
HAL Id: inria-00074630
https://inria.hal.science/inria-00074630

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A O(log2n) fault-tolerant distributed mutual exclusion
algorithm based on open-cube structure

Jean-Michel Hélary, Achour Mostefaoui

To cite this version:
Jean-Michel Hélary, Achour Mostefaoui. A O(log2n) fault-tolerant distributed mutual exclusion algo-
rithm based on open-cube structure. [Research Report] RR-2041, INRIA. 1993. �inria-00074630�

https://inria.hal.science/inria-00074630
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

ap por t

de r ech er ch e

1 9 9 3

PROGRAMME 1

A O(log2 n) fault-tolerant distributed mutual

exclusion algorithm based on open-cube structure

Jean-Michel Hélary, Achour Mostefaoui

N˚ 2041

Septembre 1993

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : (33) 99 84 71 00 - Télécopie : (33) 99 38 38 32

A O(log2 n) fault-tolerant distributed
mutual exclusion algorithm based on

open-cube structure*

J. M. Hélary, A. Mostefaoui

Programme 1

Projet Algorithmes Distribués et Protocoles

Rapport de recherche n˚2041 -Septembre 1993

21 pages

Abstract: A new distributed mutual exclusion algorithm, using a token and based
upon an original rooted tree structure, is presented. The rooted tree introduced,
named “open-cube”, has noteworthy stability and locality properties, allowing the
proposed algorithm to achieve good performances and high tolerance to node fail-
ures: the worst case message complexity per request is, in the absence of node fail-
ures, log2N+1 where N is the number of nodes, whereas O(log2N) extra messages in
the average are necessary to tolerate each node failure. This algorithm is a particular
instance of a general scheme for token and tree-based distributed mutual exclusion
algorithms, previously presented in part by the authors; consequently, its safety and
liveness properties are inherited from the general one; however, the present paper is
self-contained.

Key-words: distributed algorithms, mutual exclusion, token, tree structure, fault-
tolerance

* Submitted to the 14th Int. Conf. on Distributed Computing Sysytems

Un algorithme réparti d’exclusion
mutuelle tolérant les pannes, basé sur

une structure de cube ouvert

Résumé :On présente un nouvel algorithme réparti d’exclusion mutuelle, utilisant
un jeton et basé sur une structure arborescente originale. Cette structure, appelée
“hypercube ouvert”, possède de remarquables propriétés de stabilité et de localité,
grâce auxquelles l’algorithme proposé présente de bonnes performances et une
grande résistance aux défaillances de sites : la complexité maximale, en nombre de
messages par requête, est log2N+1, et O(log2N) messages supplémentaires, en
moyenne, sont nécessaires pour traiter chaque panne de site. Cet algorithme est une
instanciation d’un schéma générique d’algorithmes répartis d’exclusion mutuelle
utilisant un jeton et une structure arborescente, présenté auparavant en partie par les
auteurs; en conséquence, ses propriétés de sûreté et de vivacité sont héritées de l’al-
gorithme générique; toutefois, la lecture de cet article ne suppose pas la connais-
sance préalable de l’algorithme générique.

Mots-clé : algorithmique répartie, exclusion mutuelle, jeton, arborescence, tolé-
rance aux défaillances.

algorithmique répartie, exclusion mutuelle, jeton, arborescence, tolérance aux
défaillances.

Introduction 1

1 Introduction

This paper deals with mutual exclusion problem in distributed systems. A
distributed system is characterized by a set of nodes, identified by 1, 2, ... ,n. The
nodes communicate only by messages exchanged through communication channels;
they don’t share any memory nor a global clock. Channels are supposed to be reliable
(messages are neither lost nor corrupted) and communication is asynchronous (mes-
sage propagation delay is finite but unpredictable). Between any pair of nodes, mes-
sages can be delivered out of order (channels can be FIFO or not). Finally, without
loss of generality for our purpose, we suppose that there is exactly one process per
node: so in the following we consider these two terms as synonyms.

Within such a context, several mutual exclusion algorithms have been pro-
posed ([6,7]. One important class of solutions is based on the use of atoken: unique-
ness of the token guarantees the safety property (at any time, at most one process can
be in the critical section) by subjecting the right to enter the Critical Section to the
possession of this token. The liveness property (each request to enter the critical sec-
tion will be satisfied after a finite time) is guaranteed, in the absence of channel or
node failure, by the design of a routing structure used by the node requests and by the
token, together with appropriate rules in order to avoid deadlock and starvation.

The advantages of this approach lie in the possibility to achieve good per-
formances, in terms of number of messages needed to satisfy a request to enter the
critical section (message complexity per request). The best known algorithms are
tree-based: each node sends its requests to one qualified neighbor (its “father”),
which makes the request progress towards the token [2,3,4,7]. The set of allfathers
define a rooted tree, with edges directed towards the root; the token is kept by the
root, which plays the role of token allocator (the root temporarily lends the token to
requesting nodes, one after each other). The message complexity per request is, in the
average, O(d), whered is the diameter of the tree. Depending on the tree design, it
can be as low as O(log2n), wheren is the number of nodes.

In Raymond’s and Van de Snapsheut’s algorithms, the tree structure is static,
although edges are dynamically directed according to the token position: each node
defines its father as the neighbor belonging to the subtree containing the token. The
worst case message complexity per request is O(d) (in that case,d is statically de-
fined). However, this solution has some disadvantages :

• the amount of work performed by each node depends only on its position in the
tree (in fact, on its degree) and not on the frequency of its requests to enter the
critical section,

• if a node fails, the tree has to be rebuilt.

2 J.M. Hélary, A. Mostefaoui

In Naimi-Trehel’s algorithm, on the contrary, the tree structure is dynamic
and evolves according to the occurrence of new requests. This overcomes the first
disadvantage of the preceding solution, since the less a node requests to enter the crit-
ical section, the further it is from the root, and thus the lighter becomes its workload.
But this must be paid by another disadvantage: the tree can meet any possible con-
figuration, leading to a worst case message complexity per request of O(n) (although
O(log2n) in the average).

Each of these two extreme algorithms is an instance of a general scheme for
the class of token-based algorithms using a rooted tree to move the requests, pro-
posed by Hélary and al. [1], allowing to design new algorithms whose behavior can
be tuned from the completely static (Raymond) to the completely dynamic one (Nai-
mi-Trehel). In the present paper a new algorithm, based on this general scheme, is
proposed; its aim is to combine the advantages of both static and dynamic cases since
it allows the position of the nodes to evolve, as in Naimi-Trehel’s, but within a tree
whose diameter will remain bounded to O(log2n) as in Raymond’s. Moreover, the
particular design of the tree allows to take into account nodes failures and token loss:
recovery from a node failure (including safe token regeneration if necessary) requires
only O(logn) extra messages, in the average. This important feature, which, to our
knowledge, has not been achieved in any of the previously known tree-based algo-
rithms, is due to a “locality” property inherent to the structure of the underlying tree.

