N

N

On the Word, Subsumption, and Complement Problem
for Recurrent Term Schematizations

Miki Hermann, Gernot Salzer

» To cite this version:

Miki Hermann, Gernot Salzer. On the Word, Subsumption, and Complement Problem for Recurrent
Term Schematizations. 23nd International Conference on Mathematical Foundations of Computer
Science, 1998, Brno, République Tcheque, pp.257-266. inria-00098687

HAL Id: inria-00098687
https://inria.hal.science/inria-00098687
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00098687
https://hal.archives-ouvertes.fr

On the Word, Subsumption, and Complement
Problem for Recurrent Term Schematizations*

Miki Hermann! and Gernot Salzer?

! LORIA (CNRS), BP 239, 54506 Vandceuvre-les-Nancy, France. hermann@loria.fr
2 Technische Universitit Wien, Karlsplatz 13, 1040 Wien, Austria. salzer@logic.at

Abstract. We investigate the word and the subsumption problem for
recurrent term schematizations, which are a special type of constraints
based on iteration. By means of unification, we reduce these problems to
a fragment of Presburger arithmetic. Our approach is applicable to all
recurrent term schematizations having a finitary unification algorithm.
Furthermore, we study a particular form of the complement problem.
Given a finite set of terms, we ask whether its complement can be finitely
represented by schematizations, using only the equality predicate without
negation. The answer is negative as there are ground terms too complex
to be represented by schematizations with limited resources.

1 Introduction

Infinite sets of first-order terms with structural similarities appear frequently in
several branches of automated deduction, like logic programming, model build-
ing, term rewriting, equational unification, or clausal theorem proving. They are
usually produced by saturation-based procedures, like equational completion or
hyper-resolution. A usual requirement for effective use of such sets is the pos-
sibility to handle them by finite means. There exist several approaches to cope
with this phenomenon, like lazy evaluation, set constraints, or term schematiza-
tions. Lazy evaluation usually does not combine well with unification or other
operations. Set constraints allow to describe regular sets of first-order terms,
using the potential of regular tree grammars and tree automata, and having
the good properties of regular tree languages. Schematizations exploit the recur-
ring term structure in infinite sets, as produced by self-resolving clauses or by
self-overlapping rewrite rules.

Several formalisms for recurrent term schematizations were introduced within
the last years. They rely on the same principle, namely the iteration of first-
order contexts, but differ in the expressive power. The main concern in this
work is the decidability of unification and the construction of finite complete
sets of unifiers. Formalisms satisfying these requirements are p-terms [CH95], I-
terms [Com95], R-terms [Sal92], and primal grammars [HG97], all of them with
a finitary unification algorithm. Set operations were studied in [AHL97].

* This work was done while the second author was visiting LORIA. His visit was
funded by Univeristé Henri Poincaré, Nancy 1.

Applications of recurrent schematizations are quite rare and mostly theoreti-
cal, like in model building [Pel97] or cycle unification [Sal94]. One reason is that
there are still some open problems to be solved prior to a successful implemen-
tation. A sine qua non of automated deduction is redundancy elimination. The
elementary tools in this respect are testing for equality and subsumption. In
other words, we need to solve the word problem and the subsumption problem
for recurrent term schematizations. Moreover, only positive set operations were
studied in [AHL97] without considering the complement. Complement building
is interesting from the algebraic and logic point of view, e.g., during construction
of counter-examples or for quantifier elimination.

In the first part of the paper, we investigate the word and the subsump-
tion problem for primal grammars. By means of unification, we reduce them
to a problem in Presburger arithmetic. Our approach is applicable to all recur-
rent term schematizations having a finitary unification algorithm. In the second
part, we study a particular form of the complement problem. Given a finite set of
terms, we ask whether its complement can be represented finitely by schematiza-
tions, using only the equality predicate without negation. The answer is negative
as there are ground first-order terms too complex to be represented by primal
grammars with limited resources.

2 Term schematizations
2.1 Syntax

The language of primal terms is based on four kinds of symbols: first-order
variables V', counter variables C, function symbols F, of arities p > 0, and
defined symbols D, , of counter arities ¢ > 1 and first-order arities p > 0. Nullary
function symbols are called constants. The set of all function and defined symbols
is denoted by F and D, respectively.

Let N be the set of natural numbers. The set of counter expressions L is
the set of linear expressions over C with coefficients in N. It can be defined
inductively as the smallest set satisfying the following conditions.

-~ NCLandCCL
—(eyelLifeeNandle L
— (11+l2)6£if11,126£

Two counter expressions are considered equal if they are equivalent with respect
to the usual equalities of addition and multiplication. Furthermore, we drop
parentheses where possible and do not distinguish between natural numbers and
their symbolic representation.

The set of primal terms ‘P is defined inductively as the smallest set satisfying
the following conditions.

~yCpP

— ft)ePif feF, and t € PP
— ft) ePif fEDy,, 1€ L9, and t € PP

The sets of counter variables and first-order variables of a primal term t are
denoted by CVar(t) and Var(t), respectively.

Ezxample 1. Let z €V, a € Fo, h € Fo, m,n € C, fE Di,1,and g € Dy g. Then
h(f(3m +2; f(5; h(a, x))), g(m, m + n)) is a primal term.

