ws are equivalent.

Proof. Straightforward. ⊓ ⊔

The typed calculus

Definition 2. Let V be a set of type variables.

-The set S of simple types is defined by: S ::= V | S → S -The set F of second-order types is defined by: 

F ::= V | F → F | ∀V.F Definition 
A, Γ ⊢ 0 : A (Ax) Γ ⊢ t : A B, Γ ⊢ t : A (W eak) A, Γ ⊢ t : B Γ ⊢ λt : A → B (→i) Γ ⊢ t : A → B Γ ⊢ u : A Γ ⊢ (t u) : B (→e) Γ, A, Φ ⊢ t : B ∆, Φ ⊢ u : A Γ, ∆, Φ ⊢ [i/u, j]t : B (Cut) where i = Γ and j = ∆ Γ ⊢ t : A Γ ⊢ t : ∀α.A (∀i) if α ∈ Γ Γ ⊢ t : ∀α.A Γ ⊢ t : A{α := B} (∀e) Fig. 2. Typing rules of the λws-calculus A, ∆ ⊢ t : B (→i) ∆ ⊢ λt : A → B (W eak) C, ∆ ⊢ λt : A → B (W eak) . . . (W eak) Γ, ∆ ⊢ k λt : A → B Γ, ∆ ⊢ u : A (→e) Γ, ∆ ⊢ ( k λt u) : B A, ∆ ⊢ t : B Γ, ∆ ⊢ u : A (Cut) Γ, ∆ ⊢ [0/u, k]t : B ⊓ ⊔

Characterization of strongly normalizable terms

This section gives a characterization (Theorem 3) of strongly normalizable terms. This is the key of the proof of the strong normalization for both systems. We first need some definitions.

Some definitions

Definition 4. The set S of substitutions and the set Σ are defined by the following grammars: 

S ::= ∅ | [i/T, j]S Σ ::= ∅ | Σ | [i/T, j]Σ Definition 
i ::= * | ΣC i | λC i C e ::= * | ΣC e | (C e T ) C ::= C i [C e ]
Note that these contexts have a unique hole at the leftmost position. The elements of C (resp. C i , C e ) are called head contexts (resp. i-contexts, e-contexts). Elements of T (resp. S, Σ, C) will be denoted by t, u, v, w (resp. by s, by σ, by H, K).

Notation 1 1. We denote by → the least congruence on T ∪ C containing the rules of fig. 

hd(H[0]) = H hd(H[(σλu v)]) = H[(σ * v)] Proof. Straightforward. ⊓ ⊔ Notation 2 Say t → r t ′ if t → t ′ with
[0/b, 0](λ[0/c, 0]1 [0/d, 1]0) → * r ([0/b, 0]λ[0/c, 0]1 [0/[0/b, 0]d, 1]0) [0/a, 0]λ(b c) → * r λ([1/a, 0]b [1/a, 0]c) [0/[0/a, 0]λc, 0]b → * r [0/λ[1/a, 0]c, 0]b (λ[0/a, 0] b c) → *
r (λb c) Lemma 2 (and notation). The reduction → r is locally confluent and thus is confluent for terms such that hd(t) ∈ SN . The r-normal form of t will be denoted by r(t).

Proof. Straightforward.

⊓ ⊔ Remark 2. The r-reduction is actually strongly normalizing for every term and thus confluent. This follows immediately from the strong normalization of the calculus of substitution (i.e. all the rules except b) which is proved in [START_REF] David | A λ-calculus with explicit weakening and explicit substitution[END_REF]. We have stated the previous lemma in this way to keep this paper self contained, i.e. our proof does not need this result. Thus, in the rest of the paper, when we use r(t) or the confluence of r we have to check that hd(t) ∈ SN . We will not mention this since this is always straightforward.

Definition 6. 1. Let H be an head context. Let R(H) ⊂ T , L(H) ∈ C i and, if H ∈ C i , I ( 
H) ∈ T be defined by the following rules:

-

R( * ) = ∅, R(λH) = λR(H), R(σH) = σR(H) and R((H t)) = R(H) ∪ {t}. -L( * ) = * , L(λH) = λL(H), L(σH) = σL(H) and L((H t)) = L(H). -I( * ) = 0, I(H[λ * ]) = I(H[ * ]) = I(H) and I(H[[i/u, j] * ]) = H[ i u].
2. An head context is pure if L(H) has no substitutions. 3. Let t be a term in T . The set arg(t) ⊂ T is defined by:

-arg(

H[0]) = R(H) ∪ {I(L(H))} -arg(H[(σλu v)]) = R(H[( * v)]) ∪ L(H)[σλu]
Remark 3. In the previous definition, the equation

R(λH) = λR(H) actually means, since R(H) is a set of terms, R(λH) = {λt / t ∈ R(H)} and similarly for R(σH) = σR(H). Example 2. arg([4/0, j]( 2 λ3 0)) = {[4/0, j] 2 λ3, [4/0, j]0} arg([2/0, j][0/v, 2] 0) = {[2/0, j]v} Lemma 3. -Let t = H[0]
. Then r(t) can be uniquely written as K[s0] where K is pure.

-Let t = H[(σλu v)]. Then r(t) can be uniquely written as K[( k sλu v 1 )]
where K is pure.

Proof. Straightforward. ⊓ ⊔ Definition 7. Let s ∈ S be a substitution, we define s + ∈ S and s ↓ ∈ T as follows:

-s + is defined by: ∅ + = ∅ and ([i/u, j]s) + = [i + 1/u, j]s + .

-s ↓ is defined by: ∅ ↓ = 0 and (s[i/u, j]) ↓ = su if i = 0 and s ↓ otherwise.

Definition 8. Let t be a term in T . The head reduct of t (denoted as hred(t)) is defined as follows:

-If t = H[0] and r(t) = K[s0] then hred(t) = K[s ↓ ]. -If t = H[(σλu v)] and r(t) = K[( k sλu v 1 )] then hred(t) = K[[0/v 1 , k]s + u].
Example 3. With terms as in the previous example, we have:

hred([4/0, j]( 2 λ3 0)) = [0/[4/0, j]0, 2][3/0, j]3 hred([2/0, j][0/v, 2] 0) = 2
Theorem 3. Let t ∈ T be such that arg(t) ⊂ SN .

1. Assume t → * r t ′ and t ′ ∈ SN . Then t ∈ SN . 2. Assume hred(t) ∈ SN . Then t ∈ SN .

Proof of theorem 3

We first need some notations and lemmas. Notation 4 1. If t ∈ SN , η(t) is the length of the longest reduction starting from t and η 0 (t) is the maximum number of b or n steps in a reduction starting from t. 2. The complexity of a term t (denoted by cxty(t)) is defined by: cxty( * ) = cxty(0) = 0, cxty(λt) = cxty( t) = cxty(t) + 1, cxty((t t ′ )) = cxty(t) + cxty(t ′ ) + 1 and finally cxty([i/t ′ , j]t) = cxty(t) + cxty(t ′ ) + i + 1.

Note that the unusual definition of cxty([i/t ′ , j]t) is due to the fact that cxty( k ) = k. It ensures that cxty([i/u, j]) > cxty( i u) and thus, except for t = 0, cxty(u) < cxty(t) for any u ∈ arg(t). Lemma 4. Let H be an head context, u be a term and w ∈ arg(H[u]). Then,

-either w ∈ R(H), -or w = L(H)[v] for some v ∈ arg(u), -or H is not an i-context, u = σλu ′ and w = L(H)[u]. Proof. Straightforward. ⊓ ⊔ Lemma 5. Let H ∈ C be pure. 1. If t = H[u] ∈ SN and s ∈ SN , then H[[0/u, j]s + 0] ∈ SN . 2. If t = H[[0/v, k]s + u] ∈ SN , then H[( k sλu v)] ∈ SN .
Proof. By induction on η(t) + η(s + 0) for (1) and η(t) + cxty(s) for (2). ⊓ ⊔ Lemma 6. Let K be an head context. Assume that

-either k ≥ i + j and w = [i/[k -i/v, l]u, j][k -j + 1/v, l]K → * r w 1 = K 1 [[0/[k -i/v, l]u, j]s + 1 * ] -or i ≤ k < i + j and w = [i/[k -i/v, l]u, k + j -1]K → * r w 1 = K 1 [[0/[k - i/v, l]u, j]s + 1 * ]. Then, there is an head context K 2 such that [i/u, j]K → * r K 2 [[0/u, j 2 ]s + 2 * ] and [k/v, l]K 2 [[0/u, j 2 ]s + 2 * ] → * r w 1 . Proof. By induction on the length of the reduction w → * r w 1 . ⊓ ⊔ Lemma 7. Assume w = [i/u, j]K 1 [[k/v ′ , l]K 2 ] → * r w 1 = K 3 [[0/u, j]s + * ] and v → v ′ . Then, [i/u, j]K 1 [[k/v, l]K 2 ] → * r K 4 [[0/u, j]s + 1 * ] → * K 3 [[0/u, j]s + * ] for some K 4 , s 1 .