The rest of the paper contains four parts: the logical tree structure and its
properties is addressed in Section 2; the algorithm is presented in Section 3, and Sec-
tion 4 addresses correctness and performance issues; in these two sections, it is as-
sumed that nodes do not fail, but this assumption is removed in Section 5, where it is
shown how to handle such failures.

2 The open-cube tree structure

The tree structure upon which the algorithm is based can be recursively described.

For simplicity, we assume that the number of nodes is a power of two, sayn=2p. The

tree is made of two identical sub-trees, having 2p-1 nodes, connected by one directed
edge linking their roots, as shown in Figure 1 (links are directed towards the root):

Figure 1 : recursive structure

The open-cube tree structure 3

For particular valuesn=2, n=4, n=8 andn=16 we obtain (Figures 2a, 2b, 2c,
2d):

Such a tree is called “n-open-cube” since it corresponds to a n-hypercube
from which some links have been removed (Figure 3).

The concept of p-group and locality

A p-group is a set of nodes belonging to an open-cube subtree having 2p nodes. For
example, in the 16-open-cube of figure 2d, {1,2}, {3,4}, ..., {15,16} are 1-groups,
{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16} are 2-groups, {1,2,...,8},
{9,10,...,16} are 3-groups and {1,2,...,16} is a 4-group. Each node is the root of one
or several p-groups. For example, in the open-cube of Figure 2d, the node 1 is the
root of a 0-group ({1}), a 1-group ({1,2}), and so on.

Definition 2.1. Thepower of a nodei is the greatest integerp such thati is
the root of a p-group.

For example, in the 16-open-cube of Figure 2d, node 1 is of power 4, node 2 of power
0, node 3 of power 1, node 5 of power 2, node 9 of power 3, and so on. It is easy to
see that a node of powerp has exactlyp sons, whose powers range from 0 top-1.

Definition 2.2. The distance of two nodesi andj, denoteddist(i, j), is the
smallest integerd such thati andj belong to the samed-group.

1

2

5

6
7

8

1

2
3

4

2a 2c

2

2d

Figure 2 : examples of open-cubes

1

2

3

4

2b

13

14
15

16

9

10

11

12

5

6
7

8

1

3

4

Figure 3 : the 8-open-cube and the corresponding 8-hypercube

4 J.M. Hélary, A. Mostefaoui

For example, in the 16-open-cube of Figure 2d, dist(1,2)=1, dist(1,j)=2 if j=3 or 4,
dist(1,j)=3 for j=5,...,8 and dist(1,j)=4 for j=9, ... ,16.

Proposition 2.1 If j is a son of i, then power(j)=dist(i, j) - 1

Proof Obviously, a node i together with the subtrees rooted at the sons of i
of power r (0≤r≤power(i)-1) form a (r+1)-group. Thus, if j is the son of i of power r,
dist(i,j)=r+1

Proposition 2.2 The following implication holds :

Proof The nodes located at distance power(i)+1 from i are father(i) and the
nodes belonging to the subtrees rooted at the brothers of i of power 0, ..., power(i)-1.
All, except father(i), have a power less or equal to power(i)-1

Corollary 2.1 father(i) is the only node j such that (i) dist(i,j)=power(i)+1
and (ii) power(j)>power(i)

Definition 2.3 The last son of a node of power p>0 is its son of power p-1,
and an edge (j, i) is a boundary edge if j is the last son of i, in other words :

 (recall that, for every edge (j, i),

).

The following theorem shows which pairs father-son can be swapped over
without changing the open-cube structure of the tree.

Theorem 2.1. Let (j, i) be an edge in an open-cube. The following transfor-
mation :
father(j) := father(i) ; father(i) := j

keeps the open-cube structure if, and only if, (j, i) is a boundary edge. In this
case, it decreases the power of i by one, and increases the power of j by one.

Proof.

i � j �:� dist i j,()∀∀ power i() 1 j⇒+ father i() or power j() power i()<= =

power i() power j() 1+=
power i() power j() 1+≥

k

i

j

k

i

j

Figure 4 : node swapping

The open-cube tree structure 5

i) Suppose that (j, i) is a boundary edge, and let p=power(i). Thus, power(-
j)=p-1. By the transformation, the open-cube remains a tree (Figure 4). Moreover, i
loses its last son and thus, after the transformation, i has p-1 sons, whose powers
range from 0 to p-2. Hence, after the first assignment, power(i)=p-1. On the other
hand, before the transformation, j has p-1 sons, whose powers range from 0 to p-2.
By the transformation, j gets a new son, whose power is p-1, and thus, after the sec-
ond assignment, power(j)=p. Consequently, the open-cube structure is kept, with the
edge (i, j) as boundary edge instead of the edge (j, i) (the node i becomes the last son
of j).

ii) Conversely, suppose that (j, i) is not a boundary edge. The following
counter-example shows that the transformation destroys the open-cube structure :
consider the 4-open-cube (Figure 5) and the transformation performed with i=1
(power(1)=2) and j=2 (power(2)=0); after the two assignments, we have : fa-
ther(2)=nil, father(1)=2 and, obviously, the tree is no more an open-cube.

Swapping over a node with its last son will be called a b-transformation (b stands for
boundary).

Corollary 2.2 When a b-transformation is performed, all the p-groups re-
main unchanged.

Corollary 2.3 When a b-transformation is performed, the distance between
two nodes remain unchanged.

These results express the concept of locality: within a p-group, the node
membership remains unchanged under the b-transformation, and the link connecting
the two (p-1)-group composing the p-group is persistent (although its direction and
extremities can change). For example, in the 2-group {5,6,7,8} of the 16-open-cube
(Figure 2d) the link connecting the two 1-groups {5,6} and {7,8} is persistent (it can
connect 5 and 7, 5 and 8, 6 and 7, or 6 and 8, in either direction).

A bound on the length of branches

Let ir ir-1 ... i0 be a branch of a N-open-cube (with N=2p); ir is the root, i0 is a leaf.
Let pr, pr-1, ..., p0 be the respective powers of nodes ir ir-1 ... i0. We have the follow-
ing result:

1

2

3

4

1

2

3

4

Figure 5 : node swapping

6 J.M. Hélary, A. Mostefaoui

Proposition 2.3 , where n1 is the number of nodes on the

branch which are not last sons.