2.2 Semantics

In the sequel, we assume that the reader is familiar with the basic notions of
term rewriting. With each defined symbol f € D, ,, we associate two rewrite

rules f(O,n;x) — r{ and f(m +1,n;x) — rg[f(m,n—i— 8;x)]a, where

— m,n and x are counter variables and first-order variables, respectively, i.e.,
(m,n) € C? and x € VP
— r{ and rg are primal terms, whose variables are among those of the left hand

sides of the rules, i.e.,)
vl eP, Var(+]) Cx, CVar(r{) Cn
7{ eEP, Var(r{) C x, CVar(r{) C{m}Un
— all defined symbols in r{ and rg are smaller than f with respect to a given
precedence relation on the defined symbols A
— A is a set of independent first-order positions of rg without the root position

— &4 is either the null vector or a k-dimensional unit vector, i.e., all components
of & are zero except one which may be zero or one.

The first-order positions are those not below a defined symbol. Formally, the set
of first-order positions is defined recursively by the following equations.

— Pos(z) = {e} for z €V,
— Pos(f(---)) = {e} for f €D, and
— Pos(f(t1,...,tp)) = {e}U_ {i.a|a € Pos(t;)} for f € F,.

Two positions are independent if none is a prefix of the other.

Let R be the set of all rewrite rules associated with the defined symbols. The
rewrite relation —> generated by R is the smallest relation that contains R,
and is closed under congruence and substitution. By t|x we denote the normal
form of ¢ with respect to R. Note that t|% is a first-order term if ¢ contains
no counter variables. The first-order terms represented by a primal term ¢ are
defined as L(t) = {télr | £&:C — N}. Two primal terms s and ¢t are weakly
equivalent, if L(s) = L(t). They are (strongly) equivalent, denoted by s = ¢,
if s¢lr = t€lr holds for all substitutions &:C — N. Obviously, equivalence
implies weak equivalence.

FErample 2. Let x € V, a € Fo, f € F1, myn € C, f € Dio, and g € Dy 1.
Consider the primal terms s = f(f(n)) and ¢t = g(n+1; f(§(n; a)))), where

F0) = fa), Fflnt+l) — F(F(F(n),
§(0;2) =, g(n+1;2) = f(g(n;).

The terms s and ¢ are strongly equivalent. Moreover, the schematized sets L(s)
and L(t) are equal: L(s) = L(t) = {f"(a) | n > 2}. On the other hand, the

terms f(f(m)) and f(f(n)) are weakly but not strongly equivalent.

2.3 Unification

A substitution is a mapping ¢: (VU C) — (P U L), which is well-typed and
whose domain is finite, ie., o(z) € P for x € V, o(n) € £ for n € C, and
dom(c) = {v € (VUC) | o(v) # v} is finite. As usual, we extend substitutions
homomorphically to primal terms and counter expressions. The application of o
to a term ¢ is written as to; the composition of two substitutions o, 7 is written
as o7 with the understanding that tor = (to)7 for all terms ¢. We denote ¢ by
the set {v — vo | v € dom(c)}. Normalization is extended to substitutions in
the natural way, i.e., olgr = {v—> volr | v € dom(o)}.

A substitution o is a unifier of two primal terms s and ¢ iff for all &:C — N
the first-order substitution c&|x unifies the first-order terms sé|lz and télx.
A set of unifiers X' is complete iff for every substitution £ there exists o € X,
such that o€l 1s a unifier of sé|r and t£|r. Note that o is a unifier of s and ¢
iff so = to, 1.e., our notion of unifiability corresponds to the standard one in the
unification theory. This is not true for completeness: a unifier need not be an
instance of any substitution in a given complete set of unifiers.

Unification of primal terms is decidable and finitary, i.e., for any pair of
primal terms there exists a finite set of unifiers which is complete. Moreover,
complete sets of unifiers can be effectively computed [HGIT].

2.4 First-order formulas

In this paper, we use first-order formulas to define the word problem in a con-
cise way and to compare different notions of subsumption. Quantified counter
variables are interpreted over the domain of natural numbers, quantified first-
order variables over the Herbrand universe with respect to the underlying set of
function symbols. Free variables are treated as constants.

Additionally, we use vectors and notations from linear algebra as a compact
representation of similar objects. For example, x = s(k) stands for a set of
equations of the form « = s(k), where z is a variable from x and s € s is a term
containing variables ki, ko, ... from k. Furthermore, {n + Ck + ¢} represents
the substitution replacing each variable in n by the corresponding row in the
vector of linear expressions, which is obtained by multiplying the matrix C of
natural numbers by the vector k of counter variables and adding the vector c.

Let s and ¢ be primal terms containing the variables x = Var(s), y = Var(t),
m = CVar(s) and n = CVar(t). A complete set of unifiers for s and ¢ can be
considered as a solved form of the equation s = ¢ in the following way. A unifier
o={xw— s¢k),y » t/(k)ym — Ck + ¢,n — Dk + d}, where k are auxiliary
counter variables introduced during unification, corresponds to the formula

$o(x,y, m,n) :Elk(xisl(k)/\yit'(k)/\m: Ck+cAn=Dk+ d).