Proof. By induction on the length of the reduction w →

* r w 1 . ⊓ ⊔ Lemma 8. 1. Assume t = H[(σλu v)] → * t 0 = H 0 [( k 0 λu 0 v 0 )]. Then, there is a term t 1 = H 1 [( k 1 s 1 λu v 1 )] such that t → * r t 1 → * t 0 . 2. Assume t = H[0] → * t 0 = H 0 [[0/u 0 , j 0 ]s + 0 0]. Then, H can be written as K[[i/u, j]K 0 ] such that [i/u, j]K 0 → * r K ′ 1 = K 1 [[0/u, j]s + * ] and t 1 = K[K ′ 1 ][0] → * t 0 .
Proof. First note that we should be a bit more precise in the terms of the lemma: we implicitly assume that the potential b-redex (resp. n-redex) at the end of the left branch of t is not reduced during the reduction t → * t 0 . The lemma is proved by induction on the length of the reduction t → * t 0 . We give some details only for [START_REF] David | A short proof of the strong normalization of the simply typed λ-calculus[END_REF]. They are similar and simpler for (1). The result is clear for t = t 0 . Assume t → + t 0 . By the induction hypothesis,

H → H 1 = K[[i/u, j]K 0 ] for some K, u, K 0 such that [i/u, j]K 0 → * r K ′ 1 = K 1 [[0/u, j]s + * ] and t 1 = K[K ′ 1 ][0] → * t 0 . H can be written as K 3 [[i/u 1 , j 1 ]K 2 ] -if K 3 → K or u 1 → u the result is trivial, -if K 2 = ( * v) and K = K 3 [( * [i/u, j]v)] the result is trivial, -if [i/u, j]K 2 → r [i/u, j]K 0 the result is trivial, -if K 2 → K 0 but
the reduction is not an r-reduction, the result follows from lemma 7,

-if K 3 = K[[k/v, l] * ] and, either [i/u, j] = [i/[k -i/v, l]u 1 , j 1 ] and K 0 = [k -j 1 + 1/v, l]K 2 ], or [i/u, j] = [i/[k -i/v, l]u 1 , l + j 1 -1]] and K 0 = K 2 , the result follows from lemma 6. ⊓ ⊔ Lemma 9. 1. Assume t 1 = H 1 [(σ 1 λu 1 v 1 )] → * t 0 = H 0 [( k 0 λu 0 v 0 )]. Then, H 1 [[0/v 1 , k 1 ]s + 1 u 1 ] → * H 0 [[0/v 0 , k 0 ]u 0 ] where r(σ 1 ) = k 1 s 1 . 2. Assume t 1 = H 1 [[0/u 1 , j 1 ]s + 1 0] → * t 0 = H 0 [[0/u 0 , j 0 ]s + 0 0]. Then, H 1 [u 1 ] → * H 0 [u 0 ].
Proof. By induction on the length of the reduction t 1 → * t 0 . Look at the first reduction. Note that there is no simple relation between the original and the resulting reduction sequence and, in particular, the latter may be longer than the original.

⊓ ⊔ Lemma 10.

1. Assume H[(σλu v)] → * r t 0 . Then t 0 has the form H 0 [(σ 0 λu v 0 )] and H[[0/v, k]s + u] → * r H 0 [[0/v 0 , k 0 ]s + 0 u] where r(σ) = k s and r(σ 0 ) = k 0 s 0 . 2. Assume H 0 [0/u, j]s + 0 0 → * r t 0 . Then t 0 has the form H 1 [[0/u 1 , j 1 ]s + 1 0] where H 0 → * r H 1 [s 2 * ] for some s 2 such that s 2 [0/u, j]s + 0 → * r [0/u 1 , j 1 ]s + 1 . Proof. Straightforward. ⊓ ⊔ Lemma 11. Let K be an i-context. Then, K ∈ SN iff I(K) ∈ SN and, in this case, η 0 (I(K)) ≤ η 0 (K).
Proof. This follows immediately from the following result. Let K be an i-context, then:

K[[i/u, j] * ] ∈ SN ⇔ K[ i u] ∈ SN and, in this case, η 0 (K[ i u]) ≤ η 0 (K[[i/u, j] * ]).
⇒ Prove, by induction on (η(t), cxty(K))

that if t = K[s[i/u, j] * ] ∈ SN then K[d(s, i)u] ∈ SN where d(s, i) is the result of moving down s through i . It is enough to prove that, if K[d(s, i)u] → t ′ then t ′ ∈ SN .
This is done by a straightforward case analysis. ⇐ This is proved by showing that to any sequence of reductions of

t ′ = K[ i u]
corresponds a sequence of reductions of t with the same b or n steps. Define for s ∈ S, δ(s) ∈ Z by: δ(∅) = 0 and δ([k/v, l]s) = δ(s) + l -1. We show that, to a term of the form K ′ [ i ′ u ′ ] coming from t ′ corresponds, for some s such that δ(s

) < i ′ , the term K ′ [s[i ′ -δ(s)/u ′ , l] * ] coming from t.
This is done by a straightforward case analysis. For example, if

t ′ → * K ′ [[k/v, l] i ′ u ′ ] → K ′ [ l + i ′ -1 u ′ ] then t → * K ′ [[k/v, l]s[i ′ -δ(s)/u ′ , l] * ] = K ′ [s ′ [i ′ -δ(s ′ )/u ′ , l] * ] where s ′ = [k/v, l]s.
It is important to note that the result on η 0 would not be true with η. This is essentially because

[k/v, l] can always go through i whereas [k/v, l] cannot move down in [i/u, j] if k < i. ⊓ ⊔
Lemma 12. Let t ∈ T be such that arg(t) ⊂ SN and t ∈ SN . Then,

1. If t = H[(σλu v)], there is a term t 1 = H 1 [( k 1 s 1 λu v 1 )] such that t → * r t 1 and H 1 [[0/v 1 , k 1 ]s + 1 u] ∈ SN . 2. If t = H[0] there is a term t 1 = K[K 1 [[0/u, j]s + 1 0]] such that t → * r t 1 , t can be written as K[[i/u, j]K 0 ][0] and K[K 1 ][u] ∈ SN .
Proof. 1. Since arg(t) ⊂ SN , the potential b-redex must be reduced in an infinite reduction of t and thus such a reduction looks like:

t → * H 0 [( k 0 λu 0 v 0 )] → H 0 [[0/v 0 , k 0 ]u 0 ] →.
.. and the result follows from lemmas 8 and 9. 2. Since arg(t) ⊂ SN and thus, by lemma 11, H ∈ SN , an infinite reduction of t looks like: t → * H 0 [[0/u 0 , j 0 ]s + 0 0] → H 0 [u 0 ] →... and the result follows from lemma 8 and 9.

⊓ ⊔ Proof of theorem 3

1. By induction on (η 0 (t ′ ), cxty(t)). Note that the proof is by contradiction. We tried to find a constructive proof but we have been unable to find a correct one.

-Assume first t = H[(σλu v)] and t ∈ SN . By lemma 12, let t → * r

t 0 = H 0 [( k 0 s 0 λu v 0 )] be such that t 1 = H 0 [[0/v 0 , k 0 ]s + 0 u] ∈ SN . By the confluence of → * r , let t ′ 0 be such that t ′ → * r t ′ 0 and t 0 → * r t ′ 0 . By lemma 10 with the reduction t 0 → * r t ′ 0 , t ′ 0 = H ′ [(σ ′ λu v ′ )]. Let t ′ 1 = H ′ [[0/v ′ , k ′ ]s ′ + u] where r(σ ′ ) = k ′ s ′ . Then η 0 (t ′ 1 ) < η 0 (t ′
) and, by lemma 10, t 1 → * r t ′ 1 . It is thus enough to show that arg(t 1 ) ⊂ SN to get a contradiction from the induction hypothesis. Let w 1 ∈ arg(t 1 ). By lemma 4, either w 1 ∈ arg(t 0 ) and the result is trivial or

w 1 = L(H 0 )[[0/v 0 , k 0 ]s + 0 w] for some w ∈ arg(u) or H is not an i-context and w 1 = L(H 0 )[[0/v 0 , k 0 ]s + 0 u].
Since the second case is similar, we consider only the first one. Let a = L(H)[(σλw v)] and a ′ = L(H ′ )[(σ ′ λw v ′ )]. Then, a → * r a ′ and η 0 (a ′ ) ≤ η 0 (t ′ ) (use lemma 11 for the difficult case, i.e. when u = K[0] and w = I(L(K))). If it is not the case that H is an i-context and u = 0, then cxty(a) < cxty(t) and, by the induction hypothesis, a ∈ SN and the result follows since a → * w 1 . Otherwise, the result is trivial since it is easily seen (by induction on (η(H), cxty(H))) that, if t = H[(σλ0 v)] (where H is an i-context), r(σ) = k s and arg(t