Proof pr, pr-1, ..., p0 is a monotonic strictly decreasing sequence of integers,

with pr=log2N and p0=0. But, and thus

. On the other hand, the

node i j is not the last son of the node i j+1, and thus the latter inequality holds for ex-

actly n1 terms in the sum whence

3 Description of the algorithm

In this section, we assume that nodes do not fail (recall that we have assumed earlier
that channels are reliable). Node failure issue will be addressed in Section 5.

3.1 Principle

Initially, nodes are arranged according to an open-cube structure, and the token is lo-
cated at the root of the tree. When a node wants to enter the critical section, it issues
a request to have the token; the right to enter the critical section is granted by the pos-
session of the token. According to the progression of this request, the rooted tree will
possibly evolve; however, the algorithm is designed in such a manner that this evo-
lution maintains the open-cube structure. According to the Theorem 2.1, this will be
achieved if this evolution involves only b-transformations. In order to meet this re-
quirement, each node maintains local information, whose initial value reflects the
initial open-cube structure; the description of the algorithm consists in explaining
how this information is used and updated. Each node has thus local variables describ-
ing its local state (with regard to the token and to the critical section), its position in
the logical rooted tree, and its behavior.

Local state of node i

The presence of the token is indicated by the boolean variable token_herei, whose
value is true if, and only if, the node i has the token. Moreover, the boolean variable
askingi has the value true if, and only if, node i is currently waiting for the token or

r log 2N n1−≤

pr p0− pj 1+ pj−()
j 0=

r 1−

∑=

r pr p0− pj 1+ pj− 1−()
j 0=

r 1−

∑−= pj 1+ pj− 1− 1 �⇔≥

pj 1+ pj− 1−()
j 0=

r 1−

∑ n1≥

Description of the algorithm 7

executing a critical section. Managing these two variables is straightforward.

Position in the open-cube

Each nodei maintains the following data : an arraydisti such that, for anyj, disti(j)
is the distance betweeni andj in the open-cube; the power of the root, denoted by
pmax; a variable fatheri denoting the father ofi in the open-cube. From this informa-
tion, the power ofi can be deduced : by proposition 2.1,power(i)=disti(fatheri)-1 if
fatheri≠nil, power(i)=pmax otherwise. Initial values of these data are set upon initial-
ization of the open-cube. Let us remark that, if the evolution of the open-cube in-
volves only b-transformations, the datadisti andpmax areconstants, whereasfatheri
is avariable.

Each nodei has also a variablelenderi : its value indicates the node to which
i will have to give back the token when leaving the critical section. Its value is mean-
ingful only wheni is in the critical section : it is updated upon the token receipt grant-
ing the right to enter the critical section, and used upon leaving the critical section.
The information needed by a nodei in order to update the value oflenderi is carried
over by the token: the latter is thus implemented by a messagetoken(j) wherej is a
node identity: ifj≠nil, lenderi is set toj; if j=nil it means thati will keep the token;
consequently,lenderi is set toi (i becomes the root andfatheri is set tonil).

The two variablesfatheri andlenderi have “dual” meanings since the former
indicates from which node the token should be requested, whereas the latter indicates
to which one give back this token.

Requests and behavior of a node

When a nodei wants to get the token, it sends a messagerequest(i) to fatheri,
setsaskingi to true, then waits for the token arrival. When a nodei processes a mes-
sagerequest(j) from one of its sons, sayk, it reacts to this event with two different
behaviors, according to the position ofk :

• If k is thelast son of i, the nodei will either give up the token to nodej (if i is
the root and has the token, it sendstoken(nil) to j) or forward the messagere-
quest(j) to fatheri. Afterwards,i considers that, in the future, it will have to send
requests toj: consequently it setsfatheri:=j. In other words, the edge (i, fatheri)
is replaced by the edge (i, j). We will say that the nodei conforms to atransit be-
havior. Let us note that when a request message is processed by a transit node,
the first assignment of a b-transformation is performed (fatheri:=j).

• If k is not the last son ofi, the nodei considersj as itsmandator and, conse-
quently, either lends the token toj (if i is the root and has the token, it sendsto-

8 J.M. Hélary, A. Mostefaoui

ken(i) to j, hereby meaning that, after being used, the token will have to return to
i) or requests the token for itself, by sending a messagerequest(i)to fatheri, thus
becoming an asking node (askingi:=true). We will say that the nodei conforms
to aproxy behavior (i is proxy for j, or, equivalently,j is themandator of i). Let
us note that when a request message is processed by aproxy node, the tree is not
modified: updatingfatheri is postponed until the token is received.

Each node has thus a variablemandatori. The value of this variable is a node
identity and is meaningful only wheni has requested the token for satisfying a re-
quest. mandatori=i means thati wants to enter the critical section;mandatori=j, ,
means thati has processed a messagerequest(j) and conformed toproxy behavior;
the variablemandatori will be reset tonil wheni will receive the requested token:i
will cease its mandate for this request. So,mandatori=nil means that the nodei has
no current request.

Let us remark that performing the test whetherk is the last son ofi is very
easy :k is the last son ofi if, and only if,power(k)=power(i)-1. But, sincek is a son
of i, we have, from proposition 2.1,power(k)=disti(k)-1; thus,k is the last son ofi if,
and only if,disti(k)=power(i), or, equivalently :disti(k)=disti(fatheri)-1.Moreover, it
is important to note that, since this test is performed upon the processing of the mes-
sagerequest(j) sent byk, the latter is an ancestor ofj; thus,disti(k)=disti(j). From this
follows thatk is the last son ofi iff disti(j)=disti(fatheri)-1. Hence, the nodei does not
need to be aware of the identity k: the valuej brought up by therequest message is
sufficient fori to perform the test.

When a nodei receives the token, this can result from a request previously
made byi and still pending (in that case,mandatori≠ nil), or from a return toi after
a loan (in that case,mandatori=nil).

1. mandatori≠ nil and the nodei receivestoken(j).
If j ≠nil, it means that the token is lended by nodej. The nodei sets
fatheri tok, the node from which it has received the token: as will be
shown in Section 4, this updating restores the open-cube property
which could have been “temporarily” destroyed when thetransit
nodes located on the path betweeni and the root have performed the
first part of a b-transformation; then the nodei honors the request
(entering critical section withlenderi=j if mandatori=i or sending
token(j) to mandatori if mandatori≠i) and resetsmandatori to nil
If j=nil, it means that the token has no lender. The nodei setsfatheri
to nil (it becomes the root); then it honors the request (entering crit-
ical section withlenderi=i if mandatori=i or sendingtoken(i) toman-

j i≠

Description of the algorithm 9

datori if mandatori≠i) and resetsmandatori to nil. If the nodei has
entered the critical section withlenderi≠i, it will send backtoken(nil)
to lenderi upon leaving the critical section.

2. mandatori=nil. The nodei receivestoken(nil). This is a return of the
token after a loan.