Note that unification does not introduce auxiliary first-order variables. However,
s’ and t’ may contain variables from x and y; in this case these variables do not
occur in the domain of the substitution. The formula associated with a complete
set of unifiers X is the disjunction of the formulas corresponding to the single
unifiers: ¢ 5 (x,y,m,n) =/, ¢-(x,y, m,n). Therefore the formulas s = ¢ and
¢x(x,y,m,n) are equivalent.

2.5 Miscellaneous notations

If t is a primal term and A C Pos(t) is a set of independent first-order positions,
then t[o] is called a context. If s is a context and t is a context or primal
term, then the concatenation of s and ¢, denoted by s -t, is the context or
primal term s{o + ¢}. Concatenation is associative, hence we drop parentheses
where possible. The empty context o serves as unit element with respect to
concatenation. Exponentiation is defined by s = o and s't! =5 - s'.

The depth of a primal term ¢, denoted by depth(t), is recursively defined as
depth(t) = 0 for t € (V U Fy), and depth(f(t)) = depth(f(l;t)) = 1+ depth(t)
for f € F, (p > 0) and f € D. The depth of a set or vector of terms t is defined
as depth(t) = max{depth(t) | t € t}. The depth of the set of rewrite rules R
associated with D is the depth of the set of all right hand sides: depth(R) =

depth({r{,r[f(m,n+ &x)]4 | f € D}).

3 Redundancy elimination

Recurrent term schematizations are of potential use in all areas concerned with
first-order terms, mostly in automated deduction, like term rewriting with equa-
tional completion and proofs by consistency, or clausal theorem proving. An
ubiquitous problem appearing there is the duplication of objects. Redundancy
elimination plays therefore a vital role. In the simplest case, we need to main-
tain the set property, where no element (term, clause, literal) must occur twice.
Another case of redundancy is the presence of two elements, where one is an
instance of the other. In the first case we have to solve the word problem, i.e., to
determine whether two terms s and ¢ represent the same object in the underlying
theory. The latter case is usually referred to as the subsumption problem.

Ezample 3. Consider the rewrite system fgfz — gfz. Its completion produces
the infinite set of rules {fg” fa — ¢” fa | n € N}. This set can be presented by
the primal term (as a rewrite rule) fg(n; fz) = §(n; fz), where R = {§(0;2) —
gr, gk + 1;2) = g¢(g(k;2))}. The completion procedure continues to work
with this new rewrite rule in the signature extended by the defined symbols
and produces the rule fg(n;g(n'; fz)) — g(n; g(n’; fz)). This rule is redundant,
but we cannot determine it syntactically. To do so, we need to show that the
following formula is valid:

vavn' 3Kz (fa(k; fy) — a(k; fv) = (Fa(n:g(n'; F2)) = 4(n; 4(n'; f2))).

[y

This is just a subsumption test for the newly produced rewrite rule. One way to
show the validity is to prove that the word problem

VnVn'(g(n; g(n';2)) = g(n +n'; z))
holds in the equational theory of R and that Vn,n’ 3k(n 4+ n’ = k) holds.

FEzample 4. Another example for redundancy elimination is the check for in-
stances of the identity axiom. Consider the rewrite system

{(0) = fla), f(n+1) = f(f(f(n), §(0;2) = 2, §(n+ L;z) = f(g(n;z))}.

Suppose that we generate during a deduction process the equation f(f(n)) =
g(n + 1; f(g(n;a)))). To verify that it is an instance of the identity axiom, we
need to solve the word problem Yn(f(f(n)) = g(n + 1; f(d(n; a)))).

3.1 Word problem

Definition 5. The word problem for two primal terms s and ¢ is the question
whether the formula Vn (s = ¢) is valid in the equational theory generated by R,
where n = CVar(s) UCVar(t).

One possibility to solve the word problem is to reduce s and ¢ to unique
normal forms, followed by a check whether the latter are syntactically equal.
This approach is described for R-strings in [Sal91]. In this paper, we choose a
different approach: we transform the word problem to a unification problem and
a subsequent problem in Presburger arithmetic. The first method is efficient but
works only if we can define a unique normal form, like in the case of iterated
terms. In general, there is no obvious way of defining the normal form of a primal
term. Qur approach does not depend on a specific syntactic representation for
schematizations, but requires only the existence of a finitary and terminating
unification algorithm. Therefore, our method is applicable to all known recurrent
schematizations, i.e., to p-terms, I-terms, R-terms, and primal grammars.

We proceed in three steps.

1. Elimination of first-order variables: replace all first-order variables by new
constants. Observe that the formula Vn(s = t) is valid if and only if the cor-
responding formula Vn(s* = t*) is valid, where the terms s*,¢* are obtained
from the terms s, ¢, respectively, by replacing each first-order variable z by
a new constant c,.

2. Unification: solve the equation s* = t*. We solve the equation s* = t*
by means of unification. Note that a finitary and terminating unification
algorithm exists for all four known recurrent schematizations. This means
that the output of the unification algorithm is a finite disjunction of formulas
Jk(n = N;k+d;), where N; and d; is a matrix and a vector of non-negative
integers, respectively, and k are new counter variables introduced during
unification. The resulting formula ¢(n) = JkV/,(n = N;k + d;) contains
only counter variables, since there are no first-order variables in s* and t*.