) ⊂ SN , then H[[0/v, k]s + 0] ∈ SN . -Assume t = H[0] and t ∈ SN . By lemma 12, let t = K[[i/u, j]K 0 ][0] → * r t 0 = K[H 0 ][[0/u, j]s + 0 0] be such that t 1 = K[H 0 ][u] ∈ SN .
By the confluence of → * r , let t ′ 0 be such that t ′ → * r t ′ 0 and t 0 → * r t ′ 0 . By lemma 10 with the reduction

t 0 → * r t ′ 0 , t ′ 0 = H ′ [[0/u ′ , j ′ ]s ′ + 0] where K[H 0 ] → * r H ′ [s 1 * ] for some s 1 such that s 1 [0/u, j]s + 0 → * r [0/u ′ , j ′ ]s ′ + . Let t ′ 1 = H ′ [u ′ ]. Then η 0 (t ′ 1 ) < η 0 (t ′
) and, by lemma 10, t 1 → * r t ′ 1 . It is thus enough to show that arg(t 1 ) ⊂ SN to get a contradiction from the induction hypothesis. Let w 1 ∈ arg(t 1 ). By lemma 4 either w 1 ∈ arg(t 0 ) and the result is trivial or w 1 = L(K[H 0 ])[w] for some w ∈ arg(u) or H is not an i-context and

w 1 = L(K[H 0 ])[u].
Since the second case is similar, we consider only the first one. Let a

= L(K[[i/w, j]K 0 ])[0]. Since s 1 u → * r u ′ , it is easy to find w ′ such that s 1 w → * r w ′ and, letting a ′ = L(H ′ )[[0/w ′ , j ′ ]s ′ + 0], a → * r a ′ and η 0 (a ′ ) ≤ η 0 (t ′ ) (
use lemma 11 for the difficult case, i.e. when u = K[0] and w = I(L(K))). Since cxty(a) < cxty(t) (except if H is an i-context and u = 0 but in this case again the result is trivial), by the induction hypothesis, a ∈ SN and the result follows since a → * w 1 . 2. This follows immediately from (1) and lemma 5.

⊓ ⊔

Strong normalization for S

Theorem 5 below has first been proved in [START_REF] Kesner | Proof nets and explicit subsitutions[END_REF] by Di Cosmo & al. It is of course a trivial consequence of theorem 7 of section 5. However, the proof presented below is interesting in itself because it is purely arithmetical whereas the one of section 5 is not.

Theorem 5. Typed terms of T are strongly normalizing.

Proof. By induction on cxty(t). The cases t = 0, t = λt ′ and t = t ′ are immediate. The case t = [i/u, j]t ′ follows immediately from theorem 6 below. The remaining case is t = (u v). By the induction hypothesis, u and (0 1 v) are in SN . Thus, by theorem 6, [0/u, 0](0

1 v) ∈ SN and since [0/u, 0](0 1 v) → * t it follows that t ∈ SN . ⊓ ⊔ Theorem 6. Assume u, t ∈ T ∩ SN . Then [i/u, j]t ∈ SN .
Proof. We prove the following. Let u ∈ T ∩ SN . Then, (

) If t ′ ∈ T ∩ SN , then [i/u, j]t ′ ∈ SN . (2) If H ∈ C ∩ SN is pure, then H[u] ∈ SN . 1 
This is done by simultaneous induction on (type(u), η 0 (v), cxty(v), η 0 (u)) where type(u) is the number of → in the type of u and v = t ′ for (1) (resp. v = H for (2)). The induction hypothesis will be denoted by IH. but we do not know how to get rid of j . This is rather strange since, in the λ-calculus, this corresponds to the trivial fact that (u v) can be written as (x v)[x := u] where x is a fresh variable.

Fig. 1 .

 1 Fig. 1. Reduction rules of λws

  3. -A basis Γ is an (ordered) list of types. The length of Γ is denoted by Γ .-The typing rules for F are the given in fig.2. Note that the first element (on the left) of Γ corresponds to the variable with de Bruijn index 0. For S, just forget ∀ i and ∀ e .