Relation with the general algorithm

In the general token- and tree-based algorithm presented in [1], the behavior of each
node is caught in a local variablebehaviori, having at any time one of the two values:
transit or proxy; a fundamental characteristic of the general algorithm is the possibil-
ity of arbitrary static or dynamic assignment of these variables. In consequence, any
static or dynamic rule of assignment can be considered, each yielding a particular al-
gorithm. Actually a particular choice for the behavior of nodes can be controlled ac-
cording to the supposed evolution of the underlying tree (the efficiency of a tree-
based mutual exclusion algorithm indeed depends on this structure). For instance,
Raymond’s algorithm is obtained when the behavior of each node istransit when it
has the token andproxy otherwise, i.e.,behaviori=transit⇔token_herei. The struc-
ture of the tree, initially defined, doesn’t change, except the direction of the edges.
On the opposite, Naimi and Trehel’s algorithm is obtained when each node is perma-
nently transit, and thus the tree can meet any possible configuration. The particular
algorithm presented in the present paper is thus obtained by applying the following
rule: for each nodei, the value ofbehaviori is updated upon everyrequest message
processing: it is assigned the valuetransit if the message has been sent by the last
son, and the valueproxy otherwise. It will be proved, in Section 4, that this rule al-
lows the open-cube structure to be maintained. Another important consequence of
this remark is that thesafety andliveness proofs given for the general case hold for
each particular instance resulting from particular rules of assignment.

Queues

If several nodesj are such thatfatherj=i, the nodei can receive several “simulta-
neous” requests; moreover, the process associated with the nodei may wish to enter
the critical section. In order to deal with this multiplicity of requests, awaiting-queue
is associated with each node. Its service policy is implicit; the only assumption is
fairness, meaning that every waiting request will wait a finite time before being pro-
cessed. For example, the FIFO policy is fair. No waiting request can be processed by
i unless the boolean variableaskingi has the valuefalse. Thus, each node can be seen
as arequest server, whose busy periods correspond to the time during whichaskingi
is true, service corresponds to the request of the token (on current mandator’s ac-
count), and clients are pending requests waiting in the queue. In the algorithmic ex-

10 J.M. Hélary, A. Moste-

pression, the primitive “wait (not askingi)” expresses the precondition to the execu-
tion of actions related to eventslocal call to enter_cs andreceive request(j); it corre-
sponds to the fact that processi is occupied to serve another request.

3.2 Example

The Figure 6 below depicts the initial situation (16-open-cube) : the node 1 has lend-
ed the token to the node 6 which is currently in critical section. We examine the case
where nodes 10 and 8 both require the right to enter the critical section (in our exam-
ple, the request of 10 will be satisfied before the request of 8, but this is irrelevant to
the discussion).

Node 10 wishes to enter the critical section andnot token_here10 and not asking10:
sendrequest(10) tofather10=9; asking10:=true; mandator10:=10

Node 9 receivesrequest(10) from 10 andnot token_here9 and not asking9: -- behav-
ior=proxy
sendrequest(9) to father9=1; asking9:=true; mandator9:=10

Node 1 receivesrequest(9) from 9 andasking1:
request(9) is queued

Node 8 wishes to enter the critical section andnot token_here8 and not asking8:
sendrequest(8) to father8=7; asking8:=true; mandator8:=8

Node 7 receivesrequest(8) from 8 andnot token_here7 and not asking7: -- behav-
ior=transit
sendrequest(8) to father7=5; father7:=8
-- asking7 remainsfalse, the power of 7 becomes 0 and the power of 8 becomes
1.
-- The variablefather8 will be updated later

Node 5 receivesrequest(8) from 7 andnot token_here5 and not asking5: -- behav-
ior=transit
sendrequest(8) to father5=1; father5:=8;
--asking5 remainsfalse, the power of 5 becomes 1 and the power of 8 becomes
2.
-- The variablefather8 will be updated later

pmax=4

Figure 6 : initial situation
13

14
15

16

9

10

11

12

5

7

8

1

3

4 6

2

Description of the algorithm 11

Node 1 receives request(8) from 5 and asking1:
request(8) is queued

Node 6 exits CS:
send token(nil) to lender6=1 ; token_here6:=false; asking6:=false

Node 1 receives token(nil) and mandator1=nil : -- the token comes back after a loan
by the root 1
token_here1:=true; asking1:=false

Node 1 processes request(9) and token_here1 :
-- behavior=transit since power(1)=4 and dist1(9)=4 : 1 gives up the token to 9
send token(nil) to 9; father1:=9; token_here1:=false

At that point, the configuration of variables father is the following (Figure 7):

Node 1 processes request(8) and not asking1 and not token_here1 :
-- behavior1=transit since power(1)=dist1(9)-1=3 and dist1(8)=3
send request(8) to father1=9; father1:=8

Node 9 receives token(nil) and mandator9=10: -- 9 becomes the lender
lender9:=9 ; father9:=nil;
send token(9) to mandator9=10 ; mandator9:=nil
-- its mandate for node 10 is now completed but asking9 remains true until the
token returns

Node 9 receives request(8) from 1 and asking9=true :
request(8) is queued

Node 10 receives token(9) from 9 and mandator10=10:
lender10:=9; father10:=9 ; -- the token comes from node 9

• the edge (9,1) will be removed when 9 will
receive the token. At that time, father9 will be
updated according to the content of the mes-
sage token Until then, node 9 remains busy
(asking9=true)

• the edge (8,7) will be removed when 8 will
receive the token. At that time, father8 will be
updated. Until this, node 8 remains busy
(asking8=true)

13

14
15

16

9

10

11

12

5

7

8

1

3

4

6

2

Figure 7

12 J.M. Hélary, A. Moste-

mandator10:=nil; token_here10:=true;
ENTER CS

Node 10 EXITS CS and lender10=9 :
send token(nil) to lender10=9; token_here10:=false; asking10:=false

Node 9 receives token(nil) and mandator9=nil: -- the token comes back after a loan
by the root 9
token_here9:=true; asking9:=false

Node 9 processes request(8) and not asking9 and token_here9 :
-- behavior=transit since power(9)=pmax=4 and dist9(8)=4
send token(nil) to 8; token_here9:=false; father9:=8

Node 8 receives token(nil) from 9 and mandator8=8:
lender8:=8; father8:=nil; mandator8:=nil; token_here8:=true;
ENTER CS

Node 8 EXITS CS and lender8=8 :
-- 8 keeps the token (it is the root)

The final situation is shown on Figure 8:

3.3 Formal description of the algorithm

The text of the algorithm describes the actions performed by each node i
upon the occurrence of each of the four possible events: i wishes to enter the critical
section (local call to the procedure enter_cs), i exits the critical section (local call to
the procedure exit_cs), i receives a request message, i receives a token message.
Apart from the precondition wait (not askingi) which may delay the beginning of the
actions enter_cs and receive request,each of these four actions is processed atomi-
cally, i.e., without interruption.