3. Validity check: check whether the formula Vn ¢(n) is valid. The formula ¢(n)
represents a complete set of unifiers, one per disjunct, of the problem s* = t*.
To show that the universally quantified formula ¥Yn(s* = ¢*) is valid, we need
to prove that the unifiers from ¢(n) cover the whole Cartesian product Nl
By correctness of the applied unification algorithm, the formulas Vn(s* =
t*) and ¥n ¢(n) are equivalent. The latter expression is a Ils-formula of
Presburger arithmetic and can be solved by usual methods [Coo72]. For
complexity issues see Section 3.3.

3.2 Subsumption problem

In the first-order case, a term s subsumes a term ¢ if there exists a substitution o,
such that so = ¢. In the free algebra, this is equivalent to Ix(s = t), where
x = Var(s). An alternative definition is that the formula Vy3x(s = t) is valid,
where x = Var(s) and y = Var(t). These two definitions are equivalent, except
for singular signatures, since in the empty theory (without axioms) validity in
the equational theory is equivalent to validity in the inductive theory.

For schematizations, there are several possibilities to define subsumption.
Let s and t be two primal terms from a schematization G, where m = CVar(s),
n = CVar(t), x = Var(s), and y = Var(t). Recall that we check the validity of
formulas in the equational theory of R, i.e.; the free algebra generated by R.
The possibilities to define that s subsumes ¢ are:

1. The formula Fm3x(s = t) is valid.

2. The formula YnVy3m3x(s = ¢) is valid.
3. The formula YnIm(s = t) is valid.

4. The formula Ynim3x(s = ¢) is valid.

The first two approaches are straightforward extensions of the first-order con-
cept. The second approach does not meet a natural requirement for subsumption,
namely independence of the underlying signature. Subsumption should be a lo-
cal test on two terms independent of other elements. There exist two terms s, ¢,
such that s subsumes ¢ (according to the second definition) over a signature F,
but not over an extended signature F' O F [AHL97, Example 14]. The same
terms also show that the first two subsumption concepts are not equivalent, since
there is no substitution o, such that so = ¢, as required by the first concept.
The problems with the second concept originate from quantification over
first-order variables. One possibility to avoid them is to quantify only the counter
variables, as in the third approach. This concept is not satisfactory either, since
it does not capture usual first-order subsumption. When we extend the third
concept with usual equational first-order subsumption, we get the fourth concept.
Hence, we have two suitable concepts for subsumption: the first and the last
one. Intuitively, the first concept expresses that there is a uniform mapping o,
relating the term s and ¢ in the equational theory of the schematization. In
particular, for the counter variable vectors m and n, this means that m is a
linear expression of n. In contrast, the fourth concept requires this uniformity
only on the first-order level; the vectors m and n need not be related by a linear

function. Clearly, the first concept implies the fourth concept. The converse is
not true, as the following example shows.

Ezxample 6. Primal grammars can encode arbitrary linear expressions of the form
co+c1ki+ -+ cpkn. A monomial ck can be represented by g.(k; a), where the
underlying rewrite system is

ge(0s2) =z, gelk+1Liz) = (- f(ge(k; x))).
N—_——’

¢ times

Addition of monomials is encoded by nesting of defined symbols. Hence, {; =
2my 4 3my is represented by s = ga(my; gs(ma;a)) and ls = ny + 2 is encoded
as £ = gu(ma; £(F(a)).

We show that s subsumes ¢ according to the last concept but not according
to the first one. Both problems reduce to purely Diophantine problems upon [y
and [y, following the previously mentioned encoding.

According to the last concept, s subsumes t iff ¥nIm3x(s = ¢). This is
equivalent to ¥Yni3mg, ma(2my 4+ 3ms = ny + 2), since the problem contains no
first-order variables. This formula is valid since ny +2 covers all natural numbers
greater than 1, and each number except 1 can be written in the form 2mq + 3ms.
Hence, s subsumes ¢.

According to the first concept, s subsumes ¢ iff Im3Ix(s = ¢) holds. This
is equivalent to JmiImsy(2my + 3me = ny + 2). Now suppose that there is a
substitution ¢ = {my +— ¢q1n1 + d1, ms > qany + do}, where ¢; and ¢ are non-
negative coefficients. By applying the substitution and regrouping, we obtain the
equations 2¢q; 4+ 3¢s = 1 and 2d; + 3ds = 2. The first equation has no solution
in non-negative integers. Hence, there is no such substitution ¢ and the formula
Fm3Ix(s = t) is not valid.!

The last subsumption concept encompasses the first one. Moreover, the last
concept corresponds to the natural view that schematizations are just a finite
representation of infinite sets of first-order terms: s subsumes ¢ if every term
represented by t is subsumed by a term represented by s. Therefore we adopt
the last concept of subsumption.

Definition 7. Let s and ¢ be primal terms, where m = CVar(s), n = CVar(t),
and x = Var(s). The term s subsumes ¢ if the formula VnIm3x(s = t) is valid.
A set S subsumes a set T if for each term ¢’ € T' there exists a term s’ € S, such
that s’ subsumes ¢'.

