N
N

N

HAL

open science

A O(log2n) fault-tolerant distributed mutual exclusion
algorithm based on open-cube structure

Jean-Michel Hélary, Achour Mostefaoui

» To cite this version:

Jean-Michel Hélary, Achour Mostefaoui. A O(log2n) fault-tolerant distributed mutual exclusion algo-
rithm based on open-cube structure. [Research Report] RR-2041, INRIA. 1993. inria-00074630

HAL Id: inria-00074630
https://inria.hal.science/inria-00074630
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074630
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A O(log, n) fault-tolerant distributed mutual
exclusion algorithm based on open-cube structer

Jean-Michel Hélary, Achour Mostefaoui

N° 2041

Septembre 1993

PROGRAMME 1

apport
derecherche

%N RIA

A O(log, n) fault-tolerant distributed
mutual exclusion algorithm based on
open-cube structure

J. M. Hélary A. Mostefaoui
Programme 1
Projet Algorithmes Distribués et Protocoles
Rapport de recherche n°2041 -Septembre 1993
21 pages

Abstract: A new distributed mutual exclusion algorithm, using a token and based
upon an original rooted tree structure, is presented. The rooted tree introduced,
named “open-cube”, has noteworthy stability and locality properties, allowing the
proposed algorithm to achieve good performances and high tolerance to node fail-
ures: the worst case message complexity per request is, in the absence of node fail-
ures, logN+1 where N is the number of nodes, whereas Glbgxtra messages in

the average are necessary to tolerate each node failure. This algorithm is a particular
instance of a general scheme for token and tree-based distributed mutual exclusion
algorithms, previously presented in part by the authors; consequensigfety and
liveness properties are inherited from the general one; hovikegresent paper is
self-contained.

Key-words: distributed algorithms, mutual exclusion, token, tree structure, fault-
tolerance

* Submitted to the T8Int. Conf. on Distributed Computing Sysytems

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)
Téléphone : (33) 99 84 71 00 - Télécopie : (33) 99 38 38 32

Un algorithme réparti d’exclusion
mutuelle tolérant les pannes, basé sur
une structure de cube ouvert

Résumé :On présente un nouvel algorithme réparti d’exclusion mutuelle, utilisant

un jeton et basé sur une structure arborescente originale. Cette structure, appelée
“hypercube ouvert”, posséde de remarquables propriétés de stabilité et de localité,
grace auxquelles l'algorithme proposé présente de bonnes performances et une
grande résistance aux défaillances de sites : la complexité maximale, en nombre de
messages par requéte, estoMgl, et O(logN) messages supplémentaires, en
moyenne, sont nécessaires pour traiter chaque panne de site. Cet algorithme est une
instanciation d’'un schéma générique d'algorithmes répartis d’exclusion mutuelle
utilisant un jeton et une structure arborescente, présenté auparavant en partie par les
auteurs; en conséquence, ses propriétés de slreté et de vivacité sont héritées de I'al-
gorithme générique; toutefois, la lecture de cet article ne suppose pas la connais-
sance préalable de I'algorithme générique.

Mots-clé : algorithmique répartie, exclusion mutuelle, jeton, arborescence, tolé-
rance aux défaillances.

algorithmique répartie, exclusion mutuelle, jeton, arborescence, tolérance aux
défaillances.

Introduction 1

1 Introduction

This paper deals with mutual exclusion problem in distributed systems. A
distributed system is characterized by a set of nodes, identified by 1,12, The
nodes communicate only by messages exchanged through communication channels;
they don’t share any memory nor a global clock. Channels are supposed to be reliable
(messages are neither lost nor corrupted) and communication is asynchronous (mes-
sage propagation delay is finite but unpredictable). Between any pair of nodes, mes-
sages can be delivered out of order (channels can be FIFO or not). Finally, without
loss of generality for our purpose, we suppose that there is exactly one process per
node: so in the following we consider these two terms as synonyms.

Within such a context, several mutual exclusion algorithms have been pro-
posed ([6,7]. One important class of solutions is based on the usakef:aunique-
ness of the token guarantees the safety property (at any time, at most one process can
be in the critical section) by subjecting the right to enter the Critical Section to the
possession of this token. The liveness property (each request to enter the critical sec-
tion will be satisfied after a finite time) is guaranteed, in the absence of channel or
node failure, by the design of a routing structure used by the node requests and by the
token, together with appropriate rules in order to avoid deadlock and starvation.

The advantages of this approach lie in the possibility to achieve good per-
formances, in terms of number of messages needed to satisfy a request to enter the
critical section (message complexity per request). The best known algorithms are
tree-based: each node sends its requests to one qualified neighbor (its “father”),
which makes the request progress towards the token [2,3,4,7]. The sdéathie|
define a rooted tree, with edges directed towards the root; the token is kept by the
root, which plays the role of token allocator (the root temporarily lends the token to
requesting nodes, one after each other). The message complexity per requestis, in the
average, i), whered is the diameter of the tree. Depending on the tree design, it
can be as low as O(lgg), wheren is the number of nodes.

In Raymond’s and Van de Snapsheut’s algorithms, the tree structure is static,
although edges are dynamically directed according to the token position: each node
defines its father as the neighbor belonging to the subtree containing the token. The
worst case message complexity per requestdy @ that cased is statically de-
fined). However, this solution has some disadvantages :

» the amount of work performed by each node depends only on its position in the
tree (in fact, on its degree) and not on the frequency of its requests to enter the
critical section,

« if a node fails, the tree has to be rebuilt.

2 J.M. Hélary, A. Mostefaoui

In Naimi-Trehel's algorithm, on the contrary, the tree structure is dynamic
and evolves according to the occurrence of new requests. This overcomes the first
disadvantage of the preceding solution, since the less a node requests to enter the crit-
ical section, the further it is from the root, and thus the lighter becomes its workload.
But this must be paid by another disadvantage: the tree can meet any possible con-
figuration, leading to a worst case message complexity per requesi ¢ali{ough
O(logyn) in the average).

Each of these two extreme algorithms is an instance of a general scheme for
the class of token-based algorithms using a rooted tree to move the requests, pro-
posed by Hélary and al. [1], allowing to design new algorithms whose behavior can
be tuned from the completely static (Raymond) to the completely dynamic one (Nai-
mi-Trehel). In the present paper a new algorithm, based on this general scheme, is
proposed; its aim is to combine the advantages of both static and dynamic cases since
it allows the position of the nodes to evolve, as in Naimi-Trehel’s, but within a tree
whose diameter will remain bounded to O@lagas in Raymond’s. Moreover, the
particular design of the tree allows to take into account nodes failures and token loss:
recovery from a node failure (including safe token regeneration if necessary) requires
only O(logn) extramessages, in the average. This important feature, which, to our
knowledge, has not been achieved in any of the previously known tree-based algo-
rithms, is due to a “locality” property inherent to the structure of the underlying tree.

The rest of the paper contains four parts: the logical tree structure and its
properties is addressed in Section 2; the algorithm is presented in Section 3, and Sec-
tion 4 addresses correctness and performance issues; in these two sections, it is as-
sumed that nodes do not fail, but this assumption is removed in Section 5, where it is
shown how to handle such failures.

2 Theopen-cubetreestructure

The tree structure upon which the algorithm is based can be recursively described.
For simplicity, we assume that the number of nodes is a power of twos Zayrhe

tree is made of two identical sub-trees, havifig Bodes, connected by one directed
edge linking their roots, as shown in Figure 1 (links are directed towards the root):

Figure 1 : recursive structure

The open-cube tree structure 3

For particular values=2, n=4,n=8 andn=16 we obtain (Figures 2a, 2b, 2c,

2d):
13
2 11
71o 15
12 14
8 16
2a

Figure 2 : examples of open-cubes

Such a tree is called “n-open-cube” since it corresponds to a n-hypercube
from which some links have been removed (Figure 3).

\ Figure 3 : the 8-open-cube and the corresponding 8-hyp

The concept of p-group and locality

A p-group is a set of nodes belonging to an open-cube subtree hdugl@s. For
example, in the 16-open-cube of figure 2d, {1,2}, {3,4}, ..., {15,16} are 1-groups,
{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16} are 2-groups, {1,2,...,8},
{9,10,...,16} are 3-groups and {1,2,...,16} is a 4-group. Each node is the root of one
or several p-groups. For example, in the open-cube of Figure 2d, the node 1 is the
root of a 0-group ({1}), a 1-group ({1,2}), and so on.

Definition 2.1. Thepower of a nodd is the greatest integprsuch that is
the root of a p-group.

For example, in the 16-open-cube of Figure 2d, node 1 is of power 4, node 2 of power
0, node 3 of power 1, node 5 of power 2, node 9 of power 3, and so on. It is easy to
see that a node of powghas exactlp sons, whose powers range from @+b.

Definition 2.2. The distance of two nodes andj, denotedlist(i,), is the
smallest integed such that andj belong to the sanggroup.

4 J.M. Hélary, A. Mostefaoui

For example, in the 16-open-cube of Figure 2d, dist(1,2)=1, dist(1,j)=2 if j=3 or 4,
dist(1,j)=3 for j=5,...,8 and dist(1,j)=4 for j=9, ... ,16.

Proposition 2.1 If j isason of i, then power(j)=dist(, j)- 1

Proof Obvioudy, anodei together with the subtrees rooted at the sons of i
of power r (O<r<power(i)-1) form a (r+1)-group. Thus, if j isthe son of i of powerr,
dist(i,j)=r+1

Proposition 2.2 The following implication holds :
Oi Oj : dist(i,j) = power (i) +10 j = father (i) orpower (j) <power (i)

Proof The nodes located at distance power(i}+1 from i are father(i) and the
nodes belonging to the subtrees rooted at the brothers of i of power 0, ..., power(i)- 1.
All, except father(i), have a power less or equal to power(i}1

Corollary 2.1 father(i) is the only node j such that (i) dist(i,j)=power(i}+1
and (ii) power(j)>power(i)

Definition 2.3 The last sonof a node of power p>0 isits son of power p-1,
and an edge (j, i) is a boundary edgef j is the last son of i, in other words :
power (i) = power (j) +1 (recall that, for every edge (, i),
power (i) = power (j) +1).

The following theorem shows which pairs father-son can be swapped over
without changing the open-cube structure of the tree.

Theorem 2.1. Let (j, i) be an edge in an open-cube. The following transfor-
mation :
father(j) := father(i) ; father(i) :=
keeps the open-cube structure if, and only if, (j, i) is a boundary edge. In this
case, it decreases the power of i by one, and increases the power of j by one.

Pr oof.

VAAYZ

$
i \ i \ Figure 4 : node swapping
‘ j

The open-cube tree structure 5

i) Suppose that (j, i) is a boundary edge, and let p=power(i). Thus, power (-
1)=p-1. By the transformation, the open-cube remains a tree (Figure 4). Moreover, i
loses its last son and thus, after the transformation, i has p-1 sons, whose powers
range from O to p-2. Hence, after the first assignment, power (i)=p-1. On the other
hand, before the transformation, j has p-1 sons, whose powers range from O to p-2.
By the transformation, j gets a new son, whose power is p-1, and thus, after the sec-
ond assignment, power (j)=p. Consequently, the open-cube structure is kept, with the
edge (i, j) as boundary edge instead of the edge (j, i) (the nodei becomesthe last son
of j).

ii) Conversely, suppose that (j, i) is not a boundary edge. The following
counter-example shows that the transformation destroys the open-cube structure :
consider the 4-open-cube (Figure 5) and the transformation performed with i=1
(power(1)=2) and j=2 (power(2)=0); after the two assignments, we have : fa-
ther (2)=nil, father(1)=2 and, obviously, the tree is no more an open-cube.

1

1
T‘? 3 AV l 3 Figure 5 : node swapping
2 2
4

4

Swapping over anode with its last son will be called a b-transformation (b stands for
boundary).

Corollary 2.2 When a b-transformation is performed, all the p-groups re-
main unchanged.

Corollary 2.3 When a b-transformation is performed, the distance between
two nodes remain unchanged.

These results express the concept of locality: within a p-group, the node
membership remains unchanged under the b-transformation, and the link connecting
the two (p-1)-group composing the p-group is persistent (although its direction and
extremities can change). For example, in the 2-group {5,6,7,8} of the 16-open-cube
(Figure 2d) the link connecting the two 1-groups{5,6} and { 7,8} ispersistent (it can
connect 5and 7, 5and 8, 6 and 7, or 6 and 8, in either direction).

A bound on thelength of branches

Letiy i1 ... ig be abranch of a N-open-cube (with N=2P); i istheroot, iy is aleaf.
Let pyr, Pr-1, ---» Po b€ the respective powers of nodesi, iy_1 ... ig. We have the follow-
ing result:

6 J.M. Hélary, A. Mostefaoui

Proposition 2.3 r <log,N — n,, where n, is the number of nodes on the
branch which are not last sons.

Proof py, pr.1, ---» Pg iSamonotonic strictly decreasing sequence of integers,
with p=log;N and pp=0. But, p,—py = ril (pj - pj) and thus
r-1 =0
r=p, —Py— Z (Pj+1~P;j—1).Ontheotherhand, p;, ; —p; =121 < the
node j is not th(Je I:agt son of the node .1, and thus the latter inequality holds for ex-
actly ny termsin the sum whence ril (pJ- f17P 1) 2n,
j=0

3 Description of thealgorithm

In this section, we assume that nodes do not fail (recall that we have assumed earlier
that channels are reliable). Node failure issue will be addressed in Section 5.

3.1 Principle

Initially, nodes are arranged according to an open-cube structure, and the tokenislo-
cated at the root of the tree. When a node wants to enter the critical section, it issues
arequest to have the token; theright to enter the critical section isgranted by the pos-
session of the token. According to the progression of this request, the rooted tree will
possibly evolve; however, the algorithm is designed in such a manner that this evo-
lution maintains the open-cube structure. According to the Theorem 2.1, thiswill be
achieved if this evolution involves only b-transformations. In order to meet this re-
quirement, each node maintains local information, whose initial value reflects the
initial open-cube structure; the description of the algorithm consists in explaining
how thisinformation is used and updated. Each node hasthuslocal variables describ-
ing itslocal state (with regard to the token and to the critical section), its positionin
the logical rooted tree, and its behavior.

L ocal state of nodei

The presence of the token is indicated by the boolean variable token_herg whose

valueistrueif, and only if, the node i has the token. Moreover, the boolean variable
asking hasthe value true if, and only if, nodei is currently waiting for the token or

Description of the algorithm 7

executing a critical section. Managing these two variables is straightforward.

Position in the open-cube

Each node maintains the following data : an arrdigtj such that, for any, distj(j)

is the distance betweérandj in the open-cube; the power of the root, denoted by
pmax; a variableather; denoting the father afin the open-cube. From this informa-

tion, the power of can be deduced : by proposition Zawer (i)=distj(father;)-1 if
father;znil, power (i)=pmax otherwise. Initial values of these data are set upon initial-

ization of the open-cube. Let us remark that, if the evolution of the open-cube in-
volves only b-transformations, the ddid; andpmax areconstants, whereagather;

is avariable.

Each node has also a variablender; : its value indicates the node to which

i will have to give back the token when leaving the critical section. Its value is mean-
ingful only wheni is in the critical section : it is updated upon the token receipt grant-
ing the right to enter the critical section, and used upon leaving the critical section.
The information needed by a nade order to update the valuelehder; is carried

over by the token: the latter is thus implemented by a metsaj) wherej is a

node identity: ifiznil, lender; is set tg; if j=nil it means that will keep the token;
consequentlylender; is set ta (i becomes the root arfiather; is set tonil).

The two variablegather; andlender; have “dual” meanings since the former

indicates from which node the token should be requested, whereas the latter indicates
to which one give back this token.

Requests and behavior of a node

When a nodewants to get the token, it sends a messegest(i) to father;,
setsasking; to true, then waits for the token arrival. When a nogeocesses a mes-

sagerequest(j) from one of its sons, sd&y it reacts to this event with two different
behaviors, according to the positionkaf

« If kis thelast son of i, the node will either give up the token to nodl€if i is
the root and has the token, it semolgen(nil) to j) or forward the message-
quest(j) to father;. Afterwards, considers that, in the future, it will have to send
requests t¢: consequently it sefsther;:=j. In other words, the edgg father;)

is replaced by the edgej). We will say that the nodeconforms to dransit be-
havior. Let us note that wherreguest message is processed by a tranaie,

the first assignment of a b-transformation is perfornfigitief;:=j).

 If kis not the last son off, the noda considerg as itsmandator and, conse-
quently, either lends the tokenjt@f i is the root and has the token, it setwds

8 J.M. Hélary, A. Mostefaoui

ken(i)to], hereby meaning that, after being used, the token will have to return to
i) or requests the token for itself, by sending a messagest(i)to father, thus

becoming an asking nodasking:=true). We will say that the nodeconforms

to aproxybehavior { is proxyfor j, or, equivalentlyj is themandatorof i). Let
us note that when a request message is processqutdyaode, the tree is not
modified: updatindather, is postponed until the token is received.

Each node has thus a variatiandatoy. The value of this variable is a node
identity and is meaningful only wherhas requested the token for satisfying a re-
questmandatoj=i means thatwants to enter the critical sectionandatoy=j, j #1,

means that has processed a messagguest(j)and conformed tproxy behavior;
the variablemandatoy will be reset tail wheni will receive the requested token:

will cease its mandate for this request. andatoj=nil means that the nodéas
no current request.

Let us remark that performing the test whethes the last son dfis very
easy kis the last son dfif, and only if,powe(k)=powe(i)-1. But, sincek is a son
of i, we have, from proposition 2.gower(k)=disf(k)-1; thus Kk is the last son afif,
and only if,dist(k)=powexi), or, equivalently dist(k)=dist(father)-1.Moreover, it
is important to note that, since this test is performed upon the processing of the mes-
sagerequest(j)sent byk, the latter is an ancestorjothus,dist(k)=dist(j). From this
follows thatk is the last son ofiff disf(j)=dist(father)-1. Hence, the nodiedoes not

need to be aware of the identkythe valug brought up by theequestmessage is
sufficient fori to perform the test.

When a node receives the token, this can result from a request previously
made byi and still pending (in that casmandatofz nil), or from a return to after

a loan (in that casepandatoy=nil).

1. mandatoy# nil and the nodereceivedoken(j).
If j #nil, it means that the token is lended by npdehe node sets
father, tok, the node from which it has received the token: as will be
shown in Section 4, this updating restores the open-cube property
which could have been “temporarily” destroyed when tthasit
nodes located on the path betweand the root have performed the
first part of a b-transformation; then the noedenors the request
(entering critical section wittendeg=j if mandatof=i or sending
token(j) to mandatoy if mandatoyzi) and resetsnandatoy to nil
If j=nil, it means that the token has no lendée node setsfather;
to nil (it becomes the root); then it honors the request (entering crit-
ical section witHendeg=i if mandatoj=i or sendindoken(i) to man-

Description of the algorithm 9

dator; if mandator;zi) and resetsnandator; to nil. If the node has
entered the critical section wiliender;#i, it will send backoken(nil)
to lender; upon leaving the critical section.

2. mandator;=nil. The node receivegoken(nil). This is a return of the
token after a loan.

Relation with the general algorithm

In the general token- and tree-based algorithm presented in [1], the behavior of each
node is caught in a local varialilehavior;, having at any time one of the two values:

transit or proxy; a fundamental characteristic of the general algorithm is the possibil-
ity of arbitrary static or dynamic assignment of these variables. In consequence, any
static or dynamic rule of assignment can be considered, each yielding a particular al-
gorithm. Actually a particular choice for the behavior of nodes can be controlled ac-
cording to the supposed evolution of the underlying tree (the efficiency of a tree-
based mutual exclusion algorithm indeed depends on this structure). For instance,
Raymond’s algorithm is obtained when the behavior of each nodmsg when it

has the token anproxy otherwise, i.e.behavior;=transit - token_here,. The struc-

ture of the tree, initially defined, doesn’'t change, except the direction of the edges.
On the opposite, Naimi and Trehel’s algorithm is obtained when each node is perma-
nentlytransit, and thus the tree can meet any possible configuration. The particular
algorithm presented in the present paper is thus obtained by applying the following
rule: for each nodg the value obehavior; is updated upon evergquest message

processing: it is assigned the vatuansit if the message has been sent by the last
son, and the valugroxy otherwise. It will be proved, in Section 4, that this rule al-
lows the open-cube structure to be maintained. Another important consequence of
this remark is that theafety andliveness proofs given for the general case hold for
each particular instance resulting from particular rules of assignment.

Queues

If several nodeg are such thafather;=i, the node can receive several “simulta-

neous” requests; moreover, the process associated with themageavish to enter

the critical section. In order to deal with this multiplicity of requesigifing-queue

is associated with each node. Its service policy is implicit; the only assumption is
fairness, meaning that every waiting request will wait a finite time before being pro-
cessed. For example, the FIFO policy is fair. No waiting request can be processed by
i unless the boolean varialasking; has the valulse. Thus, each node can be seen

as arequest server, whose busy periods correspond to the time during véskehg;

is true, service corresponds to the request of the token (on current mandator’s ac-
count), and clients are pending requests waiting in the queue. In the algorithmic ex-

10 J.M. Hélary, A. Moste-

pression, the primitivewait (not asking)” expresses the precondition to the execu-

tion of actions related to everitgal call to enter_candreceive request(jjt corre-
sponds to the fact that procéss occupied to serve another request.

3.2 Example

The Figure 6 below depicts the initial situation (16-open-cube) : the node 1 has lend-
ed the token to the node 6 which is currently in critical section. We examine the case
where nodes 10 and 8 both require the right to enter the critical section (in our exam-
ple, the request of 10 will be satisfied before the request of 8, but this is irrelevant to
the discussion).

1
9
2 13 . L
, 3 11 Figure 6 : initial situation
15
4 1o 14 pmax=4
8 16

Node 10 wishes to enter the critical section motctoken_hergy andnot asking o:
sendrequestl10) tofather ¢=9; asking g:=true; mandatof ;=10

Node 9 receivesequestl0) from 10 ancdhot token_hergandnot asking): -- behav-
ior=proxy
sendrequest9) tofathery=1; askingy:=true; mandatog:=10

Node 1 receivereques{9) from 9 andasking:
reques{9) is queued

Node 8 wishes to enter the critical section aottoken_hergandnot asking:
sendrequest8) tofatherg=7; asking:=true; mandatog:=8

Node 7 receivesequest8) from 8 andhot token_here andnot asking: -- behav-
ior=transit
sendrequest8) tofather=5; father;:=8
-- asking remaindalse the power of 7 becomes 0 and the power of 8 becomes
1.
-- The variabldatherg will be updated later

Node 5 receivesequest8) from 7 andhot token_herg andnot asking;: -- behav-
ior=transit
sendrequest8) tofather;=1; fathers:=8;
--asking; remaindalse the power of 5 becomes 1 and the power of 8 becomes
2.
-- The variabldatherg will be updated later

Description of the algorithm 11

Node 1 receives request(8) from 5 and asking:
request(8) is queued

Node 6 exits CS:
send token(nil) to lenderg=1 ; token_hereg:=false; askingg:=false

Node 1 receives token(nil) and mandator ;=nil : -- the token comes back after aloan

by theroot 1
token_here;:=true; asking,:=false

Node 1 processes request(9) and token_here; :
-- behavior=transit since power (1)=4 and dist,(9)=4 : 1 givesup thetokento 9
send token(nil) to 9; father,:=9; token_here;:=false

At that point, the configuration of variables father is the following (Figure 7):

« the edge (9,1) will be removed when 9 will
receive the token. At that time, fatherg will be

9 updated according to the content of the mes-
13 sage token Until then, node 9 remains busy
11 1 (askingg=true)

receive the token. At that time, fatherg will be

updated. Until this, node 8 remains busy

10 14 15 j 8 « the edge (8,7) will be removed when 8 will
3
T; (askingg=true)
7

Figure 7 6

Node 1 processes request(8) and not asking; and not token_here; :
-- behavior ;=transit since power (1)=dist;(9)-1=3 and dist;(8)=3
send request(8) to father,=9; father,:=8

Node 9 receives token(nil) and mandatorg=10: -- 9 becomes the |ender
lender o:=9 ; fatherg:=nil;
send token(9) to mandatorg=10 ; mandator g:=nil
-- itsmandate for node 10 is now compl eted but askingg remains true until the
token returns

Node 9 receives request(8) from 1 and askingg=true :
request(8) is queued

Node 10 receives token(9) from 9 and mandator 1=10:
lender 1o:=9; father:=9 ; -- the token comes from node 9

12 J.M. Hélary, A. Moste-

mandatofy:=nil; token_hergy:=true;
ENTER CS

Node 10 EXITS CS and lendefp=9 :
send toker(nil) to lendery=9; token_hergy:=false asking:=false

Node 9 receives toker(nil) and mandatog=nil: -- the token comes back after a loan
by the root 9
token_herg=true; asking,:=false

Node 9 processes requesi8) and not asking, and token_herg:
-- behaviortransit since poweK9)=pmax4 and disty(8)=4
send toker(nil) to 8; token_herg=false fathery:=8

Node 8 receives toker(nil) from 9 and mandatog=8:
lendeg:=8; fatherg:=nil; mandatog:=nil; token_herg=true;
ENTER CS

Node 8 EXITS CSand lendeg=8:
-- 8 keeps the token (it is the root)

Thefinal situation is shown on Figure 8:

?\T‘? m Figure 8: final configuration
10

3.3 Formal description of thealgorithm

The text of the algorithm describes the actions performed by each node i
upon the occurrence of each of the four possible events: i wishes to enter the critical
section (local call to the procedure ener_c9, i exitsthe critical section (local call to
the procedure exit_c3, i receives a requestmessage, i receives a tokenmessage.
Apart from the precondition wait (not asking) which may delay the beginning of the
actions enter_csand receive requeseach of these four actions is processed atomi-
caly, i.e., without interruption.

Upon acall to enter_cdy i
begin
wait (not asking);
asking:=true;

Description of the algorithm

13

if not token_here, then
mandator;:=i;
send request(i) to father;;
wait (token_hereg) -- receipt of token sets lender;
endif
end -- enter_cs
Upon acall to exit_cshy i
begin
if lender;#i then
send token(nil) to lender;;
token_herg:=false
endif;
asking;:=false
end -- exit_cs

Upon receipt of request(j) by i
begin
wait (not asking;);
case of distj(j) #distj(father;)-1
begin -- i becomes proxy for j
asking;:=true;
if token_here,
then -- i temporarily lends the token
send token(i) toj;
token_herg;:=false

else -- i requires the token
mandator;:=j;
send request(i) to father;
endif
end
dist;(j) =dist;(father;)-1
begin -- i hasatransit behavior
if token_here,
then --i givesup the token
send token(nil) toj;
token_here;:=false

else -- i forwardsthe request
send request(j) to father;
endif;
father;:=j
end

14 J.M. Hélary, A. Moste-

endcase
end -- request

Upon the receipt of token(j)from k by i
-- j is the token lender; if j=nil the token does not have to be given asking=true
begin
token_herg=true;
case of mandatoy=nil

begin -- return of the token after loan
asking:=false

end
mandatof=i

begin -- the claim of i to enter critical section is satisfied
if j=nil then --the token has no lender, i becomes the lender
lendef:=i; father:=nil
ese -- i will have to give back the token
lendes:=j; father;:=k
endif;
mandatoy:=nil -- asking remains true until leaving the critical section
end
mandatoy#i, nil
begin -- ihonors the request of its mandator
if j=nil then -- the token has no lender, i becomes the root and
-- lendsthe token
father:=nil;
send token(i)to mandator;
-- asking remains true until the tokeeturns

else -- jis the lender of the token
father:=k;
send token(j)to mandatoy
asking:=false
endif ;
mandatop:=nil ; token_herg= false
end
endcase
end -- token

4 Proof and performances

We will not give here the proof of safety and liveness properties: in fact, the algo-
rithm presented here is an instance of the general one (allowing arbitrary assign-

Proof and performances 15

ments, at arbitrary times, of variableshavior;), whose complete proof is given in

[1].

We will content ourselves to show that the open-cube structure of the tree is
maintained, even when modifications of the varialféiser occur, due to node
swapping. More precisely, we are going to show that, if the tree is an open-cube when
a node sends a messagguest to its father, then it is still an open-cube wheren-
tually receives the token.

We begin with the case when no concurrent request reaches one of the nodes
on the path from the requesting node the root. Let=ig, i4, ... ,i, denote the path

fromi to the rooft, in the open-cube existing when the nodends aequest to its
fatheri,. Two cases are to consider :

1. The path comprises only boundary edges. All the ancestohaoeé
atransit behavioy thus all nodeg (1< <r — 1) will forward the
request of i toi41, then set their father ipthe rooti, will send the
token toi, then sets its father tpfinally, upon receiving the token,
will set its father tanil. Thus, the overall transformation of variables
father is equivalent to the sequence of b-transformations:
father(ig) :=father(iq) (=i,) ; father(iy) :=ig;

father(iq) = father(iy) (= ii,q) ; father(ip) =g :
%éther(io) :=father(i,) (=nil) ; father(i,) :=ig

By the theorem 2.1, each of these transformations keeps the open-cube structure.
Thus, the overall transformation keeps the open-cube structure

Example with r=4:

%\i?’ i A_‘\“\\I ;

2 _ | [3 I4
~ i, o 1 2
Initial situation V¥ =i Final situation

Figure 9 : transformation of a boundary path

2. Atleast one edge of the path is not a boundary edgg. hesthe first
ancestor ofi such that (i, _4,1,) is not a boundary edge
(1<k<r). In other words, all the nodeég ... j,.; will have a
transit behavioy andiy will have aproxy behavior Thus all nodeg
(1 <1 <k-1) will forward the request dftoi;,,, then sefather
toi; the nodey will receive the request ofthen record as its man-

16 J.M. Hélary, A. Moste-

dator, and send the token (immediately or after having required it) to
i; the node i will eventually receive the token from i, and, at that
time, will set its father to i,.. Asin the preceding case, the overall
transformation is equivalent to the sequence of b-transformations:

father(ig) := father(iy) (=i,) ; father(i,) :=ig;

father(ig) := father(iy.q) (= iy) ; fathe(iy_1) :=ig
which, by the theorem 2.1, keeps the open-cube structure.
The case where several concurrent requests occur is similar : it is sufficient to ob-

serve that new incoming requests are either delayed if the node is busy (askingis
true), or follow the path towards the current father otherwise.

Maximum number of messages per request

Leti beanodeissuing arequest to enter the critical section, and r be the length of the
path going from i to the root. On that path, there are ny+n,+1 = r+1 nodes, where n;

is the number of nodes which are not last sons and n, is the number of nodes which
are last sons. By the proposition 2.3, n; + n, < log,N — n,. On the other hand, r-
1=n,+n,-1 requestmessages are necessary to reach the root, but only n, tokenmes-
sages are necessary to reach back i, and may be 1 message to return the token (if
n, # 0). Thus, the total number of messagesis 2n; +n, + 1<log,N+1

Average number of messages per request

The actual number of messages necessary to satisfy a request issued by a node de-
pends of the position of the node in the tree. Let c(i) be that number for the node i.

c(i
We compute the average numberc = z# where the sum is over the N nodes of

the open-cube.
IfN=2, 0, = ZC(i) =c(1) +c(2) =0+2 =2
If N=2P we have (see Figure 10)

(R XUEP LR

If N=2P*1 we have (see Figure 11) :

Proof and performances 17

2P 1nodes

Figure 10 Figure 11

P AP KA LS R

But,igrlc(i) = i;C(i) andigylc(i) = i;’C(i) + psince each

of the p boundary nodes of T’ 1 need one more messagethanin T’ (to return the token
totheroot of T1)

similarly, ;r c(i) = ;C(i) +2 % 2P~ Lsince each node of T2 needs two
igT2 i
more messages than in T to reach the root, and, likein T, the root of T2 is proxy for

the nodes of T2.
Finaly, g c(i) = ;c(i) + 2P~ Lsince each node of T2 needs one more
i1 i

|
message than in T’ to reach the root.

Thus we have the following recurrence relation :
Hp:p=1: ap+1:2ap+3><2p_l+p
0 (]1 =2

whence ap = jp x 2P + i x 2P From there follows the average complex-

ity per request:

3 x P42y op
gPx 2t 2 g 5
= log,N +

¢ 4

2P :Z

18 J.M. Hélary, A. Moste-

5 Nodefailures

In this section, we address the node failuresissue. In order to make the agorithm re-
silient to these failures, some assumptions have to be made, and actions have to be
undertaken by non-failed nodes suspecting such failures.

Assumptions

« At any time, a node can fail. Only fail-stop will be considered; more precisely,
when anodefails, it cannot do any action, that isto say can neither send or receive
messages, nor process any pending request message; al the messages in-transit
towards this node on the communication channels as well as al the information
locally stored on this node are lost (however, the constant values pmaxand dist
can be stored on a stable storage if node recovery is considered).

* The underlying communication system provides a service ensuring a maximum
delay o for the transmission of messages between any pair of non-failed nodes (in
particular, the communication remains possible between every pair of non-failed
nodes). The value of o is available to each node.

Consequences of a nodefailure

There are three situations in which the failure of anodei has consequences :
1. thenodei is asking the token for itself or isin the critical section,
2. thenodei is asking the token for the account of its mandator,

3. the node i has pending requests in its queue or will receive request
messages

(note that the situation iii. is not exclusive from the two others). Situationsi. and ii.
imply the loss of the token; moreover, situations ii. and iii. imply the loss of al re-
quests - current, pending or future - to be processed by the faulty node and thus has
consequences on al the asking nodes having the faulty node as ancestor. Thus, two
different types of actions are susceptible to be undertaken by appropriate nodes at ap-
propriate times: token regeneration on the one hand, reconfiguration of the open-
cube and request regeneration on the other hand.

Suspicion of failure

Each asking node is able to suspect a failure when, after some delay, it has not re-
ceived the token. When a node suspects a failure, it undertakes an enquiry action,
whose conclusion - after afinite time - can be either : the suspicion isill-founded
keep waiting for the token and eventually try another enquiry, or the suspicion is
well-foundedundertake a regeneration action according to the information obtained

Node failures 19

through the enquiry. Let us note that suspecting a failure does not necessarily imply
that therds a failure; but an enquiry must bee (it will conclude in a finite time)
andsafe(if it is well-founded then there is a failure and the regeneration action must
be consistent). Below, we examine the enquiry procedure, according to the position
of the suspecting node (at the root or not). To begin with, we assume that at most one
node can fail: this assumption is only for the sake of clearness and will be removed
later.

Root

The rootr is expecting the token (satisfyiagking(-token_herg only when it has

lended the token to a nofleLets denote the source of the request, that is to say the
node whose wish to enter the critical section has triggered the current loan of the to-
ken. Two cases are to consider :

1. j=s. The token is sent directly fromto s and vice-versa. I§is not
down, the root expects the return of the token before a delay equal to
25+e, wheree is an estimation of the critical section durationdor
When this time is out;, suspects the failure and sends an enquiry
message te. If r does not receive an answer frefmefore the delay
25 it concludes thag is down and regenerates the token. Otherwise
the answer comes back and can mean either “Wimitstill in the
critical section” or “I've already sent back the tokerit is easy to
see that, in any case, this enquiry is live and safe.

2. j#s. The token travels fromto s via the nodg and perhaps some
other nodes, and comes back directly frotar. The token can be
lost only if one of these nodes, includigdails before receiving the
token (or during the critical section in the casg) of he root expects
the return of the token before a delay equaptogix1)o+e. When
this time is outy suspects a failure and sends an enquiry message to
s. If sis not down and has received the token, it answeragan the
preceding case. His not down but has not yet received the token,
the only reason is that the token is lost (recall that the token never
waits when it is received by an asking node) and thus some node on
the path is down; in that cassnswers to that the token is lost. If
sis down, no answer comes back tithin a delay of 8. In the two
latter cases, regenerates the token.

In order to implement this strategy of token regeneration, the root has to be aware of
the identitys of the source of the request. This information can be added in the re-
guest message.

Asking nodes with fathegnil

20 J.M. Hélary, A. Moste-

In the absence of failure, an asking nodei will eventually receive the token, and upon
thisreceipt, updates itsfather to the node from which the token has been received (its
closest ancestor having acted as proxywhen the request has moved up to theroot) or,
if no ancestor was proxy, to nil. If afailure prevents the nodei to receive the token,
this updating is no more possible and consequently the nodei has to undertake some
action in order to consistently update its father and then regenerate its request. Two
cases are to consider :

1. if the closest ancestor j having acted as proxy when the regquest has
moved up to the root is located between the asking node i and the
failed node f, then the father of i must be j, as would have been the
case in the absence of failure (figure 12). It is now from the respon-
sibility of the nodej - which is also asking and not receiving the to-
ken - to enquire for its new father in order to reconnect the path
towards the root.

r--— ¢j24— < ()= < | Figurel2

2. if dl the nodes on the path between the asking node i and the failed
node f have acted as transit, none of them can be the father of i (in-
deed, upon processing the message request(ithey have become sons
of i). Conseguently, the node i must reconnect the path towards the
root by taking, as new father, the former father of f (before its fail-
ure).

Practically, the nodei performsaprocedure - called search_father when, after ade-
lay at least equal to 2pmaxd after sending the request, the token has not yet arrived.
Its principle is based upon the corollary 2.1, stating that, in an open-cube, father; is
the only nodej satisfying (i) dist(j)=powexi)+1 and (ii) powex]j)=dist(j). Thus, the
node i will perform an iterative research: each phase d of this research consists in
sending a message test(d)to every node located at distance d from i. It starts with
d=power(i}+1, and the phase d+1 is performed only if d<pmaxand the phase d did
not succeed: this means that the father of i cannot be located at a distance <d fromi;
hence, while performing the phase d, the node i evaluatesits power asd-1. A phase
d succeedsif one of the nodes at distanced from i sendsto i apositive answer: in that
case, this node becomes the father of i. Let us describe the behavior of anodek re-
ceiving amessage test(d)from i. There are three cases:

1. power(kxd and asking=false(or k is down): the node does not an-
swer (it cannot be the father of i). Thus, after amaximum time delay
of 25 the node i considers that k will not send any answer and dis-
cards k from its possible fathers.

Node failures 21

2. power(k)<dandasking,. Since the power & could increase (dt
could fail) before its current request terminates, it sends back imme-
diately a messagmswe(“try later’); thus, before the time oud2i
will receive this answer; the decisioniafoncerningk and the cur-
rent phase will be postponed; some time Jatgill testk again, until
it can conclude by case i. or case iii. below

3. power(k}d. Even if the nod& is currently waiting for the token, its
power cannot decrease upon the receipt of the.ldther nodek
meets all the requirements to be the father ahd consequently
sends a messagaswe(* ok’) to i. Thus, before the time-oud.2he
nodei will receive this answer and conclude the ptagéth suc-
cess, terminating the procedure by settaiber, tok and regenerat-
ing its request.

The nodé concludes the phaskewith no succes# all the nodes at distanckhave
been discarded as possible fathers. If finally the ppasexdoes not succeed, the
nodei becomes the roofather, is reset tail, and the token is regeneratedi by

Beyond this practical implementation, whose details seem rather intricate (a
small example is given at the end of this Section) it is worth to remark that each phase

of thesearch_fatheprocedure involves only a subset of the nodes; in fact, Ghly 2

L hodes are at distand®f a given node &d<pmay, independently of the node. The

worst case occurs when the searching node has a power 0 and no phase succeeds: in
that case, the entire open-cube is finally tested by the testing node. In the average, the
number of tested nodes duringearch_fatheprocedure is O(logN). This result,

and the rather easiness for implementing the reconfiguration procedure and regener-
ating the requests, is due, in its essence, to the exploitation of structural properties of
the open-cube, and particularly to the “locality” property. Another practical conse-
guence of this localization is that, whils@arch_fatheprocedure is executing in a
subtree, the normal execution of the algorithm (processing requests) in other parts of
the cube can go on.

Concurrent suspicions of failure

It may happen that several nodes having the failed node as ancestor simultaneously
suspect a failure (for example if they have issued requests concurrently). In that case,
itis possible that a nodewhile searching at the phagiereceives a messags{(d)

from a nodg. Since the power dfcan increase during tlsearch_fatheprocedure,

the first reaction could be, forto postpone its decision concernijnigy sending a
messaganswe(“try later”) as in the case ii above. But this policy could cause some
deadlock between nodesandj sincej could also receive a messdgs{(d;) fromi;

thus, each of the two nodes will stay in their respective ghaseld; forever. Hence

22 J.M. Hélary, A. Moste-

each node must either send amessage answe(* ok’) or not answer. Here, three cases
areto consider :

1. d>d;. In that case, power(jjl=di=dist(i) and power(i)}d;-
1=d;=dist(i). Since the power of i can only increase, i must bethe fa-
ther of j. Thus, i sends immediately the message answer(“ok”) toj.

2. di<dj. In that case, according to the procedure, the node i does not
answer. However, it is possible to show that, when the seach_father
procedure for i terminates, the node necessarily conclude by father-
i:=]; we will not prove this property, but it clearly allows the node i
to concludeimmediately. Toillustrate, consider the following exam-
ple on the 4-open-cube, where the root a failed before the receipt of
the concurrent requests of nodes b and c (Figure 13). Both nodes b
and c start aseach_fatherprocedure.

g C\
bT ¢ Figure 13: j d Figure 14 :

Initial Situation gl Final Situation

b sendstes{1) to a, and ¢ sendstes(2) toaand b.

While waiting in phase 1, b receives tes{(2) from c, and doesn’t answer.

While waiting in phase 2, ¢ receives test(l) from b and answers “ok”.

Since ¢ had no answer in phase 2=pmayx it concludes with father.:=nil; since b
has a positive answer from c, it concludes with fathef,:=c. The proposed optimi-

zation allows b to conclude as soon as it recelvestes(2) from c.

3. di=d;. If i answers“ok” to], thenj will also answer “ok” toi and the
result will be inconsistent. If, on the contrary, none answers to the
other, it can also be inconsi stent as showsthe following example: the
initial situation is the same than the preceding one (Figure 13), and
we have the following scenario :

b sends tes(1) to a. (no answer).

b sendstes(2) to ¢c and d, and simultaneously c starts searching by sending tes(2)
toaandb.

b receivestes(2) from c while waiting in phase 2 and doesn’t answer.

c receivestes(2) from b while waiting in phase 2 and doesn’t answer.

b and ¢ both conclude by setting father,:=nil, father.:=nil and both regenerate the

token hence the conclusion is inconsistent.

Node failures 23

Thissituation occurs when two nodes suspect the samefailure and concur to the same
father (nil in the example). This concurrency can be broken, e.g. by using the node
identities : if the identities are totally ordered, the node with the “smallest” identity
becomesthefather of the other. In the example above, b would answer “ok” to c, and
¢ would not answer to b.

Node recovery

When a node f recovers from a failure, it must be consistently reconnected to the
open-cube; but all the data stored in its local context has been lost when the failure
occurred; however, in order to make its reconnection possible, we assume that the
value pmax and the array dist; can be retrieved by f (they can be stored once for all at

initialization time on astable memory sincetheir valuesremain constant). The recon-
nection action essentially consistsin retrieving father;, according to the current open-

cube configuration. For that purpose, the node f merely executes the procedure
search_father starting from the phase d=1; in other words, upon recovery, a node
considersthat it is aleaf (recall that each phase of this procedure requires only the
knowledge of the data pmax and disty).

But a problem remains, due to the fact that, when a node f recovers, it may
have some descendants which have not yet concluded asearch_father procedure dur-
ing the failure of f (e.g nodes which have not required the token during the failure);
inthat case, f isnot aleaf, and the reconnection protocol may result in awrong open-
cube structure. However this problem is easily overcome: as long as a descendant
does not require the token, this violation of the structure does not matter since it is
limited to the subtree rooted at the node f. When such a descendant node i requires
the token, an anomaly can be encountered when the request message reachesf. In that
case f sends back a special anomaly message to i and, upon receipt of this message,
i behaves exactly asif its father f was down by starting a search_father procedure:
obviously, such an anomaly means that, after the reconnection of f, the latter should
not remain the father of i. On the other hand, the anomaly is detected by f when it
performsthe“last-son” test involved by the processing of the messagerequest(i): re-
call that, in an open-cube, the following relation between anodei and itsfather f must
hold: power (f)=dist(i) (the equality holds if, and only if, i is the last son). Conse-
guently, an anomaly is detected by f when, processing request(i), it finds power (-
f)<distg(i).

A small example

Thefollowing exampleillustrates the failure of anode, concurrently detected by two
nodes, then the recovery of the failed node and the reparation of an anomaly detected
after this recovery. Initialy, we have the 16-open-cube, the nodes 10 and 12 have
both issued a request, and the node 9 fails before processing their requests. After a
finite delay, the two requesting nodes suspect a failure. At that time, the configura-

24 J.M. Hélary, A. Moste-

tion isasfollows (Figure 14):

13
(D : asking node

15
14

16 Figure 14: node 9 is down

The node 10 starts asearch_fatheprocedure:

node 10: test(1) to 9. Since 9 is down, no answer;
node 10: test(2) to 11, 12.

Concurrently, the node 12 starts asearch_fatheprocedure:
node 12: test(1) to 11.

While waiting in phase 1, the node 12 receives the message test(2) from 10, and
thus concludes its search with father;,:=10;

The phase 2 for the node 10 does not succeed. Thus it performs the next phase:
node 10: test(3) to 13, 14, 15, 16 : no answer;
node 10: test(4) to 1, ..., 8 : thenode 1 answers “ok” and thus 10 concludesits search
with fathenrg:=1

At the end of these searches, the situation is as follows (Figure 15) :

; \ * 13
T‘?3 7®\® Figure 15

4 4 14
8

11

16

The node 10 processes its own request. Since powel(1)=4 and dist;(10)=4, 10 be-

comes the root. Then, after leaving the critical section, 10 processes the request of
12, loans the token and finally getsit back. At that time, the situation is as depicted
in the Figure 16.

The node 9 recovers. It starts asearch_fatheprocedure:

node 9: test(1) to 10. Since powe10)=4, 10 answers “ok” and 9 concludes the
search with fathery:=10 (indicated in dot line on the Figure 16). Consequently, 9

Conclusion 25

computes its power as di stg(lo)—lzo, although it has some descendants. Obvioudly,

—p dfter 9 recovers

Figure 16

the Figure 16 does not depict an open-cube structure!

Now, the node 13 requests the token. When 9 processes the message request(13), the
comparison between power (9)=0 and distg(13)=3 raises an anomaly. Thus, 9 sends

back to 13 an anomaly message. When 13 receivesit, it startsasearch_father proce-
dure starting at phase power (13)+1=dist;3(9)=3

node 13: test(3) to 9, 10, 11, 12. Since power (10)=4, the node 10 answers“ok” to
13 which concludesits search with father 13:=10. Now the situation is (Figure 17):

10

Figure 17 : after reconnection and repair

and the request of 13 is processed in an open-cube context.

Case of several failures

Several failures can occur simultaneously, provided that the network remains able to
give the service of bounded delay communication between every pair of nodes (the
network is not partitioned). The procedures followed by suspecting nodes is exactly
the sameasinthe singlefailure case. All the failed nodes will be eliminated from the
remaining open-cube as their descendants will issue requests and then undertake
their search_father procedures.

6 Conclusion

Most of previously known mutual exclusion distributed algorithms using atoken and
based upon arooted tree structure can be unified in ageneral algorithmic scheme[1].
The present algorithm belongs to this class, and on this account it inherits from the
general features, in particular the safety and liveness properties. When compared to

26 J.M. Hélary, A. Moste-

other previously known mutual exclusion distributed algorithms - belonging or not

to this class - the present one has several advantages : good performances in terms of
the maximum number of messages per request, adaptativity of each node workload
according to the frequency of requests to enter the critical section, high tolerance to
node failures and easy recovery protocol.

For the sake of simplicity, the formal presentation has been made only in the
case where it is assumed that nodes do not fail. However the more realistic case of
node failures has been carefully analyzed and explained. Let us note that, although
this point has not been detailed in the present paper, the complete algorithm, includ-
ing multiple nodes failures, has been implemented and tested in Estelle on hypercube
machine (Intel iPSC/2) with 32 physical nodes; when run WitB2, the average
number of overhead messages per failure was 8 msg/failure (300 failured§-@4th
(two processes per physical node), this average number was 9.75 msg/failure (200
failures); these tests - and many others which are not reported here- confirm the av-
erage number of O(lgdl).

These good results are mainly due to the stability and locality properties of
the open-cube structure introduced here. We think that this original structure could
be favorably used as a communication tool, offering good performances and high tol-
erance to node failures, in many other distributed applications.

References

[1] .M. Hélary, A. Mostefaoui, M. Raynal.
A general scheme for token and tree based distributed mutual exclusion algo-
rithms.
Research Report #1692, INRIA-IRISA, Univ. of Rennes, France (may 1992).
Submitted to publication

[2] M. Naimi, M. Trehel.
An improvement of the log(n) distributed algorithm for mutual exclusion.
Proc. 7th IEEE Int. Conf. on Dist. Comp. Systems, Berlin, (1987), pp. 371-
375.

[3] M. L. Neilsen, M. Mizuno.
A dag based algorithm for distributed mutual exclusion.
Proc. 11th IEEE Int. Conf. on Dist. Comp. Systems, Dallas, (1991), pp. 354-
360.

[4] K. Raymond.
A tree based algorithm for distributed mutual exclusion.
ACM Trans. on Computers Systems, Vol. 7,1, (1989), pp. 61-77.

Conclusion 27

[5] M. Raynal.
A simple taxonomy for distributed mutual exclusion algorithms.
ACM Op. Systems Review, Voal. 25,2, (1991), pp. 47-50.

[6] B. Sanders.
The information structure of distributed mutual exclusion algorithms.
ACM Trans. on Prog. Languages and Systems, Voal. 5,3, (1987), pp. 284-299.

[7] JL.A. Van de Snepsheut.
Fair mutual exclusion on a graph of processes.
Distributed Computing, Vol. 2, (1987), pp. 113-115.

28

J.M. Hélary, A. Moste-

d I NRIA

Unité de recherche INRIA Lorraine, technopéle de Nancy-Brabois, 615 rue du jardin botanique, BP 101, 54600 VILLERS-LES-NANCY
Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhéne-Alpes, 46 avenue Féhlat, 38031 GRENOBLE Cedek
Unité de recherche INRIA Rocquencourt, domaine aledéau, Rocquencourt, BP 105, LE CHESNBedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
Inria, Domaine de Muceau, Rocquencourt, BP 105 LE CHESNBedex (France)

ISSN 0249-6399

30

J.M. Hélary, A. Moste-