Upon a call to enter_csby i
begin

wait (not askingi);
askingi:=true;

13

14
15

16

9

10

11

12

3

2

1
5

6

7

8

4

Figure 8: final configuration

Description of the algorithm 13

if not token_herei then
mandatori:=i;

send request(i) to fatheri;
wait (token_herei) -- receipt of token sets lenderi

endif
end -- enter_cs

Upon a call to exit_cs by i
begin

if lenderi≠i then
send token(nil) to lenderi;
 token_herei:=false

endif;
askingi:=false

end -- exit_cs

Upon receipt of request(j) by i
begin

wait (not askingi);
case of disti(j) ≠disti(fatheri)-1

begin -- i becomes proxy for j
askingi:=true;
if token_herei

then -- i temporarily lends the token
send token(i) to j;
token_herei:=false

else -- i requires the token
mandatori:=j;

send request(i) to fatheri

endif
end

disti(j) =disti(fatheri)-1
begin -- i has a transit behavior

if token_herei

then -- i gives up the token
send token(nil) to j;
 token_herei:=false

else -- i forwards the request
send request(j) to fatheri

endif;
fatheri:=j

end

14 J.M. Hélary, A. Moste-

endcase
end -- request

Upon the receipt of token(j)from k by i
-- j is the token lender; if j=nil the token does not have to be given back; askingi=true

begin
token_herei:=true;

case of mandatori=nil
begin -- return of the token after loan

askingi:=false

end
mandatori=i

begin -- the claim of i to enter critical section is satisfied
if j=nil then -- the token has no lender, i becomes the lender

lenderi:=i ; fatheri:=nil
else -- i will have to give back the token

lenderi:=j; father i:=k

endif;
mandatori:=nil -- askingi remains true until leaving the critical section

end
mandatori≠i,nil

begin -- i honors the request of its mandator
if j=nil then -- the token has no lender, i becomes the root and

-- lendsthe token
fatheri:= nil;

send token(i)to mandatori;
-- askingi remains true until the tokenreturns

else -- j is the lender of the token
fatheri:=k;

send token(j)to mandatori ;
askingi:=false

endif ;
mandatori:=nil ; token_herei:= false

end
endcase

end -- token

4 Proof and performances

We will not give here the proof of safety and liveness properties: in fact, the algo-
rithm presented here is an instance of the general one (allowing arbitrary assign-

Proof and performances 15

ments, at arbitrary times, of variablesbehaviori), whose complete proof is given in
[1].

We will content ourselves to show that the open-cube structure of the tree is
maintained, even when modifications of the variablesfather occur, due to node
swapping. More precisely, we are going to show that, if the tree is an open-cube when
a node sends a messagerequest to its father, then it is still an open-cube wheni even-
tually receives the token.

We begin with the case when no concurrent request reaches one of the nodes
on the path from the requesting nodei to the root. Leti=i0, i1, ... ,ir denote the path
from i to the rootir in the open-cube existing when the nodei sends arequest to its
fatheri1. Two cases are to consider :

1. The path comprises only boundary edges. All the ancestors ofi have
a transit behavior, thus all nodesil will forward the
request of i to il+1, then set their father toi; the rootir will send the
token toi, then sets its father toi; finally, upon receiving the token,i
will set its father tonil. Thus, the overall transformation of variables
father is equivalent to the sequence of b-transformations:
father(i0) := father(i1) (= i2) ; father(i1) := i0 ;
...
father(i0) := father(il) (= il+1) ; father(il) := i0 ;
...
father(i0) := father(ir) (=nil) ; father(ir) := i0

By the theorem 2.1, each of these transformations keeps the open-cube structure.
Thus, the overall transformation keeps the open-cube structure

Example with r=4 :

2. At least one edge of the path is not a boundary edge. Letik be the first
ancestor of i such that is not a boundary edge

. In other words, all the nodesi1, ... ,ik-1 will have a
transit behavior, andik will have aproxy behavior. Thus all nodesil

will forward the request ofi to il+1, then setfather
to i; the nodeik will receive the request ofi, then recordi as its man-

1 l r 1−≤ ≤()

i4
i3

i2
i1

i0=iInitial situation

i0=i

i1 i2 i3 i4

Final situation

Figure 9 : transformation of a boundary path

ik 1− ik,()
1 k r≤ ≤()

1 l k 1−≤ ≤()

16 J.M. Hélary, A. Moste-

dator, and send the token (immediately or after having required it) to
i; the node i will eventually receive the token from ik and, at that
time, will set its father to ik. As in the preceding case, the overall
transformation is equivalent to the sequence of b-transformations:

father(i0) := father(i1) (= i2) ; father(i1) := i0 ;
...

father(i0) := father(ik-1) (= ik) ; father(ik-1) := i0

which, by the theorem 2.1, keeps the open-cube structure.

The case where several concurrent requests occur is similar : it is sufficient to ob-
serve that new incoming requests are either delayed if the node is busy (asking is
true), or follow the path towards the current father otherwise.

Maximum number of messages per request

Let i be a node issuing a request to enter the critical section, and r be the length of the
path going from i to the root. On that path, there are n1+n2+1 = r+1 nodes, where n1
is the number of nodes which are not last sons and n2 is the number of nodes which

are last sons. By the proposition 2.3, . On the other hand, r-

1=n1+n2-1 request messages are necessary to reach the root, but only n2 tokenmes-
sages are necessary to reach back i, and may be 1 message to return the token (if

). Thus, the total number of messages is

Average number of messages per request

The actual number of messages necessary to satisfy a request issued by a node de-
pends of the position of the node in the tree. Let c(i) be that number for the node i.

We compute the average number where the sum is over the N nodes of

the open-cube.

If N=2,

If N=2p we have (see Figure 10) :

If N=2p+1 we have (see Figure 11) :

n1 n2+ log 2N n1−≤

n1 0≠ 2n1 n2 1+ + log 2N 1+≤

c
c i()∑
N

=

α1 c i()∑ c 1() c 2()+ 0 2+ 2= = = =

αp c i()
i T T′∪∈

∑ c i()
i T∈
∑ c i()

i T′∈
∑+= =

Proof and performances 17

But, and since each

of the p boundary nodes of T’1 need one more message than in T’ (to return the token
to the root of T1)

similarly, since each node of T2 needs two

more messages than in T to reach the root, and, like in T, the root of T2 is proxy for
the nodes of T2.

Finally, since each node of T’2 needs one more

message than in T’ to reach the root.

Thus we have the following recurrence relation :

whence . From there follows the average complex-

ity per request:

T

T’2p-1

2p-1

nodes

nodes

Figure 10

T1

T’12p-1

2p-1

nodes

nodes

T2

T’22p-1

2p-1

nodes

nodes
Figure 11

αp 1+ c i()
i T1∈
∑ c i()

i T′1∈
∑ c i()

i T2∈
∑ c i()

i T′2∈
∑+ + +=

c i()
i T1∈
∑ c i()

i T∈
∑= c i()

i T′1∈
∑ c i()

i T′∈
∑ p+=

c i()
i T2∈
∑ c i()

i T∈
∑ 2 2p 1−×+=

c i()
i T′1∈
∑ c i()

i T′∈
∑ 2p 1−+=

p�:� p 1�:�≥ αp 1+∀ 2αp 3 2p 1−× p+ +=

α1 2=


αp
3
4

p 2p× 5
4

2p×+≈

c

3
4

p 2p× 5
4

2p×+

2p
≈ 3

4
log 2N

5
4

+=

18 J.M. Hélary, A. Moste-

5 Node failures

In this section, we address the node failures issue. In order to make the algorithm re-
silient to these failures, some assumptions have to be made, and actions have to be
undertaken by non-failed nodes suspecting such failures.

Assumptions

• At any time, a node can fail. Only fail-stop will be considered; more precisely,
when a node fails, it cannot do any action, that is to say can neither send or receive
messages, nor process any pending request message; all the messages in-transit
towards this node on the communication channels as well as all the information
locally stored on this node are lost (however, the constant values pmax and dist
can be stored on a stable storage if node recovery is considered).

• The underlying communication system provides a service ensuring a maximum
delay δ for the transmission of messages between any pair of non-failed nodes (in
particular, the communication remains possible between every pair of non-failed
nodes). The value of δ is available to each node.

Consequences of a node failure

There are three situations in which the failure of a node i has consequences :

1. the node i is asking the token for itself or is in the critical section,

2. the node i is asking the token for the account of its mandator,

3. the node i has pending requests in its queue or will receive request
messages

(note that the situation iii. is not exclusive from the two others). Situations i. and ii.
imply the loss of the token; moreover, situations ii. and iii. imply the loss of all re-
quests - current, pending or future - to be processed by the faulty node and thus has
consequences on all the asking nodes having the faulty node as ancestor. Thus, two
different types of actions are susceptible to be undertaken by appropriate nodes at ap-
propriate times: token regeneration on the one hand, reconfiguration of the open-
cube and request regeneration on the other hand.

Suspicion of failure

Each asking node is able to suspect a failure when, after some delay, it has not re-
ceived the token. When a node suspects a failure, it undertakes an enquiry action,
whose conclusion - after a finite time - can be either : the suspicion is ill-founded:
keep waiting for the token and eventually try another enquiry, or the suspicion is
well-founded: undertake a regeneration action according to the information obtained

Node failures 19

through the enquiry. Let us note that suspecting a failure does not necessarily imply
that thereis a failure; but an enquiry must belive (it will conclude in a finite time)
andsafe (if it is well-founded then there is a failure and the regeneration action must
be consistent). Below, we examine the enquiry procedure, according to the position
of the suspecting node (at the root or not). To begin with, we assume that at most one
node can fail: this assumption is only for the sake of clearness and will be removed
later.

Root

The rootr is expecting the token (satisfyingaskingr∧¬token_herer) only when it has
lended the token to a nodej . Lets denote the source of the request, that is to say the
node whose wish to enter the critical section has triggered the current loan of the to-
ken. Two cases are to consider :

1. j=s. The token is sent directly fromr to s and vice-versa. Ifs is not
down, the root expects the return of the token before a delay equal to
2δ+e, wheree is an estimation of the critical section duration fors.
When this time is out,r suspects the failure and sends an enquiry
message tos. If r does not receive an answer froms before the delay
2δ it concludes thats is down and regenerates the token. Otherwise
the answer comes back and can mean either “wait, I’m still in the
critical section” or “I’ve already sent back the token”. It is easy to
see that, in any case, this enquiry is live and safe.

2. j≠s. The token travels fromr to s via the nodej and perhaps some
other nodes, and comes back directly froms to r. The token can be
lost only if one of these nodes, includings, fails before receiving the
token (or during the critical section in the case ofs). The root expects
the return of the token before a delay equal to (pmax+1)δ+e. When
this time is out,r suspects a failure and sends an enquiry message to
s. If s is not down and has received the token, it answers tor as in the
preceding case. Ifs is not down but has not yet received the token,
the only reason is that the token is lost (recall that the token never
waits when it is received by an asking node) and thus some node on
the path is down; in that case,s answers tor that the token is lost. If
s is down, no answer comes back tor within a delay of 2δ. In the two
latter cases,r regenerates the token.

In order to implement this strategy of token regeneration, the root has to be aware of
the identitys of the source of the request. This information can be added in the re-
quest message.

Asking nodes with father¹≠nil

20 J.M. Hélary, A. Moste-

In the absence of failure, an asking node i will eventually receive the token, and upon
this receipt, updates its father to the node from which the token has been received (its
closest ancestor having acted as proxy when the request has moved up to the root) or,
if no ancestor was proxy, to nil. If a failure prevents the node i to receive the token,
this updating is no more possible and consequently the node i has to undertake some
action in order to consistently update its father and then regenerate its request. Two
cases are to consider :

1. if the closest ancestor j having acted as proxy when the request has
moved up to the root is located between the asking node i and the
failed node f, then the father of i must be j, as would have been the
case in the absence of failure (figure 12). It is now from the respon-
sibility of the node j - which is also asking and not receiving the to-
ken - to enquire for its new father in order to reconnect the path
towards the root.

2. if all the nodes on the path between the asking node i and the failed
node f have acted as transit, none of them can be the father of i (in-
deed, upon processing the message request(i) they have become sons
of i). Consequently, the node i must reconnect the path towards the
root by taking, as new father, the former father of f (before its fail-
ure).

Practically, the node i performs a procedure - called search_father - when, after a de-
lay at least equal to 2pmax.δ after sending the request, the token has not yet arrived.
Its principle is based upon the corollary 2.1, stating that, in an open-cube, fatheri is
the only node j satisfying (i) disti(j)=power(i)+1 and (ii) power(j)≥disti(j). Thus, the
node i will perform an iterative research: each phase d of this research consists in
sending a message test(d) to every node located at distance d from i. It starts with
d=power(i)+1, and the phase d+1 is performed only if d<pmax and the phase d did
not succeed: this means that the father of i cannot be located at a distance ≤d from i;
hence, while performing the phase d, the node i evaluates its power as d-1. A phase
d succeeds if one of the nodes at distance d from i sends to i a positive answer: in that
case, this node becomes the father of i. Let us describe the behavior of a node k re-
ceiving a message test(d) from i. There are three cases:

1. power(k)<d and askingk=false(or k is down): the node does not an-
swer (it cannot be the father of i). Thus, after a maximum time delay
of 2δ the node i considers that k will not send any answer and dis-
cards k from its possible fathers.

f j ir Figure 12

Node failures 21

2. power(k)<dandaskingk. Since the power ofk could increase (ork
could fail) before its current request terminates, it sends back imme-
diately a messageanswer(“ try later”); thus, before the time out 2δ, i
will receive this answer; the decision ofi concerningk and the cur-
rent phase will be postponed; some time later, i will testk again, until
it can conclude by case i. or case iii. below.

3. power(k)≥d. Even if the nodek is currently waiting for the token, its
power cannot decrease upon the receipt of the latter. The nodek
meets all the requirements to be the father ofi and consequently
sends a messageanswer(“ok”) to i. Thus, before the time-out 2δ, the
nodei will receive this answer and conclude the phased with suc-
cess, terminating the procedure by settingfatheri to k and regenerat-
ing its request.

The nodei concludes the phased with no success if all the nodes at distanced have
been discarded as possible fathers. If finally the phasepmax does not succeed, the
nodei becomes the root:fatheri is reset tonil, and the token is regenerated byi.

Beyond this practical implementation, whose details seem rather intricate (a
small example is given at the end of this Section) it is worth to remark that each phase

of thesearch_father procedure involves only a subset of the nodes; in fact, only 2d-

1 nodes are at distanced of a given node (1≤d≤pmax), independently of the node. The
worst case occurs when the searching node has a power 0 and no phase succeeds: in
that case, the entire open-cube is finally tested by the testing node. In the average, the
number of tested nodes during asearch_father procedure is O(log2N). This result,
and the rather easiness for implementing the reconfiguration procedure and regener-
ating the requests, is due, in its essence, to the exploitation of structural properties of
the open-cube, and particularly to the “locality” property. Another practical conse-
quence of this localization is that, while asearch_fatherprocedure is executing in a
subtree, the normal execution of the algorithm (processing requests) in other parts of
the cube can go on.

Concurrent suspicions of failure

It may happen that several nodes having the failed node as ancestor simultaneously
suspect a failure (for example if they have issued requests concurrently). In that case,
it is possible that a nodei, while searching at the phasedi, receives a messagetest(dj)
from a nodej. Since the power ofi can increase during thesearch_father procedure,
the first reaction could be, fori, to postpone its decision concerningj by sending a
messageanswer(“try later”) as in the case ii above. But this policy could cause some
deadlock between nodesi andj sincej could also receive a messagetest(di) from i;
thus, each of the two nodes will stay in their respective phasedi anddj forever. Hence

22 J.M. Hélary, A. Moste-

each node must either send a message answer(“ok”) or not answer. Here, three cases
are to consider :

1. di>dj. In that case, power(j)+1=dj=distj(i) and power(i)=di-
1≥dj=distj(i). Since the power of i can only increase, i must be the fa-
ther of j. Thus, i sends immediately the message answer(“ok”) to j.

2. di<dj. In that case, according to the procedure, the node i does not
answer. However, it is possible to show that, when the search_father
procedure for i terminates, the node necessarily conclude by father-

i:=j; we will not prove this property, but it clearly allows the node i
to conclude immediately. To illustrate, consider the following exam-
ple on the 4-open-cube, where the root a failed before the receipt of
the concurrent requests of nodes b and c (Figure 13). Both nodes b
and c start a search_father procedure.

b sends test(1) to a, and c sends test(2) to a and b.
While waiting in phase 1, b receives test(2) from c, and doesn’t answer.
While waiting in phase 2, c receives test(1) from b and answers “ok”.
Since c had no answer in phase 2=pmax, it concludes with fatherc:=nil; since b
has a positive answer from c, it concludes with fatherb:=c. The proposed optimi-
zation allows b to conclude as soon as it receives test(2) from c.

3. di=dj. If i answers “ok” to j, then j will also answer “ok” to i and the
result will be inconsistent. If, on the contrary, none answers to the
other, it can also be inconsistent as shows the following example: the
initial situation is the same than the preceding one (Figure 13), and
we have the following scenario :

b sends test(1) to a. (no answer).
b sends test(2) to c and d, and simultaneously c starts searching by sending test(2)
to a and b.
b receives test(2) from c while waiting in phase 2 and doesn’t answer.
c receives test(2) from b while waiting in phase 2 and doesn’t answer.
b and c both conclude by setting fatherb:=nil, fatherc:=nil and both regenerate the
token, hence the conclusion is inconsistent.

a

b

c

d

Figure 13 :
Initial Situation a

b

c

d Figure 14 :
Final Situation

Node failures 23

This situation occurs when two nodes suspect the same failure and concur to the same
father (nil in the example). This concurrency can be broken, e.g. by using the node
identities : if the identities are totally ordered, the node with the “smallest” identity
becomes the father of the other. In the example above, b would answer “ok” to c, and
c would not answer to b.

Node recovery

When a node f recovers from a failure, it must be consistently reconnected to the
open-cube; but all the data stored in its local context has been lost when the failure
occurred; however, in order to make its reconnection possible, we assume that the
value pmax and the array distf can be retrieved by f (they can be stored once for all at
initialization time on a stable memory since their values remain constant). The recon-
nection action essentially consists in retrieving fatherf, according to the current open-
cube configuration. For that purpose, the node f merely executes the procedure
search_father starting from the phase d=1; in other words, upon recovery, a node
considers that it is a leaf (recall that each phase of this procedure requires only the
knowledge of the data pmax and distf).

But a problem remains, due to the fact that, when a node f recovers, it may
have some descendants which have not yet concluded a search_father procedure dur-
ing the failure of f (e.g nodes which have not required the token during the failure);
in that case, f is not a leaf, and the reconnection protocol may result in a wrong open-
cube structure. However this problem is easily overcome: as long as a descendant
does not require the token, this violation of the structure does not matter since it is
limited to the subtree rooted at the node f. When such a descendant node i requires
the token, an anomaly can be encountered when the request message reaches f. In that
case f sends back a special anomaly message to i and, upon receipt of this message,
i behaves exactly as if its father f was down by starting a search_father procedure:
obviously, such an anomaly means that, after the reconnection of f, the latter should
not remain the father of i. On the other hand, the anomaly is detected by f when it
performs the “last-son” test involved by the processing of the message request(i): re-
call that, in an open-cube, the following relation between a node i and its father f must
hold: power(f)≥distf(i) (the equality holds if, and only if, i is the last son). Conse-
quently, an anomaly is detected by f when, processing request(i), it finds power(-
f)<distf(i).

A small example

The following example illustrates the failure of a node, concurrently detected by two
nodes, then the recovery of the failed node and the reparation of an anomaly detected
after this recovery. Initially, we have the 16-open-cube, the nodes 10 and 12 have
both issued a request, and the node 9 fails before processing their requests. After a
finite delay, the two requesting nodes suspect a failure. At that time, the configura-

24 J.M. Hélary, A. Moste-

tion is as follows (Figure 14):

The node 10 starts a search_father procedure:

node 10: test(1) to 9. Since 9 is down, no answer;
node 10: test(2) to 11, 12.

Concurrently, the node 12 starts a search_fatherprocedure:
node 12: test(1) to 11.

While waiting in phase 1, the node 12 receives the message test(2) from 10, and
thus concludes its search with father12:=10;

The phase 2 for the node 10 does not succeed. Thus it performs the next phase:
node 10: test(3) to 13, 14, 15, 16 : no answer;
node 10: test(4) to 1, ..., 8 : the node 1 answers “ok” and thus 10 concludes its search
with father10:=1

At the end of these searches, the situation is as follows (Figure 15) :

The node 10 processes its own request. Since power(1)=4 and dist1(10)=4, 10 be-
comes the root. Then, after leaving the critical section, 10 processes the request of
12, loans the token and finally gets it back. At that time, the situation is as depicted
in the Figure 16.

The node 9 recovers. It starts a search_father procedure:

node 9: test(1) to 10. Since power(10)=4, 10 answers “ok” and 9 concludes the
search with father9:=10 (indicated in dot line on the Figure 16). Consequently, 9

13

14
15

16

9

10

11

12

5

6
7

8

1

3

4

Figure 14: node 9 is down

i : asking node
2

5

6
7

8

1

3

4

Figure 15
10

12

11

13

14
15

16

9

2

Conclusion 25

computes its power as dist9(10)-1=0, although it has some descendants. Obviously,

the Figure 16 does not depict an open-cube structure!

Now, the node 13 requests the token. When 9 processes the message request(13), the
comparison between power(9)=0 and dist9(13)=3 raises an anomaly. Thus, 9 sends
back to 13 an anomaly message. When 13 receives it, it starts a search_father proce-
dure starting at phase power(13)+1=dist13(9)=3

node 13: test(3) to 9, 10, 11, 12. Since power(10)=4, the node 10 answers “ok” to
13 which concludes its search with father13:=10. Now the situation is (Figure 17):

and the request of 13 is processed in an open-cube context.

Case of several failures

Several failures can occur simultaneously, provided that the network remains able to
give the service of bounded delay communication between every pair of nodes (the
network is not partitioned). The procedures followed by suspecting nodes is exactly
the same as in the single failure case. All the failed nodes will be eliminated from the
remaining open-cube as their descendants will issue requests and then undertake
their search_father procedures.

6 Conclusion

Most of previously known mutual exclusion distributed algorithms using a token and
based upon a rooted tree structure can be unified in a general algorithmic scheme [1].
The present algorithm belongs to this class, and on this account it inherits from the
general features, in particular the safety and liveness properties. When compared to

5

6
7

8

1

3

4 Figure 16

10

12

11

13

14
15

16

9

2

after 9 recovers

5

6
7

8

1

 2

3

4

13

14

15

16

10

12

11
Figure 17 : after reconnection and repair

9

26 J.M. Hélary, A. Moste-

other previously known mutual exclusion distributed algorithms - belonging or not
to this class - the present one has several advantages : good performances in terms of
the maximum number of messages per request, adaptativity of each node workload
according to the frequency of requests to enter the critical section, high tolerance to
node failures and easy recovery protocol.

For the sake of simplicity, the formal presentation has been made only in the
case where it is assumed that nodes do not fail. However the more realistic case of
node failures has been carefully analyzed and explained. Let us note that, although
this point has not been detailed in the present paper, the complete algorithm, includ-
ing multiple nodes failures, has been implemented and tested in Estelle on hypercube
machine (Intel iPSC/2) with 32 physical nodes; when run withN=32, the average
number of overhead messages per failure was 8 msg/failure (300 failures); withN=64
(two processes per physical node), this average number was 9.75 msg/failure (200
failures); these tests - and many others which are not reported here- confirm the av-
erage number of O(log2N).

These good results are mainly due to the stability and locality properties of
the open-cube structure introduced here. We think that this original structure could
be favorably used as a communication tool, offering good performances and high tol-
erance to node failures, in many other distributed applications.

References

[1] J.M. Hélary, A. Mostefaoui, M. Raynal.
A general scheme for token and tree based distributed mutual exclusion algo-
rithms.
Research Report #1692, INRIA-IRISA, Univ. of Rennes, France (may 1992).
Submitted to publication

[2] M. Naimi, M. Trehel.
An improvement of the log(n) distributed algorithm for mutual exclusion.
Proc. 7th IEEE Int. Conf. on Dist. Comp. Systems, Berlin, (1987), pp. 371-
375.

[3] M. L. Neilsen, M. Mizuno.
A dag based algorithm for distributed mutual exclusion.
Proc. 11th IEEE Int. Conf. on Dist. Comp. Systems, Dallas, (1991), pp. 354-
360.

[4] K. Raymond.
A tree based algorithm for distributed mutual exclusion.
ACM Trans. on Computers Systems, Vol. 7,1, (1989), pp. 61-77.

Conclusion 27

[5] M. Raynal.
A simple taxonomy for distributed mutual exclusion algorithms.
ACM Op. Systems Review, Vol. 25,2, (1991), pp. 47-50.

[6] B. Sanders.
The information structure of distributed mutual exclusion algorithms.
ACM Trans. on Prog. Languages and Systems, Vol. 5,3, (1987), pp. 284-299.

[7] J.L.A. Van de Snepsheut.
Fair mutual exclusion on a graph of processes.
Distributed Computing, Vol. 2, (1987), pp. 113-115.

28 J.M. Hélary, A. Moste-

Éditeur

Inria, Domaine de Voluceau, Rocquencourt, BP 105 LE CHESNAY Cedex (France)

ISSN 0249-6399

Unité de recherche INRIA Lorraine, technopôle de Nancy-Brabois, 615 rue du jardin botanique, BP 101, 54600 VILLERS-LÈS-NANCY
Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex

Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex1
Unité de recherche INRIA Rocquencourt, domaine de Voluceau, Rocquencourt, BP 105, LE CHESNAY Cedex

Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

30 J.M. Hélary, A. Moste-