Lemma 8. A primal term s subsumes a primal term t if and only if the set
L(s) subsumes the set L(t).

Similar to the word problem, we want to reduce subsumption to unification.
In this way, the algorithm becomes independent of the chosen schematization

! We thank Eric Domenjoud for providing this example.

formalism. We proceed in four steps: we replace certain first-order variables by
new constants, apply the unification algorithm, simplify the resulting formula,
and check its validity in Presburger arithmetic.

1. Elimination of first-order variables in t: replace all first-order variables in ¢
by new constants, producing the term ¢*. The formula YnIm3x(s = t) is
valid iff Yn3m3x(s = t*) holds by the way how we interpret free variables.

2. Unification: solve the equation s = t* by means of a unification algorithm.
Its output can be written as the finite formula

o(m,n, x) =3k V,;(x =u;j(k) Am =Mk +c¢; An=N;k + d;),

where k are the new counter variables introduced during unification, M;, IN;
are matrices of non-negative integers, and ¢;, d; are vectors of non-negative
integers, for each i.

3. Simplification: remove the equations x = u; (k) and m = M;k + ¢; from the
formula ¢(m, n, x), producing ¢'(n). Note that ImIx ¢(m, n, x) is equiv-
alent to ¢'(n), since the variables m and x are existentially quantified and
appear only once and separated on the left-hand side of equations.

4. Validity check: check if Yn ¢’(n) is valid. The result Vn3k '/, (n = N;k+d;)
belongs to the I1;-fragment of Presburger arithmetic.

3.3 Complexity issues

Both the word problem and the subsumption problem reduce in the last step to
a IIs-formula in Presburger arithmetic. While the complexity of full Presburger
arithmetic is at least doubly exponential and Cooper presents in [Coo72] an algo-
rithm of triple exponential complexity, the Ils-fragment is only coNP-complete,
as it was proved by Gradel [Gra88] and Schoning [Sch97]. Our formulas are
quite simple and do not cover the whole Ils-fragment: they are of the form
VnikV/,;(n = N;k + d;), i.e., the formula is in disjunctive normal form and the
variables n appear only once separated on the left-hand side. Therefore we can
ask whether our special problems are still coNP-complete. The lower bound re-
ductions used by Gradel and Schoning require more complex formulas. However,
following an idea in [Sch97], due to Gradel, we can prove the coNP-hardness of
our problems by a reduction from SIMULTANEOUS INCONGRUENCES [GJ79]. This
NP-complete problem is defined as follows.

SIMULTANEOUS INCONGRUENCES

Instance: Collection {(a1,01),...,(ap,bp)} of ordered pairs of positive integers,
with a; < b;, for 1 < <p.

Question: Is there an integer n such that, for 1 < i <p, n Z a; (modb;)?

We use the dual problem to show coNP-hardness. Encoding n = @; (modb;)
as Jk(n = bik + a;), we obtain the disjunction 3k \/!_, (n = b;k + a;). The final
formula is Vn3k\/;(n = bik + a;).

Note that in both cases only the problem solved in the last step is coNP-
complete. The overall complexity of our algorithms is determined by the com-
plexity of unification. In particular, the cardinality of a minimal complete set of

unifiers can be at least exponential [Sal91]; and we have to compute all solutions
to obtain the formula. Hence, the formula in the last step can be exponentially
longer than the input of the original problem.

4 Complement problem

If t is a first-order term, its Herbrand universe is H(t) = {to | o: X — T(F)},
the set of the ground instances of ¢ with respect to the underlying signature F.
Similarly,if T"is a set of first-order terms, its Herbrand universe #(7') is the union
of the Herbrand universes H(t) for each t € T'. For a primal term ¢, its Herbrand
universe is the set H(L(t)), i.e., the Herbrand universe of the schematized set.
Finally, the Herbrand universe of a set of primal terms 7T is obtained as the
union of the Herbrand universes #(t) for each t € T

Given a set of first-order or primal terms T, its complement is the set T°¢ =
T(F)\ H(T). A class C is a collection of sets of terms satisfying a common
property. For a given class C, the complement problem is the question whether
for each finite set of terms T € C there exists a finite set of terms 7" € C, such
that 2(T") = T° holds. The set T” is called a finite complement representation.

For first-order terms, Lassez and Marriott proved that finite sets of linear
terms always have a finite complement representation [LM87]. On the other
hand, they showed that this is not true for arbitrary finite sets of first-order
terms. Since schematizations were introduced to increase the expressive power
of first-order terms, we might expect to be able to represent the complements
of non-linear terms by a finite set of primal terms. However, as we show in the
sequel, already the very simple non-linear term f(z,) has no finite complement
representation by primal terms.

The potential of primal terms resides in the possibility to generate arbitrarily
deep terms by iterating contexts. The expressive power of iteration is limited
by the fact that the number of contexts must be finite. The maximal number
of consecutive iterations during a reduction of a primal term is measured by
the iteration depth. Each iteration terminates with the application of the base

rule f(O,)= r{ for some defined symbol f Therefore we can determine the
iteration depth by counting the occasions when a variable gets decremented to 0.
The iteration depth of a primal term is then the maximum over all reductions.
Inspection of the rewrite system R reveals that there is a correspondence between
the application of base rules and the number of counter positions present in the
primal term: each iteration consumes a counter position.

