Planar maps and Airy phenomena
Résumé
A considerable number of asymptotic distributions arising in random combinatorics and analysis of algorithms are of the exponential-quadratic type $(e^{-x^2})$, that is, Gaussian. We exhibit here a new class of ``universal'' phenomena that are of the exponential-cubic type ($e^{ix^3}$), corresponding to nonstandard distributions that involve the Airy function. Such Airy phenomena are expected to be found in a number of applications, when confluences of critical points and singularities occur. About a dozen classes of planar maps are treated in this way, leading to the occurrence of a common Airy distribution that describes the sizes of cores and of largest (multi)connected components. Consequences include the analysis and fine optimization of random generation algorithms for multiply connected planar graphs.