Finding at least one point in each connected component of a real algebraic set defined by a single equation
Résumé
Deciding efficiently the emptiness of a real algebraic set defined by a single equation is a fundamental problem of computational real algebraic geometry. We propose an algorithm for this test. We find, when the algebraic set is non empty, at least one point on each semi-algebraically connected component. The problem is reduced to deciding the existence of real critical points of the distance function and computing them.