Definition 9. The iteration depth of a primal term is the function 7 defined
recursively as follows:

— 7(2) = 7(a) = 0 for a first-order variable z and a constant a,
— 7(f(t1,...,tn)) = max{r(¢) |i=1,...,n} for an n-ary function symbol f,

— 7(f(e;t1, ..., tn)) = ||+ max{7(¢;) | i = 1,...,n} for a defined symbol f.

The iteration depth naturally extends to a set of primal terms 7', defined by
7(T) = max{r(t) |t € T'}.

10

This definition emphasizes the static aspect by looking at the primal term
only. The operational aspect, namely counting the occasions when a variable is

decremented to 0, is expressed by the equalities T(f(O, L0 =1+ T(T’{H) and

(fln+1,..0) = T(T’g @) for each defined symbol f and substitution 6. Note
that 7(t) < |D| x depth(t).

Iteration of contexts consumes resources of the primal term. On one hand,
a single iteration can produce an arbitrarily deep term. On the other hand,
there are ground first-order terms that require a certain iteration depth. We use
two different contexts, f(o,a) and f(a,o), to force a consumption of resources.
Consider the ground term s = f(o,a)™ - a. If the value of m is sufficiently large,
then a primal term ¢ representing s must contain a defined symbol through which
we iterate the context f(o, a), and the iteration depth of t must be at least 1. If we
simply concatenate two blocks of the same context, like in f(o, a)™ - f(o, @)™ - a,
we do not necessarily need to increase the iteration depth of the primal term.
However, if we insert the context f(a,o) between the two blocks, producing the
term s = f(o,a)™ - f(a,0) - f(o,a)™ - a, we force a primal term t representing s
to have an iteration depth of at least 2. Repeating the step, this idea leads to
an upper bound on the number of context blocks f(o,a)™ - f(a,o) that can be
represented by a given primal term ¢.

Lemma 10. Let t be a primal term without first-order variables and let s =
w - (f(o,a)™ - f(a,0))” - a be a ground first-order term, where w is a proper
subcontezt of f(o,a)™ - f(a,o). If s € L(t) and m > 7(t) X depth(R) + depth(t)
then n < 7(t).

Proof. Let B(t) = 7(t) x depth(R) + depth(t) be the lower bound on the value
of m. Note that the context w is either f(o,a) - f(a,o) for some i < m or the
empty context. We perform the proof by induction on the tuple (s, 7(¢)), where
the first component is ordered by subterm ordering and the second by the usual
ordering on natural numbers. Note that 7(¢) = 0 for all first-order terms ¢.

The base case is presented by s = a and n = 0. The inequality 0 < 7(t)
holds for each term ¢. For the induction step, we perform a case analysis on the
structure of ¢. The primal term ¢ can begin with different prefixes of the term s.

Case 1: t = f(o,a)’ - f(a,t') for a term ¢'. Then the term ¢ must represent
s = (f(o,a)™ - f(a,0))” - @, where s = w- ¢, i.e., s’ is a proper subterm of s.
By induction hypothesis, we have that n < 7(¢’). Since the iteration depths of ¢
and ¢’ are equal (f(o,a)’ is a first-order context), we obtain n < 7(t).

Case 2:t = f(o,a) ~f(c, ...) for some j < i and a defined symbol f. To represent
the term s, the counter expression ¢ must be instantiated. Let £ be a counter
variable substitution, such that t{{gr = s. There are two subcases to analyze,
one for ¢c& = 0, the other for positive values of ¢§.

Case 2.1: ¢ = 0. Then there is a reduction t¢ —x t/, where t' = f(o,a)* - r{é’
for a substitution 6. Both terms ¢ and ¢’ represent the term s, but the inequality

7(t') < 7(t) + 1 holds. Compared to t, the term ¢’ grew at least by the term r{,

11

but the condition m > B(t') still holds, since depth(t') < depth(R) + depth(t)
follows from the rewrite step. We have that B(¢') < B(t) < m, therefore we can
apply the induction hypothesis since the iteration depth decreases: 7(¢) > 7(¢').
From the induction hypothesis follows that n < 7(¢'). Hence, n < 7(¢) holds.

Case 2.2: c€ > 0. We must perform a case analysis whether the context f(a,o)

is present in rg or not.

Case 2.2.1: The context f(a,o) is absent from rg. Hence, the context rg must

be of the form f(o,a)* for some k and ¢ 4z f(o,a)itk(e€) ¢/ where ¢’ is an

instance of the term r{. The primal term ¢’ represents either the first-order term

s' = f(0,a) I f(a,0) - (f(o,a)™ - f(a,0))" a
or the first-order term

s’ = f(o,a)™ k() . f(a,0) - (f(o,a)™ - fa,0))" " - a.

In both cases, the term s’ is a subterm of s and B(t') < B(¢) < m holds. Hence,
by induction hypothesis, n — 1 < 7(¢') holds. Moreover, the iteration depth
decreases (7(¢) > 7(t') holds), therefore we have that n < 7(t).

Case 2.2.2: The context f(a,o) is present in rg. Hence, the context rg must be

of the form f(o,a)* - f(a,o) - f(o,a)’ for some k and [, where the inequalities
k+1 < depth(R) < B(t) < m hold. Therefore ¢ must be equal to 1, since m is
too large, and there exists the reduction £ e flo,a)itk. f(a, o) f(o,a) - .
The primal term #' represents the first-order term

s = f(O,a)m—l < fla,0) - (f(o,a)™ .f(a’o))n—l a

Note that j+k = 7 < m holds. The term s’ is a subterm of s and the inequalities
B(t') < B(t) < m hold. Hence, by induction hypothesis, n — 1 < 7(¢') holds.
The iteration depth decreases (7(¢t) > 7(t') holds), therefore n < 7(¢) holds. O

The lemma indicates that if we choose the value of n in the term s =
(f(o,a)™ - f(a,0))” - a larger than the iteration depth 7(¢) of the primal term ¢,
then we cannot represent s by ¢ using iteration only. Therefore, the term ¢ must
contain variables.

Corollary 11. Ifs = (f(o,a)™ f(a,0))" a is an instance of a primal term t with
T(t) < n and m > 7(t) x depth(R) + depth(t), then t must end with a variable.
More precisely, for each counter substitution £, such that s is an instance of
télr, the term t€|r is of the form (f(o,*)™ - f(x,0))! - f(o,*)? - =, where the

signs * are either variables different from x or the constant a.

Proof. If t ends with a variable and represents s, then there exist a counter
substitution £:C — N and a first-order substitution o, such that té{gro = s.

12

The substitution o is of the form {z — s’} U {y — a}, where Var(t) = {2} Uy.
Note that t&lro = to&lr holds.

Now suppose that ¢ does not end with a variable. Then to is a primal term
without first-order variables and is of the same size as t, i.e., 7(to) = 7(¢) and
depth(to) = depth(t). The instance to represents s, therefore by Lemma 10 we
have n < r(to). This is a contradiction with the condition 7(to) = 7(t) < n. O

The Herbrand universes of a set of terms 7' and of a representation 7" of its
complement must be disjoint. This leads to the following result.

Lemma 12. Let T be a set of first-order terms and T a representation of its
complement. Then for allt € T andt’ € T", the termst and t' are not unifiable.

Proof. Suppose that t and ¢’ are unifiable with the unifier o. Hence, there exists
a ground term t* and a ground substitution p, such that top = t* = t'op holds.
The ground term t* belongs to both Herbrand universes H(¢) and #(t'), therefore
the term ¢ cannot be in the complement representation 7. Contradiction. O

We have now assembled the necessary tools to show that primal terms can-
not finitely represent the complement of first-order terms. The proof is done
by contradiction. We try to find a finite representation for the complement of
the first-order term f(z,z). The underlying idea is to choose a ground term
s = f(s1,s2) from the complement, such that both s; and sz are too complex
to be produced by iteration alone, and ss is twice as deep as s;. Therefore a
term representing s must be of the form f(u,v), where both u and v end with
variables y and z, respectively. If y # z then the terms f(u,v) and f(z,z) are
unifiable, what contradicts Lemma 12. If y = z, then there is no substitution o,
such that uolr = s; and volr = so hold.

Theorem 13. The complement of a finite set of first-order terms cannot be
represented in general by a finite set of primal terms.

Proof. We show that the term f(z,) has no finite complement representation
even if we use schematizations. Assume that the finite set of primal terms T
represents the complement of f(z,). The set 7" must contain a primal term ¢
representing the ground term

s = f((F(o,a)™ - f(a,0))" -a,(f(o,a)™ - f(a,0))*" - a)

where m and n are parameters depending on the set 7" and the the used schema-
tization. Let n > 7(T) and m > 7(T) x depth(R) + depth(T). There must be a
substitution o, such that to/xr = s holds. We analyze the possibilities for .
Without loss of generality, we assume that ¢ is a variable, or a constant, or
begins with a functional constructor symbol. If ¢ begins with a defined symbol,
le., t= f(n, ...) for a defined symbol f, then either n = 0 or n = n’ + 1. Hence,
after one reduction step by R we get t —x t/ where t/ = r{@ ort' = rgﬁ for a

substitution . The context rg must start with a functional constructor symbol.

13

The rewrite step does not increase the iteration depth. For ¢/ = r{@, we have
that 7(t) > 7(t'), therefore we can apply the induction hypothesis.

We perform a case analysis for ¢. The term ¢ starts with a constant, or a
variable, or a functional symbol.

Case 1: t = a for a constant a. The constant a clearly cannot represent the
term s, since the root symbol of s is the functional symbol f.

Case 2: t = y for a variable y. Then ¢ is unifiable with f(z,), hence it cannot be
a term from a complement representation 7" following Lemma 12. Contradiction.

Case 3: t = f(u,v) for some terms u and v. Clearly, from n > 7(T') follows that
n > 7(u) and n > 7(v). By Corollary 11, both terms u and v must end with a
first-order variable.

There must be a counter substitution ¢ and a first-order substitution o, such
that t&]lro = s. Let u = nélr and v = v&}r. From the structure of the term s
and the properties of the first-order substitutions follows that

I I 1" 1"

u= (f(o, *)m 'f(*¢o))n -f(o, *)m Y, U= (f(o, *)m 'f(*¢o))n 'f(*’o)m "z

where #* stands for either a variable (different from y and z) or for the constant a.
Both terms @ and ¥ must end by a variable since both iteration depths 7(u) and
7(v) a smaller that n. We perform a case analysis on the variables y and z.

Case 3.1: the variables are different: y # z. Then we can unify f(u,v) with
f(z,z) and therefore t cannot be in T following Lemma 12. Contradiction.

Case 3.2: the variables are equal: y = z. Then there must be a first-order sub-
stitution o, such that uo = (f(o,a)™ - f(a,0))” - a holds. From the structure of
the term u follows that the variable y must be instantiated by o to the ground
term (f(o, a)m_ml - f(a,0)) - (f(o,a)™ - f(a, o))"_"l_1 -a. Now, the instance vo
is equal to the ground term

1 1"

(Flos@)™ - fla,o))™ - Flo.a)™ - flo,@)™ ™ - f(a,0) - (F(o,a)" f(a,0))* "'~ a.

The context f(o,a)m” -f(o,a)m_ml must be equal to the context f(o,a)™,
therefore we get m’ = m/’. Hence, the instance vo must be equal to the term
(f(o,a)™ -f(a,o))””‘m_”l -a. Now it is clear that vo cannot be equal to the
required term (f(o,a)™ - f(a,o))?", since n” — n’ # n holds because of the in-
equalities n > 7(u), n > 7(v), n’ < 7(u), and n” < r(v). Contradiction. O

5 Conclusion

We presented general algorithms for solving the word and the subsumption prob-
lem for primal terms that also work for p-terms, I-terms, and R-terms. The algo-
rithms require a finitary unification algorithm for the schematization formalisms,
as well as a solver for the I1s-fragment of Presburger arithmetic. Still, there are
some problems left, especially concerning efficiency. For the word problem, it
would be interesting to have an algorithm that computes first a suitable normal

14

form of primal terms, followed by a syntactic comparison. Algebraically, this
amounts to axiomatizing the theory of primal terms.

We also showed that equations and primal terms are not sufficient for describ-
ing in general the complement of first-order terms. This result trivially extends
to recurrent term schematizations, since first-order terms are just a special case.
On the other hand, the complement problem is easily solvable if we extend the
language by negation and quantification. Then the complement can be expressed
by a formula in the first-order theory of term schematizations. In this context,
we are interested in deciding the validity of formulas and in obtaining solved
forms, e.g., by quantifier elimination. Peltier showed in [Pel97] that the first-
order theory of R-terms is decidable by quantifier elimination. The decidability
of the first-order theory of primal terms is still an open problem.

References

[AHL97] A. Amaniss, M. Hermann, and D. Lugiez. Set operations for recurrent term
schematizations. In M. Bidoit and M. Dauchet, editors, Proc. 7th Int. Joint
Conf. on Theory and Practice of Software Development (TAPSOFT’97), Lille
(France), LNCS 1214, pages 333-344. Springer, 1997.

[CH95] H. Chen and J. Hsiang. Recurrence domains: Their unification and application
to logic programming. Information and Computation, 122:45-69, 1995.

[Com95] H. Comon. On unification of terms with integer exponents. Mathematical
Systems Theory, 28(1):67-88, 1995.

[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplication. In
B. Meltzer and D. Mitchie, editors, Machine Intelligence, volume 7, pages
91-99. Edinburgh University Press, Edinburgh, UK, 1972.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. W.H. Freeman and Co, 1979.

[Gra88] E. Gradel. Subclasses of Preburger arithmetic and the polynomial-time hier-
archy. Theoretical Computer Science, 56(3):289-301, 1988.

[HG97] M. Hermann and R. Galbavy. Unification of infinite sets of terms schematized
by primal grammars. Theoretical Computer Science, 176(1-2):111-158, 1997.

[LM87] J.-L. Lassez and K. Marriott. Explicit representation of terms defined by
counter examples. J. Automated Reasoning, 3(3):301-317, 1987.

[Pel97] N. Peltier. Increasing model building capabilities by constraint solving on
terms with integer exponents. J. Symbolic Computation, 24(1):59-101, 1997.

[Sal91] G. Salzer. Deductive generalization and meta-reasoning, or how to formalize
Genesis. In Osterreichische Tagung fur Kiinstliche Intelligenz, Informatik-
Fachberichte 287, pages 103-115. Springer, 1991.

[Sal92] G. Salzer. The unification of infinite sets of terms and its applications. In
A. Voronkov, editor, Proc. 8rd Int. Conf. on Logic Programming and Au-
tomated Reasoning (LPAR’92), St. Petersburg (Russia), LNCS (LNAI) 624,
pages 409-420. Springer, 1992.

[Sal94] G. Salzer. Primal grammars and unification modulo a binary clause. In
A. Bundy, editor, Proc. 12th Int. Conf. on Automated Deduction (CADE’94),
Nancy (France), LNCS (LNAI) 814, pages 282—-295. Springer, 1994.

[Sch97] U. Schoning. Complexity of Presburger arithmetic with fixed quantifier di-
mension. Theory of Computing Systems, 30(4):423-428, 1997.

15