	Proposition 2. Both systems have subject reduction: if Γ ⊢ t : A and t → u,
	then Γ ⊢ u : A.

  1. As usual, t → * t ′ (resp. t → + t ′ ) means that t reduces to t ′ by some steps (resp. at least one step) of reduction. 2. The set of strongly normalizable terms (i.e. such that every sequence of → reductions is finite) is denoted by SN .

Lemma 1 (and notation). Every term in T can uniquely be written as H[0]

or H[(σλu v)] where H is an head context. The head of t (denoted by hd(t)) is:

  1. t = [i/u, j]t ′ . The fact that arg(t) ⊂ SN follows immediately from the IH.By theorem 3, it is thus enough to show that hred(t) ∈ SN .(a) If t ′ = H[(σλv 1 v 2 )]: since η 0 (hred(t ′ )) < η 0 (t ′ ), it follows from the IH that [i/u, j]hred(t ′ ) ∈ SN and the result follows since [i/u, j]hred(t ′ ) → * hred(t). (b) If t ′ = H[0]: let r(t ′ ) = K[s0]. • If s ↓ = 0: since η 0 (hred(t ′ )) < η 0 (t ′ ), it follows from the IH that [i/u, j]hred(t ′ ) ∈ SN and the result follows since [i/u, j]hred(t ′ ) → * hred(t). • Otherwise, let r(t) = K ′ [s ′ 0]. If s ′↓ = 0 the result is trivial. Otherwise s ′↓ = u ′ for some u ′ such that u → * r u ′ and thus t 1 = hred(t) = K ′ [u ′ ]. If K ′ is an i-context the result is trivial. Otherwise K ′ = H ′ [( k * t 0 )]. Then t 1 = H ′ [( k u ′ t 0 )]. It is clear that arg(t 1 ) ⊂ SN . It is thus enough to show that hred(t 1 ) ∈ SN . * If u ′ = k ′ λu ′ 0 and thus hred(t 1 ) = H ′ [w] where w = [0/t 0 , k + k ′ ]u ′ 0 .Since type(t 0 ) < type(u), by the IH, w ∈ SN . By the IH, H ′ [w] ∈ SN since type(w) < type(u). Note that, here, we use[START_REF] David | A short proof of the strong normalization of the simply typed λ-calculus[END_REF].* Else hred(t 1 ) = H ′ [( k hred(u ′ ) t 0 )] = hred([i/hred(u ′ ), j]t ′ ).If u ′ → + hred(u ′ ), the result follows from the IH. Otherwise, the result is trivial. Since u ∈ SN , s + u ′ ∈ SN . By the IH since type(t′ ) < type(u), [0/t ′ , k + k ′ ]s + u ′ ∈ SN . Finally hred(t) ∈ SN since type([0/t ′ , k + k ′ ]s + u ′ ) < type(u). (b) Otherwise hred(t) = H[hred(u)]. If u → + hred(u)the result follows from the IH and otherwise the result is trivial. ⊓ ⊔ Remark 4. We need (2) in the proof of (1) for the following reason: we cannot always find H ′ and i, j such that [i/v, 0]H ′ [ j 0] → * H[v]. By choosing i large enough and j conveniently it is not difficult to get [i/v, 0]H[ j 0] →

2. t = H[u]. If H is a i-context, the result is immediate. Otherwise, H = H ′ [( k * t ′ )]. It is clear that arg(t) ⊂ SN . It remains to prove that hred(t) ∈ SN . (a) If u = σλu ′ : then hred(t) = r(H ′ )[[0/t ′ , k + k ′ ]s + u ′ ] where r(σ) = k ′ s. * H[ j v]

Proof. We have to check that, for each rule, the typing is preserved after reduction. We give below the example of rule b. The proof is detailed in[START_REF] Guillaume | Un calcul de substitutions avec étiquettes[END_REF] for the original version of the calculus.The typing of the b-redex ( k λt u) is given on the left and the typing of its reduct [0/u, k]t is given on the right. We assume that Γ = k and the last element of Γ is C.

Strong normalization for F

The proof uses the same lines as the one for the (ordinary) λ-calculus. We first define the candidates of reducibility and show some of their properties. Then, we define the interpretation of a type and we show that if t has type A then t belongs to the interpretation of A. Definition 11. -Let u 0 , . . . , u n-1 be a sequence of terms. We denote by -rule → i : 

Appendix

The set of terms and the reduction rules of the original calculus of [START_REF] David | A λ-calculus with explicit weakening and explicit substitution[END_REF] are: