N

N

Specification and Verification of the Co4 Distributed
Knowledge System Using LOTOS
Charles Pecheur

» To cite this version:

Charles Pecheur. Specification and Verification of the Co4 Distributed Knowledge System Using
LOTOS. RR-3259, INRIA. 1997. inria-00073430

HAL Id: inria-00073430
https://inria.hal.science/inria-00073430
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073430
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Specification and Verification
of the Co4 Distributed Knowledge System
Using LOTOS

Charles Pecheur

N° 3259
September 1997

THEME 1

apport
derecherche

Zd I N R I A

RHONE-ALPES

Specification and Verification
of the Co4 Distributed Knowledge System
Using LOTOS

Charles Pecheur*

Théme 1 — Réseaux et systémes
Projet VASY

Rapport de recherche n3259 — September 1997 — 97 pages

Abstract: This report presents the specification and verification of a consensual decision
protocol used in CoOy4, a computer environment dedicated to the building of a distributed
knowledge base. This protocol has been specified in the IsO formal description technique
Loros. The CADP tools from the EuCALYPTUS LOTOS toolset have been used to verify
different safety and liveness properties. The verification work has confirmed an announced
violation of knowledge consistency and has put forth a case of inconsistent hierarchy, four
cases of unexpected message reception and some further local corrections in the definition
of the protocol. The full commented LOTOS specification and excerpts from detailed results
are included in appendices.

Key-words: Formal Methods, Verification, Model Checking, LoT0s, Knowledge Systems.

(Résumé : tsup)

Short version of this report in “Specification and Verification of the Co4 Distributed Knowledge Sys-
tem using LOTOS”, in: Proceedings of the 12th IEEE International Conference on Automated Software
Engineering, Incline Village, Nevada, USA, November 1997.

* Charles.Pecheur@inria.fr

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Teéléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
Télécopie : 04 76 61 52 52 - International; +33 4 76 61 52 52

Spécification et vérification
du systéme de connaissances distribué Co4 en LOTOS

Résumé : Ce rapport relate la spécification et la vérification d’un protocole de décision
consensuelle utilisé dans C04, un environnement informatique dédié & la construction d’une
base de connaissances distribuée. Ce protocole a été spécifié en LOTOS, une technique de
description formelle normalisée par I’'Iso. Les outils CADP de la boite & outils EUCALYPTUS
ont été utilisés pour vérifier différentes propriétés de streté et de vivacité. Ce travail de
vérification a confirmé une violation connue de consistance de la connaissance et a mis en
évidence un cas de hiérarchie inconsistante, quatre cas de réception non prévue de message et
plusieurs autres corrections locales dans la définition du protocole. La spécification LOTOS
compléte et commentée et certains extraits des résultats détaillés figurent en appendices.

Mots-clé : Méthodes Formelles, Vérification, LoT0s, Systémes de Connaissances.

Specification and Verification of Coj Using LOTOS 3

1 Introduction

The need for formal verification in the design of complex distributed systems is now wi-
dely recognized. Many formalisms, algorithms and tools have been proposed for formally
describing concurrent applications, expressing their properties and automating their verifica-
tion. Two main approaches have been extensively studied: theorem proving, which is more
general but requires human assistance for the proof, and model checking, which proceeds
autonomously but is only applicable to systems with a finite state space.

We relate here a case of application of formal verification in the field of distributed know-
ledge bases. C0O4 is a computer environment dedicated to the incremental and concurrent
building of a knowledge base [Euz95]. In particular, communication between C0O4 entities
follow a consensual decision protocol derived from peer-reviewing policies.

This protocol has been specified in the Iso formal description technique LoTos [ISO8§],
and the CADP (CESAR/ALDEBARAN) toolset [Gar96] has been used to verify different ex-
pected properties of this specification. These tools belong to the model checking family; an
important part of the work has been to achieve a finite state space of manageable size while
keeping a realistic description of the C04 protocol.

The report is organized as follows: Section 2 gives a short introduction to the LoToSs
language. Section 3 describes the main features of a Co4 system along with their LoToS
specification. Section 4 presents the verification tools, methodology and results. Appen-
dix A contains the complete text of the LOTOS specification. Appendix B provides some
representative samples of the detailed verification results.

2 The LOTOS Language

Lotos [ISO88| is a standardized Formal Description Technique intended for the specification
of communication protocols and distributed systems. Its design was motivated by the need
for a language with a high abstraction level and a strong mathematical basis, which could
be used for the description and analysis of complex systems.

This report does not assume familiarity with LOTOS from the reader. The short following
overview be sufficient to understand the essence of the forthcoming excerpts. Tutorials for
LoTos are available, e.g. [BB88, Tur93].

As a design choice, LOTOS consists of two “orthogonal” sub-languages:

The data part is based on the well-known theory of algebraic abstract data types [Gut77],
more specifically on the AcT ONE specification language [IMRV92]. Data types are
defined using an equational formalism, which we will not present here. As a matter
of fact, most data types of our specification are defined in a much more concise and
readable extended syntax [Pec96.

The control part is based on a process algebra, combining the best features of Ccs [Mil89]
and Csp [Hoa85]. A concurrent system is described as a collection of processes inter-
acting by rendez-vous. The behaviour of each process is built compositionally using

RR n3259

4 Charles Pecheur

an algebra of operators. Behaviours can manipulate data values and exchange them
through their interactions. The main operators of LOTOS are summarized in Table 1.

stop An inactive behaviour (like 0 in arithmetics).

G !V ?X:S; B Interact on gate G, sending V and receiving a value of sort S in X,
then behave as B (other input/output combinations are possible).

Bl [] B2 Behave as either Bl or B2, whichever does something first.
[E] -> B If E is true then behave as B.

B1 |[G1,..,6Gn]| B2 B1 in parallel with B2, synchronized on gates G1, ..., Gn (||
means no synchronization, || means full synchronization).
hide G1,..,Gn in B make actions of B on gates G1, ..., Gn invisible from the outside.

exit Successful termination.
B1 » B2 B1 followed by B2, when Bl terminates successfully.

Bl [> B2 Behave as Bl until either Bl terminates or B2 performs its first
action; in the latter case B1 is discarded.

P [G1,..,Gn] (Vi,..,Vm) Call process P, with gate and value parameters G1, ..., Gn and
Vi, ..., Vm.

Table 1: Main LOTOS operators

LoTos has been applied to many complex systems such as OSI services and proto-
cols [ISO89, ISO95], but also cryptographic protocols [LBK*96] and hardware components
[CGM™96]. A number of tools have been developed for LOTOS, covering user needs in such
various areas as edition, simulation, compilation, test generation and formal verification.
The tools used in the present work are introduced in more details in Section 4.

3 Presentation and Specification of Co4

This section describes the main features of Co4, and explains how they have been specified
in LoToSs. Each sub-section is divided into a presentation part, which describes some aspect
of Coy4, and a specification part, which explains how it is expressed in LoT0s. We focus
on architecture and general principles; we do not detail the messages exchanged in the C04
protocol. The reference document used for writing the specification is [Euz97a].

The LoTOS specification is intended for model-based verification using the CADP veri-
fication tools, as described in Section 4. To take full advantage of these techniques, the
specification must produce a model (the graph of all possible states) of finite and tractable
size. This has been taken into account when writing the specification: we define a fixed finite
(and not too large) number of concurrent processes; we avoid choices over wide ranges of
data values; we consider only constrained execution scenarios rather than the full spectrum
of all possible system behaviours. Of course, this restricts the generality of the results we
will obtain, but in practice most problems can be found on small systems alone.

INRIA

Specification and Verification of Coj Using LOTOS 5

Most data types have been defined using the syntax extensions provided by the APERO
pre-processor [Pec96]. These extensions provide convenient concise declarations for many
common data structures such as records, enumerations, sets, lists, or even ML-style “al-
gebraic” types [MTH90]. APERO translates these declarations into standard LOTOS type
definitions, equipped with all the usual associated operations (constructors, selectors, equa-
lity, etc.). Besides reducing the size of data type declarations (331 vs. 1266 lines of data type
definitions), these notations are also much more readable, avoid the burden of equational
definitions and hide the technical complications needed to allow the compilation of algebraic
data type definitions.

The complete specification (with APERO notations) is about 1400 lines long and can be
found in Appendix A; only small significant excerpts are given here, in which some technical
details have been wiped out for the sake of clarity. In particular, ellipses (. ..) are used to
indicate omitted parts; they do not belong to the original LOTOS specification.

3.1 Top-Level Structure

Presentation A Co4 system is made up of a collection of (knowledge) bases, or KBs,
organized as a tree, as illustrated on Figure 1. The leaf nodes are individual KBs directly
connected to the external world, and holding the knowledge of a single human user (or
a group thereof). Intermediate nodes are group KBs; their children are the members (or
subscribers) of the group. Their content is the common knowledge consensually accepted by
all their members. This structure is dynamic: new KBs may register themselves to group
KBs while the system is running?.

[] []
m m
KB KB| o

KB KB

KB

Figure 1: A Co4 hierarchy

The Coy4 protocol defines the messages exchanged between group KBs and their member
(group or individual) KBs, in order to build their common knowledge bases.

1An individual KB may even turn into a group KB or vice-versa, but for simplification purposes the
Lortos specification considers static hierarchies only.

RR n3259

6 Charles Pecheur

Specification The core of the LOTOS specification is a pair of process definitions
IndividualKB and GroupKB, modelling resp. a single individual or group KB. We use sepa-
rate LOTOS gates to model incoming and outgoing interactions of each base, and we further
separate communications with children bases from communications with parent bases?. A
group base thus has four gates: parentin, parentout to communicate with its parent base,
and childrenin, childrenout to communicate with its children. Individual bases only
have parentin and parentout, but also a gate user to interact with the external user. In
addition, all bases have a gate signal that supports events used to monitor some internal
situations. This is illustrated on Figure 2.

i

user
IndividualKB signal

parentin parentout
childrenout childrenin
GroupKB signal
parentin parentout

Figure 2: Interface of knowledge bases

It is possible to describe an unbounded pool of concurrent KBs in LOTOS, using recursive
process definitions like KBPool := KB ||| KBPool. However, this is not suitable for model
checking: the CADP compiler requires a fixed number of concurrent processes. We therefore
define a static (and small) hierarchy of individual and group KBs.

Furthermore, even a single KB can store an unbounded amount of data and thus has
infinitely many states. To obtain a finite and tractable state space, we further restrict the
explored scenarios by coupling the system with a process UserInput, playing the role of the
Coy4 system users and performing only a few specific user actions. The resulting top-level
structure of the LOTOS specification is:

specification C04System [user,signal] : noexit
(* data type definitions *)
behaviour
UserInput [user]

2This separation eliminates unwanted synchronizations (e.g. message to parent received by a child), as
part of our efforts to limit the cost of the verification work.

INRIA

Specification and Verification of Coj Using LOTOS

| [user] |
KBHierarchy [user,signall

where
(* process definitions *)

endspec

Different definitions of UserInput and KBHierarchy are used to analyze different scena-
rios. The KBHierarchy process is made up of concurrent KB processes, whose interconnec-
tion structure follows the intended hierarchy. For example, a hierarchy with two individual
and one group base is shown on Figure 3. The corresponding LOTOS process definition

follows:

UserInput

user

— ——

IndividualKB IndividualKB signal
(basel) (base2)

downl

GroupKB
(base3)

KBHierarchy

Figure 3: Top-level specification with three bases

process KBHierarchy [user,signal] : noexit :=
hide upl,downl,up2,down2 in

(IndividualKB [user,downl,upl,signal] (basel)
11
IndividualKB [user,downl,upl,signal] (base2))

| [upl,downi] |

GroupKB [upl,downl,down2,up2,signal] (base3)

| [up2,down2] |

stop (* base3 has no parent *)

RR n3259

8 Charles Pecheur

endproc

3.2 Data Structures

Presentation Co04 makes use of various data structures, which we can sort out in four
categories:

o Identifiers (e.g. message identifiers® and base identifiers) are just flat name spaces.

e Messages are exchanged according to the Co4 protocol. There are ten different mes-
sage primitives, with a well-defined structure for each one.

e State variables store the state information of each KB. The most complex ones are
sets of tuples, which are indeed used as tables indexed by message identifiers.

o Knowledge data represent the knowledge accumulated in KBs. Co4 knows of two
kinds of knowledge-related data: a (knowledge) repository is a body of knowledge as
accumulated in KBs, and a proposal is a (proposed) modification of a repository.

Knowledge is manipulated by C0y4, but the precise structure of this knowledge is trans-
parent to the CO4 protocol. [Euz97a] assumes that “concurrent proposals are independent”,
meaning that if each of them is applicable to a repository, then they can be applied together
in any order. This assumption is necessary to ensure that the consistency of knowledge is
preserved in every case.

Specification The first three kinds of data types present no particular difficulty and are
straightforwardly specified in LOTOS using concise APERO syntax extensions. We only
discuss the specification of knowledge data, which deserves a little more attention.

We model a repository K as a set of atoms {a1,...,a,}, and a proposal p as a sequence
(c1,...,cn) of insertions and removals of atoms. The assumption of independence has two
possible interpretations:

(a) the structure of knowledge is such that any two proposals (and concurrent proposals
in particular) are always independent, or

(b) the users of the system make sure that concurrent proposals are always independent.

Interpretation (a) leads to a very restrictive model of knowledge bases, whereas inter-
pretation (b) requires “rational” users that can detect and avoid contradictory proposals. In
our LOTOS specification we take interpretation (b), which keeps the possibility to study the
behaviour of the system in the case of contradictory concurrent proposals. This also allows
to study how the protocol can be modified to preserve consistency in this case. We specify
consistency as a binary compatibility relation over atoms, such that a base is consistent if it
does not contain incompatible atoms.

3called surrogates in [Euz97al.

INRIA

Specification and Verification of Coj Using LOTOS 9

3.3 The Co4 Protocol

Presentation The principles underlying the Co4 protocol are those of peer-reviewing:
before being committed, every request must be submitted and accepted by all members of
the group. Typically, the processing of a new proposal takes five stages:

s —achieve(p)— ¢ a member s submits a proposal p to
its group base g,
81y .,8, —ask-all(p)— g g broadcasts p among all its members
81y «evy Spy
81, --,8, —Teply(p,accept)— g each s votes on p,
s «notify(p, accept)— g g reports the result of the vote to the
author s,
S1y.-+,8n —tell(p)— g if p is accepted, g applies and pu-

blishes it to all members.

This policy is used for additions to the knowledge base, but also for registration of new
members and other transactions. In addition, any request can be cancelled by its author
before it is accepted.

[Euz97a] describes KBs as input-output automata with state variables, and defines the
protocol in terms of transitions of these automata, with rules of the following general form:

s —my(z)— b
Vi=y
b—mso(2)—r

P

According to this rule, when base b receives a message m; with content x from base s
such that condition P is true, it sets its state variable V' to y and sends a message mo with
content z to base r (P, y, z, r are expressions that depend on z and s). This is merely
a general sketch; details vary from rule to rule. Each type of base (individual and group)
has its own set of rules, for a total of 35. As a concrete example, the rule handle-notify is
defined as

g —pool-notify(n,)— b
P:=P- {(’I'L, - —)}

(handle-notify) {n,_,-) €P

that is, a base b receiving a pool-notify message from its parent g, related to a request n
present in state variable P, removes the entry for n from P (where “_” denotes “don’t care”
values).

Specification The LoT0Os behaviour of a KB process is a loop, where one protocol rule is
applied at each iteration, accessing and possibly modifying state variables. In LOTOS (as in

RR n3259

10 Charles Pecheur

other applicative languages), this is defined as a recursive process with the state variables
as parameters. Each rule is modelled as a branch of a choice ending with a recursive call.
Here is, for example, the LOTOS specification of the above handle-notify rule:

process IndividualKB [...]
(b:Baseld, g:Baseld, ..., P:PendingTbl) : exit :=

parentin 7from : Baseld !b 7msg : Message;
(... 0
[is_poolnotify(msg)] ->
[g = from] ->
(let n : Id = inreplyto(msg) in
[n isin P] ->

IndividualkB [...] (b, g, ..., remove(n,P))
)
no...n
endproc

4 Verification of Co4

Producing a formal specification of a system is a fruitful investment, even before any formal
analysis of the meaning of that specification is attempted: it requires a thorough and syste-
matic analysis of the source description of the specified system, be it laid down on paper or
still inside the mind of its designer. All implicit facts, informal statements, language short
cuts or misnomers have to be clarified. In particular, static type checking immediately spots
many of these kinds of imprecisions.

This is was clearly the case with the LoTOSs specification of the C04 protocol. Though
formal in style, the rule-based definition of the protocol in [Euz97a] was hand-made and
completed by many informal remarks. A bunch of imprecisions were detected during the
writing of the specification, such as a data structure showing different components at dif-
ferent places in the description, or improper identifiers associated to a message — this results
in a typing error in the LOTOS specification.

In the following sub-sections, we describe the verification tools that we used, how they
were applied, the properties that were considered and the results obtained from their formal
verification. Representative samples of the detailed diagnostics provided by the tools are
given in Appendix sec:detailedresults.

4.1 LOTOS Tools

All the processing of LOTOS specifications has been done within the framework of the EuU-
CALYPTUS LoTos Toolset [Gar96], an X-Windows based, user-friendly interface federating
several complementary L.OTOS tools from different sources. Besides the APERO data type

INRIA

Specification and Verification of Coj Using LOTOS 11

pre-processor described in Section 3, the EUCALYPTUS toolset also contains CADP*, a leading
edge toolbox dedicated to the verification of distributed systems.

CADP offers an integrated set of functionalities ranging from interactive simulation to
exhaustive, model-based verification methods, and includes sophisticated approaches to deal
with large case-studies. In addition to LOTOS, it also supports lower-level formalisms such
as finite state machines and networks of communicating automata. In our case study, we
used the following CADP tools:

o CESAR [GS90] and CESAR.ADT [Gar89] are compilers that transform respectively the
control and data part of a LOTOS program into a state graph® describing its exhaustive
behaviour. This graph can be represented either explicitly, as a set of states and
transitions, or implicitly, as a library of C functions allowing to execute the program
behaviour in a controlled way.

e ALDEBARAN [FKM93] is a verification tool for comparing or minimizing graphs with
respect to any of several simulation and bisimulation relations [Par81, Mil89]. Initially
designed to deal with explicit graphs, it has been extended to handle networks of
communicating automata (for on-the-fly and symbolic verification).

e XSIMULATOR is an interactive program for exploring the behaviour of a LOTOS spe-
cification. It allows to walk through the different alternative branches of the graph,
using back and forth step-by-step execution.

e EXHIBITOR performs a search in the graph, looking for execution sequences that start
from the initial state and match a specified pattern. This pattern combines boolean
operators and (a subset of) regular expressions. It also allows to characterize deadlock
states.

Both EXHIBITOR and XSIMULATOR accept graphs in either explicit or implicit forms,
and therefore can be applied to graphs of untractable or even infinite size. Nonetheless, it
is still crucial to reduce the state space as much as possible.

4.2 Methodology and Statistics

The LoTos specification described in Section 3 has been used to verify several properties of
the Co4 protocol, using the CADP toolset inside the EUCALYPTUS environment.

At an early stage, XSIMULATOR was used for a first interactive exploration of the LoTOSs
specification. This simulation allowed to detect some missing rule in Co4. When the most
obvious problems have been fixed, we turned to more systematic exploration techniques.

For the majority of scenarios, the complete graph was generated with CESAR and mini-
mized modulo observational equivalence [Mil89] with ALDEBARAN. We then applied ExHI-
BITOR to the obtained graph to search for traces leading to particular situations: deadlock

4Cmsar/ALDEBARAN Development Package
5This kind of graph is called a Labelled Transition System (Lts for short), and is the model of the
specification. We will use the words “model” and “graph” in this report.

RR n3259

12 Charles Pecheur

states, knowledge inconsistencies, etc. In more complex scenarios, where the graph is too big
to be completely generated, EXHIBITOR was applied to the LOoTOS specification itself, using
on-the-fly graph generation. XSIMULATOR was still used to re-play the sequences found and
get a better understanding of what is going on.

We considered different KB hierarchies and, for each hierarchy, different user environ-
ments. More general scenarios give more confidence in the validity of the results obtained,
but also more complex specifications and models and therefore higher computation costs to
obtain them, if at all possible. Four different hierarchies have been taken into consideration.
They are depicted on Figure 4.

basel basel base?2
base3 base3
Hierarchy 1 Hierarchy 2
basel basel base?2
base3 base3 based
baseb baseb
Hierarchy 3 Hierarchy 4

Figure 4: KB hierarchies

The different variants of the UserInput process define particular combinations of user
actions on individual KBs. By the nature of the Co4 protocol, this is enough to constrain
the possible scenarios throughout the whole KB hierarchy. The user environments that we
considered typically consist of the subscription phase (all members register to their respective
group) followed by one or two transactions (e.g. submission and votes of one proposal). We
have also defined more “realistic” users (any of a fairly representative sample of possible user
actions, any number of times), but for interactive simulation only since they produce an
infinite state space.

For systems of this complexity, state space explosion quickly becomes intractable despite
all measures taken to limit it. Furthermore, due to the number and complexity of data
structures involved, the memory consumption for each state is important, further limiting
the achievable graph sizes: on a Sun UltraSparc station with 256 Mb RAM, the ceiling is

INRIA

Specification and Verification of Coj Using LOTOS 13

about 350,000 states. Table 2 gives the graph generation time and size, before and after
minimization, for some scenarios. The number of transitions ranges between 1.3 and 2.4
times the number of states, increasing with the complexity of the hierarchy.

specification CPU #states
hierarchy | user input time (s) | before after
1 subscription + one proposal 12.7 133 47
1 subscription + two proposals 30.8 | 8185 1552
2 subscription + one proposal 45.9 | 3 568 593
3 subscription + one proposal 8:02.2 | 35002 3619
4 one proposal 1:19:20.3 | 62 557 3 316

Table 2: Graph generation statistics

4.3 Properties of Co4

There is no such thing as a “valid system” in the absolute: one always checks validity w.r.t.
some expected properties, either general ones (e.g. absence of deadlock) or case-specific ones
(e.g. consistency of KBs). In the case of Coy4, [Euz97a| lists five such properties:

0 (Intelligibility) For each message sent there is a rule triggered by that kind of message.

1 (Base Consistency) Assuming that concurrent proposals are independent, the know-
ledge stored in group bases never reaches an inconsistent state.

2 (Liveness and Fairness) The subscribers can submit proposals to their group base at
any moment.

3 (Consensus) Any submission is accepted if and only if all the subscribers accept it.

4 (Termination) Under several finiteness assumptions, any submission is eventually rejec-
ted or accepted.

All these properties have been addressed in the work presented here. Properties 0, 1
and 3 have been the object of a specific attention; this is detailed in the following sections.
Strictly speaking, property 2 is not valid: an individual base will not accept a new submission
while it is processing some other rule. In a looser sense, all the tested scenarios show that
a registered individual base always eventually accepts submissions from its user. Property
4 is also partially covered by deadlock detection.

4.4 Deadlock Detection

The most straightforward property that can be checked on a specification is the existence of
deadlocks, i.e. states from which no transition is possible. The interpretation of such states
depends on the specification: deadlocks are not necessarily errors.

RR n3259

14 Charles Pecheur

In the case of Coy4, we have conceived the LoTOS specification in such a way that dead-
locks indeed correspond to problems. In particular, normal end of the considered scenario
does not lead to deadlock but rather to a state where the system continuously “rings” an 0K
action. However, this occurs only if all KBs are idle (no pending transaction) and all queues
are empty: other situations indeed produce a deadlock.

According to this, property 0 amounts to absence of deadlocks: if there is no rule for
some message then the receiving base will deadlock. Property 4 is also related to deadlocks:
if some submission remains pending then the concerned KBs will not terminate—either they
will stop (deadlock) or they will keep exchanging messages forever (livelock). We have not
dealt with the latter case.

Technically, deadlocks can be detected by ALDEBARAN by simple inspection of the ge-
nerated graph. EXHIBITOR can then be applied to the generated model in order to report
traces leading to those states. If exhaustive generation is not possible, EXHIBITOR can still
find deadlocks using on-the-fly exploration of the LOTOS specification.

Deadlock detection has lead to the detection of two kinds of problems: lack of asynchro-
nism and unexpected receptions. Both are complementary and to some extent adequately
handled by the Co4 protocol, but at least deserve some further comments.

4.4.1 Lack of Asynchronism

In practice, CO4 messages are carried by an asynchronous reliable transport service (though
this was not stated explicitly in [Euz97a]). On the other hand, asynchronism in the specifi-
cation increases the state space explosion. In a first approach, we have therefore produced a
strongly synchronized specification, in which messages are exchanged by direct rendez-vous
between KBs.

Several deadlocks were detected on this specification, all related to “dialogue of the deaf”
situations, that is, two bases simultaneously trying to send a message to each other while not
willing to receive. An example is given in Appendix B.1. These deadlocks do not result from
the Coy4 protocol but rather from an inadequate modelling of interactions: they disappear
when buffering is introduced in the specification.

On the other hand, to limit state space blow-up we have introduced as few buffering
as possible: queues have been inserted for upward traffic (from members to group), while
downward traffic remains synchronous. This hybrid solution is a compromise between state
space explosion and excessive abstraction, and has been found to be sufficient to avoid the
previous deadlocks. Table 3 illustrates the increase in model size caused by the introduction
of these buffers. These results were obtained on hierarchy 1, n being the number of submitted
proposals.

4.4.2 Unexpected receptions

The second kind of deadlocks that were found on the specification had to do with unexpected
message receptions, i.e. messages that were received without any rule for handling them,
and therefore refuting property 0. A couple of cases were really missing rules (or variants of

INRIA

Specification and Verification of Coj Using LOTOS 15

| specification | n | #fstates #ftrans |
No queues 1 38 49
2 339 442
3 3202 4158
With queues | 1 133 196
2 8 185 13 338
3 | >300 000 >500 000

Table 3: Model sizes with and without queues

rules) in the source description, which were reported as such to the designers of Co4. Most
cases, however, were related to the asynchronous communications: messages pertaining to
some transaction can be received after that transaction has been completed (or cancelled).
Appendix B.2 shows an example of this.

As a matter of fact, [Euz97a] states that “the non recognized messages are just ignored”.
Taking such a statement as a default rule, then property 0 is trivially satisfied and our
specification should not deadlock in such cases. However, we believe that applying blindly
this kind of rule is a dangerous thing to do as part of a design process. It is very useful
to know precisely which unexpected messages are received, in order to decide whether they
can be safely ignored. In particular, the really missing rules would have been much more
difficult to find, had the corresponding messages been silently discarded by our model.

The final version of our specification takes an intermediate position: unexpected messages
are indeed discarded, but produce a monitoring event on gate signal. A search for traces
leading to such events using EXHIBITOR has demonstrated four different cases of unexpected
message reception.

4.5 Consistency and Consensus

Consistency of knowledge bases is a condition on the internal state of the system. To be
able to observe this state, the specification produces signal events whenever knowledge is
modified, with one attribute indicating the consistency of the modification. EXHIBITOR can
then be used to search for traces leading to that event.

Consistency (property 1) requires two concurrent submissions p and p’ to be independent,
meaning that the consistency of p w.r.t. a repository K is preserved if p' is added to K. This
is an important limitation of the protocol, since it requires “rational” users that can detect
and avoid contradictory proposals. Indeed, we have found sequences leading to inconsistent
bases in scenarios where this hypothesis is not ensured. One such sequence is shown in
Appendix B.3. This problem is acknowledged as a main target for improvement by the
designers of Coy4. In this respect, the LOTOS specification will be useful as a prototype to
experiment alternative solutions.

Another similar but unexpected consistency problem has been detected: if two users
ask (through their individual bases) the same group base to subscribe to different higher-

RR n3259

16 Charles Pecheur

level groups, there are cases where both transactions can be successfully fulfilled, leading to
anomalous situations (and specification deadlocks) afterwards. To search such situations,
signal events have been associated to successful registration in a group base, and we consi-
dered a variant of hierarchy 3 with a new base6 besides base5. The sequence found is 40
transitions long and is shown in Appendix B.4.

The consensus property has been verified too, by using EXHIBITOR to search for traces
where a submitted proposal was accepted (a signal event is produced when the repository
is modified) without accepting vote from some member of the group. No such traces were
found on any of the tested scenarios.

5 Conclusion

After a long history of continuous improvements and more and more ambitious applications,
formal verification techniques based on model checking now reach maturity: thanks to the
computing power of modern computers and the level of sophistication of verification tools,
significant results can be obtained for real-size systems such as Co0y4.

The formal specification of the Co4 protocol ranges among medium-size LOTOS specifi-
cations (2400 lines of standard LOTOs code). To obtain finite state spaces of tractable size,
the specification considers a fixed number of entities (2 to 5 bases) and particular execution
scenarios only.

The CADP verification toolbox has been used to verify some expected properties of the
protocol, such as the consistency of the knowledge bases or the absence of unexpected
message reception. More precisely, we searched for traces leading to violation of these
properties using the EXHIBITOR. tool. Several were found: some of them were known, others
were revealed by the verification. Even in the former case, model checking helps to analyze
the conditions in which they occur and provides a basis to study possible remedies.

This study has been conducted in close collaboration with the designers of Co,. All the
verification results were reported to them, as well as numerous questions, corrections and
remarks concerning the definition of the protocol in [Euz97a]. These comments have been
taken into several successive revisions of the document [Euz97b].

The formal verification work on Co4 does not end with the publication of these results.
The LoTos specification will be used to study new improvements of the protocol, either by
interactive exploration with XSIMULATOR or by more exhaustive analysis with other CADP
tools. Another promising approach lies in a closer integration between verification and
implementation: a novel feature of the CESAR compiler, still in development, compiles the
specification into an executable prototype, interfaced with user-provided code [GIM197].

6 Acknowledgements

This study has largely benefitted from a close collaboration with Jéréme Euzenat and Loic
Tricand de la Goutte, designers of the Co4 protocol, and with Hubert Garavel and the CADP

INRIA

Specification and Verification of Coj Using LOTOS 17

team for the hottest improvements to their tools. Many thanks too to Hubert Garavel,
Radu Mateescu and Mihaela Sighireanu for their judicious comments on this text. Some
computations have been gracefully hosted on a multi-processor Sparc server of the ENSIMAG
school of Grenoble. Norman Ramsey’s NOWEB literate programming system has been used
to write the LOTOS specification.

RR n3259

18

Charles Pecheur

References

[BBSS]

[CGM+96]

[dMRV92]

[Euz95]

[Euz97a]

[Euz97b]

[FKM93]

[Gar89]

[Gar96]

Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification
Language LOTOS. Computer Networks and ISDN Systems, 14(1):25-29, Ja-
nuary 1988.

Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and
Ferruccio Zulian. Specification and Verification of the PowerScale Bus Ar-
bitration Protocol: An Industrial Experiment with LOTOS. In Reinhard
Gotzhein and Jan Bredereke, editors, Proceedings of the Joint International
Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification
FORTE/PSTV’96 (Kaiserslautern, Germany), pages 435-450. IFIP, Chapman
& Hall, October 1996. Full version available as INRIA Research Report RR-2958.

Jan de Meer, Rudolf Roth, and Son Vuong. Introduction to Algebraic Speci-
fications Based on the Language ACT ONE. Computer Networks and ISDN
Systems, 23(5):363-392, 1992.

Jérome Euzenat. Building Consensual Knowledge Bases: Context and Archi-
tecture. In Proceedings of the 2nd International Conference on Building and
Sharing Very Large-Scale Knowledge Bases (KBKS), Enschede the Netherlands,
pages 143-155, 1995.

Jéréme Euzenat. Building consensual Knowledge Bases: Protocol. Unpublished,
January 13 1997.

Jérome Euzenat. A Protocol for Building Consensual and Consistent Reposito-
ries. Research Report RR-3260, INRIA, September 1997.

Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic Equiva-
lence Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop on
Computer-Aided Verification (Heraklion, Greece), volume 697 of Lecture Notes
in Computer Science. Springer Verlag, June 1993.

Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong,
editor, Proceedings of the 2nd International Conference on Formal Descrip-
tion Techniques FORTE’89 (Vancouver B.C., Canada), pages 147-162. North-
Holland, December 1989.

Hubert Garavel. An Overview of the Eucalyptus Toolbox. In Z. Brezoc¢nik
and T. Kapus, editors, Proceedings of the COST 247 International Workshop
on Applied Formal Methods in System Design (Maribor, Slovenia), pages 76—88.
University of Maribor, Slovenia, June 1996.

INRIA

Specification and Verification of Coj Using LOTOS 19

[GIM*97] Hubert Garavel, Mark Jorgensen, Radu Mateescu, Charles Pecheur, Mihaela

[GS90]

[Gut77]

[Hoa85]
[ISO88|

[1SO89]

[1S095]

[LBK+96]

[Mil89]
[MTH90|

[Par81]

[Pec96]

RR n3259

Sighireanu, and Bruno Vivien. CADP’97 — Status, Applications and Perspec-
tives. In Ignac Lovrek, editor, Proceedings of the 2nd COST 247 International
Workshop on Applied Formal Methods in System Design (Zagreb, Croatia), June
1997.

Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS
Specifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings
of the 10th International Symposium on Protocol Specification, Testing and Ve-
rification (Ottawa, Canada), pages 379-394. IFIP, North-Holland, June 1990.

J. Guttag. Abstract Data Types and the Development of Data Structures. Com-
munications of the ACM, 20(6):396-404, June 1977.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open
Systems Interconnection, Genéve, September 1988.

ISO/IEC. LOTOS Description of the Session Protocol. Technical Report 9572,
International Organization for Standardization — Open Systems Interconnec-
tion, Genéve, 1989.

ISO/IEC. LOTOS Description of the CCR Protocol. Technical Report 11590,
International Organization for Standardization — Open Systems Interconnec-
tion, Genéve, 1995.

Guy Leduc, Olivier Bonaventure, Eckhart Koerner, Luc Léonard, Charles Pe-
cheur, and Didier Zanetti. Specification and verification of a TTP protocol for
the conditional access to services. In Proceedings of 12th J. Cartier Workshop,
Formal Methods and their Applications: Telecommunications, VLSI and Real-
Time Computerized Control System, Montreal, Canada, October 1996.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

David Park. Concurrency and Automata on Infinite Sequences. In Peter Deus-
sen, editor, Theoretical Computer Science, volume 104 of Lecture Notes in Com-
puter Science, pages 167-183. Springer Verlag, March 1981.

Charles Pecheur. Improving the Specification of Data Types in LoT0S. Doctorate
thesis, University of Liége, November 1996. Collection of Publications of the
Faculty of Applied Sciences, Nr 171.

20 Charles Pecheur

[Pec97a] Charles Pecheur. Erratum for the CO4 protocol. Internal note, February 18
1997.

[Pec97b] Charles Pecheur. Erratum for the CO4 protocol - part 2. Internal note, March 4
1997.

[Pec97c] Charles Pecheur. Erratum for the CO4 protocol - part 3. Internal note, April 29
1997.

[Pec97d] Charles Pecheur. Remarks and Questions about the CO4 protocol. Internal
note, February 3 1997.

[Tur93] Kenneth J. Turner, editor. Using Formal Description Techniques — An Intro-
duction to ESTELLE, LOTOS, and SDL. John Wiley, 1993.

INRIA

21a

21b

Specification and Verification of Coj Using LOTOS 21

A Specification of the Co4 protocol in LOTOS
version 3

A.1 Introduction

Coy is a computer environment dedicated to the incremental and concurrent building of a
knowledge base that organizes the manipulation and distribution of media related to that
knowledge among the participating people. In particular, Co4 features a consensual decision
protocol derived from peer-reviewing policies. This document contains the specification of
the Coy protocol in the ISO specification language LoTos [ISO8S].

Notational convention The full LOTOS code is provided, in the form of labelled chunks

like the following sample®:

(sample 21a)=

(* ... some LOTOS text here ... *)

A chunk may contain references to other chunks, to be interpreted as textual inclusion:

(other sample 21b)=

(* ... %)
(sample 21a)
(x ... %)

Related documents The L0oTOS language is officially defined by the ISO standard 8807
[ISO88]. Tutorials can be found in [BB88, Tur93].

The general principles of Co4 are described in [Euz95]. The Co, protocol is more
precisely defined in [Euz97a], which is the reference input document used for producing this
LoTos specification.

The writing of this specification has necessitated a thorough and careful analysis of
[Euz97a]. As a result of this reading, several imprecisions or inconstistencies have been put
forth and corrected in collaboration with the designers of Co4. The remarks and corrections
w.r.t. [Euz97a] are listed in documents [Pec97a, Pec97d, Pec97b, Pec97c|. As a result, an
improved version of [Euz97a] has been produced [Euz97b].

Validation tools This specification is intended for analysis using the CADP validation
tools [Gar96]. This has some consequences in the way it is written:

6This is produced automatically using N. Ramsey’s Noweb literate programming system.

RR n3259

22 Charles Pecheur

e To limit state space explosion, data types are kept as small as possible. In particular,
small sets of constants are often used to model potentially large data domains.

e The behaviour part has a bounded synchronization structure (no recursion over paral-
lelism), and the number of concurrent processes is kept to a minimum.

e Equations are written assuming sequential evaluation (i.e. the first applicable equation
is applied). This often allows a drastic reduction of the number of equations, but
relies on the particular evaluation strategy used by CADP. It is not to be interpreted
according to the standard algebraic semantics of LOTOS.

Data type syntax extensions The APERO syntax extensions [Pec96] are used to shorten
and clarify the definitions of data types. These notations are not standard LOTOS; a trans-
lator is used to expand them into plain LoTOs data type definitions (taking into account
the requirements of CADP).

A.2 History

Before this public version, the LOTOS specification has undergone several important reorga-
nizations. This section briefly describes the major versions.

A.2.1 Version 1

This version covers only single-level hierarchies — propagation of proposals and votes bet-
ween multiple levels is not specified.

Communication between bases uses direct rendez-vous. This leads to many deadlock
situations due to two bases simultaneously trying to send messages to each other.

A.2.2 Changes in Version 2

To avoid the deadlocks of version 1, version 2 introduces queues between bases, and merges
all message types into a single sort Message.

A.2.3 changes in version 3

Version 3 completes the coverage of the Co4 protocol — only challenging of forwarded
proposals is still under design and therefore not covered in this specification.

A.3 Data Structures

This section discusses the data type part of the specification.

A.3.1 Identifiers

This section describes the various kinds of identifiers used in C0y4.

INRIA

Specification and Verification of Coj Using LOTOS 23

Base identifiers Identifiers for bases. Represented as s, r, g, G, B in [Euz97a]. Described
as a flat name space, with a few defined constants.

23a (data types 23a)=

nametype Baseld is

name Baseld

endtype

type BaseIdOpns is Baseld

opns base0,basel,base2,base3,base4,
baseb,baseb,base7,base8,base9 : -> Baseld

eqns

ofsort Baseld
base0 = first ;
basel = next(basel) ;
base2 = next(basel) ;
base3 = next(basel) ;
base4 = next(base3) ;
base5 = next(based) ;
base6 = next(baseb) ;
base7 = next(base6) ;
base8 = next(base7) ;
base9 = next(base8) ;
endtype

Defines:
Baseld, used in chunks 27, 28b, 30b, 33-35, 37-39, 42-45, 47b, 51, 52, 56, 58b, 63, 65a, and 69-74.

Surrogates Surrogates are identifiers attributed locally by bases to pending proposals and
votes, represented as n or m in [Euz97a]. There are two disjoint classes of surrogates:

o Request identifiers are generated by the initiator of a request; they point to entries in
table A of the initiator.

e Call for comments (CFC) identifiers are generated by the group base when a vote is
started; they point to entries in table C of the base.

It would be sensible to specify these classes as separate LOTOS sorts — indeed, it was done
that way until version 2. However, both classes may appear in a common context (namely,
the senderid field of an entry in state table C'). For this reason we choose to specify them
as a single sort Id. This is a flat, infinite data type as provided by the APERO nametype
shorthand. The CADP data type compiler recognises such data types as isomorphic to
natural numbers and represents them very efficiently as built-in integers.

RR n3259

23b

24 Charles Pecheur

(data types 23a)+=

nametype Id is
name Id
endtype

Defines:

Id, used in chunks 28, 30b, 31, 33b, 37, 38, 46, 47, 49, 50, 52-56, 62-65, and 67.

A.3.2 Knowledge Data

Co4 manipulates knowledge data: each node in the system manages a repository, that can
be modified according to proposals. The precise structure of knowledge data is transparent
to the Coy4 protocol. Co4 knows of three operations over knowledge:

K + p applies proposal p to repository K,

pxp' combines proposals p and p’ into a single proposal,
K?p tests whether proposal p is applicable to repository K.

The latter is related to the notion of consistency: a proposal p is applicable to repository
K iff K + p is consistent.

[Euz97a] does not define precisely the semantics of the merge operator p x p'. We take
the following interpretation: suppose that an initial proposal p is challenged by a proposal
p'. We assume that p’ describes proposals w.r.t. the effect of p, whereas p x p’ describes the
cumulated proposals w.r.t. the original repository.

[Euz97a] assumes that “concurrent proposals are independent” (assumption (d) p. 22),
meaning that if each of them is applicable to a repository, then they can be applied together
in any order. Formally, for two concurrent proposals p and p' and for any repository K, the
following property must hold:

KWAK?? = (K+p)™ AK+p)?p

This is a rather strong and unrealistic hypothesis; it requires “rational” users that can
detect and avoid contradictory proposals.

We do not enforce this possibility at the level of the LoT0S specification. This keeps
the possibility to study the behaviour of the system in the case of contradictory concurrent
proposals, in order to get a clear understanding of the potential consistency violations and
to test how the protocol can be modified to avoid those violations.

We adopt the following simple model:

e A repository K is a set of atoms {ai,...,an}.

e There is a binary compatibility relation a?a’ over atoms. A base is consistent if it does
not contain incompatible atoms.

INRIA

Specification and Verification of Coj Using LOTOS 25

e A change c is either an assertion assert(a) or a retraction retract(a). Applying an
assertion (resp. retraction) to a repository adds (resp. deletes) the corresponding
atom.

e A proposal p is a sequence (ci,...,¢,) of assertions. Merging proposals amounts to
concatenating the sequences, and applying a proposal to a repository amounts to
applying the changes in the given order.

We define three atoms white, black and square, where white and black are mutually
incompatible.

25a (data types 23a)+=

enumtype Atom is

enum white, black, square : Atom
endtype

type AtomCompatibility is Atom, Boolean
opns comp : Atom, Atom -> Bool

eqns forall al, a2 : Atom

ofsort Bool
comp(black, white) = false ;
comp(white, black) = false ;
comp(al, a2) = true ;

endtype

Defines:
Atom, used in chunk 25b.

The rest is a direct translation of our informal description above.

25b (data types 23a)+=

settype Knowledge is Atom
set Knowledge
elements Atom

endtype

datatype Change is Atom
datasorts <eq> Change =

<is> assert(Atom) |
<is> retract (Atom)

endtype

stringtype Proposal is Change
string Proposal

elements Change

endtype

RR n3259

26 Charles Pecheur

type KnowledgeOpns is
AtomCompatibility, Knowledge, Proposal, Boolean
opns atom : Change -> Atom
t : Knowledge, Change -> Knowledge
t : Knowledge, Proposal -> Knowledge
k : Proposal, Proposal -> Proposal
query : Knowledge, Atom -> Bool
query : Knowledge, Proposal -> Bool
isconsistent : Knowledge -> Bool
assert : Knowledge -> Proposal

eqns forall
k : Knowledge,
a, al, a2 : Atom,
c : Change,
p> pl, p2 : Proposal
ofsort Atom
atom(assert(a)) = a ;
atom(retract(a)) = a ;
ofsort Knowledge
k + assert(a) = insert(a, k) ;
k + retract(a) = remove(a, k) ;
k+ <> =k
k+ (c+p)=(k+c)+p;
ofsort Proposal
pl * p2 = pl ++ p2 ;
ofsort Bool
(* NB: uses hidden constructor insert_C generated for CADP *)
query({}, a) = true ;
query(insert_C(al, k), a2) = comp(al, a2) and query(k, a2) ;
isconsistent({}) = true ;
isconsistent(insert_C(a, k)) = query(k, a) and isconsistent(k) ;
query(k, p) = isconsistent(k + p) ;
ofsort Proposal
assert({}) = < ;
assert(insert_C(a, k)) = assert(a) + assert(remove(a, k)) ;
endtype

Defines:

Change, never used.

Knowledge, used in chunk 38.

Proposal, used in chunks 27, 28, 31, 45-47, 53, 58a, 60, 62, 68, 71c, 72, and T4a
Uses Atom 25a.

INRIA

27

Specification and Verification of Coj Using LOTOS 27

A.3.3 Messages

This section defines data structures for the messages exchanged in the C04 protocol. These
formats are formally defined in [Euz97a]. The different kinds of messages are characterized
by a so-called performative, which defines the purpose of the message and the structure of
its content.

We define messages as a single LOTOS sort Message, with one constructor for each
performative. Before defining messages themselves, we need a few auxiliary types.

First, we define a request as a “subject of conversation”. They correspond directly to
message types. Requests will be stored in KB tables and put in forward messages. Note
that the forward variant is recursive, i.e. it contains an encapsulated request. Since this
type does not have a conventional structure (record, union, ...), it is defined using the more
flexible APERO datatype facility.

(data types 23a)+=

datatype Request is Baseld, Proposal

datasorts <eq> Request =
<is> reqregister(Baseld) |
<is> reqevaluate(Proposal) |
<is> reqachieve (Proposal) |
<is> reqforward(Request) |
<is> reqchallenge (Proposal) |
<is> reqtell(Proposal)

endtype

type RequestOpns is Request

opns content : Request -> Baseld
content : Request -> Proposal
content : Request -> Request

eqns forall b : Baseld,

p : Proposal,
r : Request
ofsort BaseIld

content (reqregister(b)) = b ;
ofsort Proposal

content (reqevaluate(p)) = p ;

content (reqachieve(p)) = p ;

content (reqchallenge(p)) = p ;

content (reqtell(p)) = p ;
ofsort Request

content (reqforward(r)) = r ;
endtype

Defines:
Request, used in chunks 28b, 30b, 31, 33b, 46b, 47a, 49a, 52-54, 56, 58b, 62-64, 68, 70-72, and T4a.
Uses BaseId 23a and Proposal 25b.

RR n3259

28a

28b

28 Charles Pecheur

Second, answers are used as the contents of reply and noti fy messages. An answer is
either accept, reject(r) or challenge(p), where r motivates the rejection but is transparent
to the protocol and will be ignored here, and p is a proposal.

(data types 23a)+=

datatype Answer is Id, Proposal
datasorts <eq> Answer =
<is> acceptx | (* NB: accept is a LOTOS keyword *)

<is> reject |
<is> challenge(replywith : Id, content : Proposal)

endtype

type Answer(Opns is Answer, Boolean
opns answer : Bool -> Answer

egns

ofsort Answer
answer(true) = acceptx ;
answer(false) = reject ;
endtype

Defines:
Answer, used in chunks 28b, 47b, 56, and 63.
Uses Id 23b and Proposal 25b.

Now comes the definition of all messages, as a single APERO datatype declaration. The
source and destination address are not defined as proper parts of the message; they will
be passed as separate attributes of LOTOS events. Some embedded surrogates and base
identifiers (e.g. in askall or forward messages) are not shown in the specification. They are
irrelevant to the Coy4 protocol, though they provide information for the user of individual
bases.

(data types 23a)+=

datatype Message is
Id, Baseld, Proposal, Request, Answer
datasorts <eq> Message =

(* upward messages *)
<is> register(Id, BaseId) |
<is> evaluate(Id, Proposal) |
<is> achieve(Id, Proposal) |
<is> forward(Id, Request) |
<is> deny(Id) |
<is> reply(Id, Answer) |

(* downward messages *)
<is> askall(Id, Request) |
<is> error(Id) |
<is> notify(Id, Answer) |

INRIA

Specification and Verification of Coj Using LOTOS

29

<is> poolnotify(Id, Answer) |
<is> pooldeny(Id) |
<is> tell(Proposal)

endtype
type MessageOpns is Message
opns replywith : Message -> Id
inreplyto : Message -> Id
content : Message -> Baseld
content : Message -> Proposal
content : Message -> Request
content : Message -> Answer
eqns forall
m : Id,
n : Id,
b : Baseld,
p : Proposal,
r : Request,
a : Answer
ofsort Id

replywith(register(m, b)) = m ;
replywith(evaluate(m, p)) = m ;
replywith(achieve(m, p)) = m ;
replywith(forward(m, r)) = m ;
replywith(askall(n, r)) = n ;
inreplyto(deny(m)) = m ;
inreplyto(error(m)) = m
inreplyto(notify(m, a)) = m ;
inreplyto(reply(n, a)) =n ;
inreplyto(pooldeny(n)) = n ;
inreplyto(poolnotify(n, a)) = n ;
ofsort Baseld
content (register(m, b)) = b ;

I e

ofsort Proposal
content (evaluate(m, p)) = p ;
content (achieve(m, p)) = p ;
content (tell(p)) = p ;
ofsort Request
content (forward(m, r)) = r ;
content (askall(n, r)) = r ;
ofsort Answer
content (notify(m, a)) = a ;
content (reply(n, a)) = a ;
content (poolnotify(n, a)) = a ;
endtype

RR n3259

30a

30 Charles Pecheur

Defines:
Message, used in chunks 35b, 42-44, 51, 69a, and T4a.
Uses Answer 28a, BaseId 23a, Id 23b, Proposal 25b, and Request 27.

A.3.4 External Interactions

This section defines data types used in interactions with the external world. Those interac-
tions use mixed in/out attribute patterns. The data type defined here is an enumeration of
tags characterizing the different kinds of user actions.

e UserAction values are associated with events on gate user, which represent human-
driven initiatives in individual bases.

e SignalVal values are associated with events on gate signal, which are introduced to
be able to monitor certain internal conditions in the system.

(data types 23a)+=

enumtype UserAction is

enum doregister, doevaluate, doachieve, doforward, dodeny,
doaccept, doreject, dochallenge : UserAction

endtype

enumtype SignalVal is

enum sigregistered, sigstored,
signotinA, signotinP, signotinC, signotconsistent
: SignalVal

endtype

Defines:

SignalVal, never used.
UserAction, used in chunk 74a.

A.3.5 State Variables

This last part of the data types defines the data structures used for state variables, as
described p.8 in [Euz97a].

Most of these variables are sets of tuples, which are indeed used as tables indexed by
surrogates. We specify them as such, using APERO tabletype definitions.

Submitted requests This is variable A in [Euz97a]. In the case of group bases, entries
contain more data identifying the origin of the submission (i.e. who sent the forward). we
therefore define two different data types for A: SubmittedTbl and GrpSubmittedTbl.

INRIA

30b

31

Specification and Verification of Coj Using LOTOS

31

(data types 23a)+=

recordtype
record
fields

endtype

tabletype
table
elements
key
endtype

recordtype
record
fields

endtype

tabletype
table
elements
key
endtype

Defines:

SubmittedEntry is Id, Request
submitted : SubmittedEntry
id : Id

req : Request

SubmittedTbl is SubmittedEntry
SubmittedTbl

SubmittedEntry

id : Id

GrpSubmittedEntry is Id, Request, Baseld

submitted : GrpSubmittedEntry
id : Id

req : Request

sender : BaseIld

senderid : Id

GrpSubmittedTbl is GrpSubmittedEntry

GrpSubmittedTbl
GrpSubmittedEntry
id : Id

GrpSubmittedTbl, used in chunk 38.
SubmittedTbl, used in chunks 37 and 45a.
Uses Baseld 23a, Id 23b, and Request 27

Pending votes

defines the four possible statuses of a pending vote: @, A) R and C in [Euz97a).

(data types 23a)+=

enumtype
enum
endtype

recordtype

record
fields

RR n3259

This is variable P in [Euz97a]. An auxiliary enumerated type Status

Status is

new, accepted, rejected, challenged :

PendingEntry is Id, Request, Status

pending : PendingEntry
id : Id
req : Request

Status

32 Charles Pecheur

status : Status

endtype

tabletype PendingTbl is PendingEntry

table PendingTbl

elements PendingEntry

key id : Id

endtype

type PendingTblOpns is PendingTbl, RequestOpns

opns searchproposal : Proposal, PendingTbl -> Bool
getproposal : Proposal, PendingTbl -> PendingEntry

eqns forall e : PendingEntry,

t : PendingTbl,
p : Proposal
ofsort Bool
searchproposal(p, {}) = false ;
is_reqachieve(req(e)),
content (req(e)) eq p =>
searchproposal(p, insert_C(e, t)) = true ;
searchproposal(p, insert_C(e, t)) =
searchproposal(p, t) ;
ofsort PendingEntry
is_reqachieve(req(e)),
content (req(e)) eq p =>
getproposal(p, insert_C(e, t)) = e ;
getproposal(p, insert_C(e, t)) =
getproposal(p, t) ;
endtype

Defines:
PendingTbl, used in chunks 37 and 38.
Uses Id 23b, Proposal 25b, and Request 27.

Accepted and ignored modifications Variables M and L contain approved proposals
that are or are not accepted by a base, but do not influence the behaviour of the protocol.
We therefore do not specify them. At the behaviour level, it is still possible to produce an
external action indicating storage in M or L.

Knowledge repository Already defined in a previous section.

Subscribers This is variable S of [Euz97al, defined as an APERO settype definition. We
add an operation pick that returns the “first” element of a set”.

"Note that this definition is acceptable under the evaluation strategy of Capp, but corrupts persistency
of the abstract algebraic semantics

INRIA

33a

33b

Specification and Verification of Coj Using LOTOS 33

(data types 23a)+=

settype SubscriberSet is BaseId

set SubscriberSet

elements Baseld

endtype

type SubscriberSetOpns is SubscriberSet
opns pick : SubscriberSet -> Baseld

egns forall b : Baseld, s : SubscriberSet
ofsort BaseIld

pick(insert_C(b,s)) =b ;
endtype

Defines:
SubscriberSet, used in chunks 38 and 69a.
Uses BaseId 23a.

Observers This is variable O of [Euz97al, ignored in the protocol and therefore not spe-
cified here.

Call for comments This is table C' of [Euz97a]. A pick operation is added, as on
SubscriberSet.

(data types 23a)+=

recordtype CfcEntry is Baseld, Id, Request, NaturalNumber
record cfc : CfcEntry
fields id : Id

sender : Baseld
senderid : Id
req : Request
count : Nat

endtype

tabletype CfcTbl is CfcEntry

table CfcTbl

elements CfcEntry

key id : Id

endtype

type CfcTblOpns is CfcTbl

opns pick : CfcTbl -> CfcEntry
searchrequest : Baseld, Id, CfcTbl -> Bool
getrequest : Baseld, Id, CfcTbl -> CfcEntry
incallcount : CfcTbl -> CfcTbl

RR n3259

34

34

Charles Pecheur

eqns forall : CfcEntry,
: CfcTbl,
: Baseld,

: Id

B o o o

ofsort CfcEntry
pick(insert_C(e, t)) = e ;
ofsort Bool
searchrequest (b, m, {}) = false ;
sender(e) eq b, senderid(e) eq m =>
searchrequest(b, m, insert_C(e, t)) = true ;
searchrequest (b, m, insert_C(e, t)) =
searchrequest(b, m, t) ;
ofsort CfcEntry
sender(e) eq b, senderid(e) eq m =>
getrequest(b, m, insert_C(e, t)) = e ;
getrequest(b, m, insert_C(e, t)) =
getrequest(b, m, t) ;
ofsort CfcTbl
incallcount ({}) = {} ;
incallcount (insert_C(e, t)) =
insert (set_count (succ(count(e)), e),
incallcount(t)) ;
endtype

Defines:

Us

CfcTbl, used in chunks 38 and 69b.
es BaseId 23a, Id 23b, and Request 27.

Parent base This is either none (if the base has not successfully registered yet) or some (b)
where b is the parent base id. Such a ‘lifted’ type is produced by the APERO optiontype

de

claration.

(data types 23a)+=

optiontype ParentBase is Baseld

option ParentBase

elements Baseld

endtype

type ParentBaseOpns is ParentBase

opns the : ParentBase -> Baseld

eqns forall b,bl : Baseld
ofsort BaseIld

the(some(b)) = b ;
endtype

INRIA

Specification and Verification of Coj Using LOTOS 35

Defines:

ParentBase, used in chunks 37 and 38.
Uses BaseId 23a.

A.3.6 Miscellaneous Data Types

Numeric Operations
succ(succ(...)) notations, and a predecessor function.

35a (data types 23a)+=

type
opns

The usual constants for small numbers, to avoid lengthy

NatOpns is NaturalNumber
1,2,3,4,5,6,7,8,9 : -> Nat

pred

eqns ofsort Nat

forall x :

O 00N OB WN =

Nat
succ(0)
succ(1)
succ(2)
succ(3)
succ(4)
succ(5)
succ(6)
succ(7)
succ(8)

B

pred(succ(x))

endtype

Message Queues

35b (data types 23a)+=

: Nat -> Nat

=X ;

PacketQueue is used to hold the content of a queue of messages.

recordtype Packet is Message, Baseld

record packet : Packet

fields sender : Baseld
receiver : Baseld
message : Message

endtype

listtype PacketQueue is Packet

list PacketQueue

elements Packet

endtype

Defines:

RR n3259

36 Charles Pecheur

Packet, never used.
PacketQueue, used in chunk 42c.
Uses BaseId 23a and Message 28b.

A.4 Global Structure

A Coy4 system is made up of a collection of knowledge bases (KBs) organized as a tree. The
leaves are individual bases directly connected to a single human user. The other nodes are
group bases whose content is the agreed common knowledge of their children bases. This
structure is dynamic; new children may be added while the system is running.

The core of the behaviour part of the specification will be a pair of process definitions
IndividualKB and GroupKB, modelling resp. individual and group bases. n this specifica-
tion, we do not address the possibility that an individual may become a group or vice-versa.

Their behaviour will be a never-ending loop, where one rule is applied at each itera-
tion, accessing and possibly modifying state variables. In LOTOs (as in other applicative
languages), this is defined as a recursive process with the state variables as parameters.

In [Euz97a], !n denotes the generation of a “brand new surrogate” n. We specify this
using a seed value that is “incremented” after each use. these seeds are state variables N A
(for request ids in A) and NC (for cfc ids in C, group bases only).

InitIndividualKkB [...] (b) describes an initial base with identifier b, whereas
IndividualKkB [...] (b,...) is a base with all its state variables. The same applies
for InitGroupKB and GroupKB.

IdleIndividualkB [...] (b,G) is an individual base with empty tables but possibly
with a known group base. The same applies to Id1eGroupKB, where the set of subscribed
bases is also provided.

All these processes are declared with functionality exit, and can terminate at any mo-
ment between the application of two rules, provided that all tables holding transaction
information are empty. The environments used for simulation and verification will also end
with process termination; this will allow to differenciate between normal (exit) and abnormal
(deadlock) sink states.

A.4.1 Individual bases

An individual base is a process with gate user to interact with the human user and parentin,
parentout to communicate with its parent base: events on parentin are initiated by the
parent base (input) whereas events no parentout are initiated by the base (output). In
addition, a gate signal supports events used to monitor some internal conditions in the
base. Events on those gates have the following structure:

user !Baseld !UserAction ?<args> ...
parentin 7Baseld !'Baseld 7Message
parentout !'Baseld !Baseld !Message
signal !'Baseld !SignalVal !<args>...

INRIA

Specification and Verification of Coj Using LOTOS 37

37 (Individual KB processes 37)=

process InitIndividualKB [user,parentin,parentout,signall
(B : BaseId) : exit :=
IndividualKB [user,parentin,parentout,signal]
(B,
none of ParentBase,
{} of SubmittedTbl, first of Id,
{} of PendingTbl)
endproc

process IdleIndividualKB [user,parentin,parentout,signall
(B : Baseld,
G : ParentBase) : exit :=
IndividualKB [user,parentin,parentout,signall
(B,
G,
{} of SubmittedTbl, first of Id,
{} of PendingTbl)
endproc

process IndividualKB [user,parentin,parentout,signal]
(B : Baseld,
G : ParentBase,
A : SubmittedTbl, NA : Id,
P : PendingTbl)
T exit :=

[A = {} of SubmittedTbl]l -> [P = {} of PendingTbl]l -> exit
1
(individual rules 44)

endproc

Defines:
IndividualKB, used in chunks 39b, 45-47, 49, and 50.
InitIndividualKB, used in chunks 74b, 76-81, and 86a.

Uses Baseld 23a, Id 23b, ParentBase 34, PendingTbl 31, and SubmittedTbl 30b.

A.4.2 Group bases

A group base communicates with its own parent via parentin, parentout and with its
children via childrenin, childrenout. We also add a gate signal as in individual bases.
Events have the following structure:

RR n3259

38 Charles Pecheur

childrenin 7Baseld !'Baseld 7Message
childrenout !BaseId !Baseld !Message
parentin 7?Baseld !Baseld 7Message
parentout !'Baseld !BaseIld !Message
signal !'Baseld !SignalVal !<args>...

38 (GroupKB processes 38)=

process InitGroupKB [childrenin,childrenout,parentin,parentout,signall
(B : BaseId) : exit :=
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
none of ParentBase,
{} of GrpSubmittedTbl, first of Id,
{} of PendingTbl,
{} of CfcTbl, first of Id,
{} of SubscriberSet,
{} of Knowledge)
endproc

process IdleGroupKB [childrenin,childrenout,parentin,parentout,signall
(B : Baseld,
G : Parentbase,
S : SubscriberSet) : exit :=
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
{} of GrpSubmittedTbl, first of Id,
{} of PendingTbl,
{} of CfcTbl, first of Id,
S,
{} of Knowledge)
endproc

process GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B : Baseld,
G : Parentbase,

A : GrpSubmittedTbl, NA : Id,
P : PendingTbl,
C : CfcTbl, NC : Id,
S : SubscriberSet,
K : Knowledge)
: exit :=

[A = {} of GrpSubmittedTbl] -> [P = {} of PendingTbl] ->
[C = {} of CfcTbl] -> exit

INRIA

39a

39b

Specification and Verification of Coj Using LOTOS 39

]
(group rules 51)

endproc

Defines:
GroupKB, used in chunks 39b, 52-58, 60—65, 67, and 68.
InitGroupKB, used in chunks 74b, 76-81, and 86a.

Uses BaselId 23a, C£cTbl 33b, GrpSubmittedTbl 30b, Id 23b, Knowledge 25b, ParentBase 34, PendingTbl 31,
and SubscriberSet 33a.

A.4.3 Top Level structure

Abstract structure This section defines the top-level structure of an abtract specification
of Coy, i.e. one that would intend to formalize in all generality the behaviour of a C0y4
system without any concern about subsequent verification needs. It is not the specification
that we have used (that one is defined below); to emphasize this fact, the description uses
the conditional.

Since the structure of the base tree changes dynamically, we could not reflect it in
the synchronization structure of the specification. Instead, we would let any child base
communicate with any parent, and vice-versa, through a communication channel.

(abstract com channel 39a)=
process ComChannel [parentin,parentout,childrenin,childrenout] : noexit :=
(abstract com channel behaviour (never defined))

endproc

where ComChannel would essentially perform childrenin !from
'to !msg for every parentout !from !to !msg and conversely, mutatis mutandis, for
parentin and childrenout.

We would then specify an unbounded number of concurrent individual and group bases,
using a recursive parallel construct:

(abstract pool of KBs 39b)=

process KBPool [user,parentin,parentout,childrenin,childrenout]
(bs: BaseIdSet) : noexit :=

choice b: BaseId [] [b notin bs] ->
((i; IndividualKB [user,parentin,parentout] (b,...)

(1

i; GroupKB [childrenin,childrenout,parentin,parentout] (b,...)

)

RR n3259

40

40 Charles Pecheur

11
KBPool [user,parentin,parentout,childrenin,childrenout] (insert(b,bs))

)

endproc

Uses BaselId 23a, GroupKB 38, and IndividualKB 37.
The top level would synchronize this pool of bases through the communication channel:

(abstract specification 40)=
specification C04System [user] : noexit
(data types 23a)
behaviour

hide parentin,parentout,childrenin,childrenout in
(KBPool [user,parentin,parentout,childrenin,childrenout]
({} of BaseldSet)
| [parentin,parentout,childrenin,childrenout] |
ComChannel [parentin,parentout,childrenin,childrenout]

)
where

(processes (never defined))
(abstract pool of KBs 39b)
(abstract com channel 39a)

endproc

Simplified structure The abstract specification described above is not usable as a basis
for model checking, because it contains unbounded parallelism in the recursive definition
KBPool. This is rejected by the model compiler. Furthermore, It describes any potential
behaviour of any collection of bases, which is a far too general case to be handled by model-
based verification.

Instead of this, we apply our verification tools to static (and small) combinations of
individual and group bases, and we further restrict the explored scenarios by coupling the
system with an environment producing only some chosen external events. By the nature of
the Co4 protocol, this is enough to constrain the possible scenarios throughout the whole
hierarchy.

To make the inner workings of the protocol observable, we also do not hide the internal
gates childrenin, childrenout, userin and userout.

INRIA

41

Specification and Verification of Coj Using LOTOS 41

The precise structure of the specification will vary from one experiment to another, but
all variants share the same general structure: the global behaviour is a fixed hierarchy of
interconnected bases, synchronized on gate user with a user environment that restricts the
spectrum of possible behaviours. This whole structure is followed sequentially with a looping
process, so that normal termination does not produce a deadlock state.

(specification 41)=
specification C04System [user,(KB gates (never defined)),signal,0K] : noexit
(data types 23a)
behaviour

(
(UserInput [user] [> exit)
| [user] |
KBHierarchy [user,(KB gates (never defined)),signal]

)
» Ring [0K]

where

(KBHierarchy process (never defined))
(UserInput process (never defined))

(IndividualKB processes 37)
(GroupKB processes 38)
(Queue processes 42c)
(Ring process 42a)

endspec

Uses Ring 42a.

The following chunks vary according to the scenario:

e (KBHierarchy process (never defined)) defines the hierarchy of bases as a process
KBHierarchy,

e (KB gates (never defined)) is the list of gates between bases, and is thus derived from
the interface of KBHierarchy,

o (UserInput process (never defined)) defines the user input scenario as a process
UserInput.

The different hierarchies and scenarios are detailed in the last part of this document.

RR n3259

42a

42b

42 Charles Pecheur

A.4.4 Normal Terminating State

In verification we have to limit ourselves to finite scenarios. In this case, we need to detect a
difference between terminal states due to a deadlock in the system and those resulting from
normal end of activity. For this purpose we replace the latter by a state where the system
continuously ‘“rings” a given action. This state is described by the following process Ring.

(Ring process 42a)=

process Ring [g]l : noexit :=
g; Ring [g]
endproc

Defines:
Ring, used in chunk 41.

A.4.5 Communication Queues

This section defines communication channels that are used to introduce asynchronism in
the interactions between bases. It is assumed that the Co4 protocol runs over a transport
service that preserves uniqueness, integrity and order between messages, i.e. basically an
idealized FIFO queue. However, queues are introduced only where absolutely needed, since
they are a major source of asynchronism and therefore state space explosion — that is, we
avoid queues as long as the resulting specification does not present deadlocks that are due
to lack of asynchronism (as was the case in the fully synchronous version 1).

The basic process Cell defines a one-slot queue; it can be chained to form longer but
still bounded queues.

(Cell processes 42b)=

process Cell [input,output] : exit :=
exit
0
input 7bl : Baseld 7b2 : Baseld 7msg : Message;
output !bl !b2 !msg;
Cell [input,output]
endproc

Defines:
Cell, never used.
Uses BaseId 23a and Message 28b.

However bounded queues are not sufficient in general. The process Queue hereafter
defines unbounded queues using a state variable.

INRIA

42¢

43

Specification and Verification of Coj Using LOTOS 43

(Queue processes 42c)E

process InitQueue [input,output] : exit :=
Queue [input,output] (<> of PacketQueue)
endproc

process Queue [input,output] (pktq : PacketQueue) : exit :=
[pktq eq <>] -> exit
(1
input ?bl : Baseld 7b2 : Baseld ?msg : Message;
Queue [input,output] (pktq + packet(bl,b2,msg))
]
[pktq ne <>] ->
output !sender(first(pktq)) !receiver(first(pktq)) !message(first(pktq)) ;
Queue [input,output] (butfirst(pktq))
endproc

Defines:
InitBufGroupKB, never used.
InitQueue, used in chunks 74b, 77-81, 83b, and 86a.
Queue, never used.
Uses Baseld 23a, Message 28b, and PacketQueue 35b.
Experience shows that introducing unbounded queues in one flow direction suffices and

that upward queues (i.e. from children to parent base) produce the smaller models.

A.5 Rules

This section contains the part of the specification that corresponds to the rules in [Euz97a].
These rules have the following general form®:

s—mi(z)— b
Vi=y
b—mso(2)—r

according to this rule, when base b receives a message m; with content z from base s
such that condition P is true, it sets its state variable V' to y and sends a message mo with
content z to base r (P, y, z, r are expressions that depend on z and s).

Each such rule is modelled as a branch of a choice, along the following template:

(sample rule 43)=

process KB [gatein,gateout] (V:state ...) : noexit :=
gatein 7s:Baseld !'b 7msg:Message;
...

8The fully general form allows zero or several variable updates and output messages.

RR n3259

44

44 Charles Pecheur

]
[is_ml(msg)] ->
(let x:data = content(msg) in
[P] -> gateout !b !r !m2(z); KB [gatein,gateout] (y ...)
)
O

)

endproc

Uses BaseId 23a and Message 28b.

This is merely a general sketch; the smaller details will vary from rule to rule. In the
case of actions triggered by the user, the first event offer is replaced by an interaction with
the user.

Only valid user initiatives are accepted (e.g. voting is allowed only on new cfcs, submis-
sions etc. are not allowed if the base has no parent). On the other hand, internal messages
of the protocol are accepted first and the validity of their content is checked afterwards.
The occurrence of error conditions (e.g. entries not found in tables or messages received
from wrong bases) produces a local deadlock of the concerned base. The reasoning that
supports this way of doing things is that we want to check that the protocol is free from
invalid messages, whereas we reject a priori invalid user requests.

A.5.1 Rules for Individual bases

There are two kinds of rules for individual bases: user initiatives, triggered by interactions
with the user, and automatic rules, triggered by a C0O4 message from the parent base.

(individual rules 44)=

(user register rules 45a)

|

(user evaluate rules 45b)
|

(user achieve rules 46a)
]

(user forward rules 46b)
|

(user deny rules 46c)

]

(user reply rules 47a)

|

parentin ?from : Baseld !B ?msg : Message;
((user notify rules 47b)
(1

(user askall rules 49a)

INRIA

Specification and Verification of Coj Using LOTOS 45

]

(user tell rules 49b)

|

(user error rules 49c)

|

(user poolnotify rules 50a)
|

(user pooldeny rTules 50b)

Uses BaseId 23a and Message 28b.

In rules [evaluate], [achieve|, [forward] and [deny], the condition that G # () has been
added, i.e. the base must have registered beforehand. A—likely unintended—consequence
of this is that it is not possible to deny a register request.

[register]

45a (user register rules 45a)=

[G = none]l -> [A = {} of SubmittedTbl] ->
user !B !doregister 7bl : Baseld;
parentout !B !bl !register(NA,bl);
IndividualKB [user,parentin,parentout,signall
(B,
G,
insert(submitted(NA,reqregister(b1)),A) ,next(NA),
P)

Uses BaselId 23a, IndividualkB 37, and SubmittedTbl 30b.

[evaluate]
45b (user evaluate rules 45b)=

[issome(G)] ->
user !B !doevaluate 7pl : Proposal;
parentout !B !the(G) !evaluate(NA,pl);
IndividualKB [user,parentin,parentout,signall
(B,
G,
insert (submitted (NA,reqevaluate(pl)),A) ,next (NA),
P)

Uses IndividualKB 37 and Proposal 25b.

RR n3259

46 Charles Pecheur

[achieve]
46a (user achieve rules 46a)=

[issome(G)] ->
user !B !'doachieve 7pl : Proposal;
parentout !B !the(G) 'achieve(NA,pl);
IndividualKB [user,parentin,parentout,signall
(B,
G,
insert (submitted(NA,reqachieve(pl)),A) ,next(NA),

P)

Uses IndividualKB 37 and Proposal 25b.

[forward]
46b (user forward rules 46b)=

[issome(G)] ->
user !B !doforward ?rl : Request;
parentout !B !the(G) !forward(NA,r1);
IndividualKB [user,parentin,parentout,signall
(B,
G,
insert (submitted (NA,reqforward(ril)),A) ,next(NA),

P)

Uses IndividualKB 37 and Request 27.

[deny]
46¢ (user deny rules 46c)=

[issome(G)] ->
(choice m1 : Id [1 [ml isin A] ->
user !B !dodeny !req(get(mi,A));
parentout !B !the(G) 'deny(ml);
IndividualKB [user,parentin,parentout,signal]
(B,
G,
remove(mi,A),NA,
P)

Uses Id 23b and IndividualKB 37.

INRIA

Specification and Verification of Coj Using LOTOS 47

[accept], [reject], [challenge] Note that only achieve requests can be challenged. The
possibility to challenge forward*(achieve(...)) requests is still under analysis and not co-
vered by this specification.

47a (user reply rules ATa)=

[issome(G)] ->
(choice n1 : Id []
[n1 isin P] -> [status(get(nl,P)) = new] ->
(let r1l : Request = req(get(ni,P)) in
user !B !'doaccept !ri;
parentout !B !the(G) !reply(nl,acceptx);
IndividualKB [user,parentin,parentout,signall
(B,
G,
A,NA,
insert (set_status(accepted,get(ni,P)),P))
[]
user !B !doreject !ri;
parentout !B !the(G) !reply(ni,reject);
IndividualKB [user,parentin,parentout,signal]
(8,
G,
A,NA,
insert(set_status(rejected,get(ni,P)),P))
[]
[is_reqachieve(r1)] ->
(*#** should apply to forward*(achieve(...)) too ***)
user !B !'dochallenge !rl1 7pl : Proposal;
parentout !B !the(G) !reply(nl,challenge(NA,pl));
IndividualKB [user,parentin,parentout,signall
(B,
G,
insert (submitted (NA,reqchallenge(pl)),A) ,next(NA),
insert(set_status(challenged,get(n1,P)),P))

Uses Id 23b, IndividualKB 37, Proposal 25b, and Request 27

Now comes the automatic part of individual bases.

(notify-register)
47b (user notify rules 47b)=

[is_notify(msg)] ->
(let ml : Id = inreplyto(msg),

RR n3259

48

Charles Pecheur

al : Answer = content(msg) in
([ml isin A] ->
([is_reqregister(req(get(mi,A)))] ->
[content (req(get(m1,A))) of Baseld = from] ->
([isnone(G)] ->
([is_acceptx(al)] ->
IndividualKB [user,parentin,parentout,signal]
(B,
some (from) ,
remove (mi,A) ,NA,
P)
[
[not(is_acceptx(al))] ->
IndividualKB [user,parentin,parentout,signal]

(B,
G,
remove (m1,A) ,NA,
P)
)
[1

[issome (G)] ->
IndividualKB [user,parentin,parentout,signal]

(B,
G,
remove (m1,A) ,NA,
P)
)
[

[not (is_reqregister(req(get(m1,A))))] ->
IndividualKB [user,parentin,parentout,signall

(B,
G,
remove (m1,A) ,NA,
P)
)
1

[m1 notin A] ->
signal !B !signotinA !msg;
IndividualKB [user,parentin,parentout,signall
(B,
G,
A,NA,
P)

INRIA

Specification and Verification of Coj Using LOTOS

49

Uses Answer 28a, Baseld 23a, Id 23b, and IndividualKB 37

(store-cfc)

49a (user askall rules 49a)=

[is_askall(msg)] ->
([G eq some(from)] ->
(let n1 : Id = replywith(msg),
rl : Request = content(msg) in
IndividualKB [user,parentin,parentout,signall

(B,
G,
A,NA,
insert (pending(nl,r1,new),P))

Uses Id 23b, IndividualKB 37, and Request 27.

store-proposal
prop

49b (user tell rules 49b)

[is_tell(msg)] ->
([G eq some(from)] ->
(#** handling of knowledge in user KB: unspecified *#¥x*)

IndividualKB [user,parentin,parentout,signal]
(B,
G,
A,NA,
P)

Uses IndividualKB 37.

(receive-error)

49c (user error rules 49c)=

[is_error(msg)] ->
([G eq some(from)] ->
(let m1 : Id = inreplyto(msg) in
([m1 isin A] ->
IndividualKB [user,parentin,parentout,signall
(B,

RR n3259

50 Charles Pecheur

G,
remove(M1,A),NA,
P)
0
[m1 notin A] ->
signal !B !signotinA !msg;
IndividualKB [user,parentin,parentout,signall
(B,
G,
A,NA,
P)

Uses Id 23b and IndividualKB 37.

(handle-pool-notify)
50a (user poolnotify rules 50a)=

[is_poolnotify(msg)] ->
([G eq some(from)] ->
(let n1 : Id = inreplyto(msg) in
([n1 isin P] ->
IndividualkB [user,parentin,parentout,signall
(B,
G,
A,NA,
remove (n1,P))
0
[n1 notin P] ->
signal !B !signotinP !msg;
IndividualKB [user,parentin,parentout,signall
(B,
G,
A,NA,
P)

Uses Id 23b and IndividualKB 37.

(cancel-cfc)

INRIA

Specification and Verification of Coj Using LOTOS 51

50b (user pooldeny rules 50b)=

[is_pooldeny(msg)] ->
([G eq some(from)] ->
(let n1 : Id = inreplyto(msg) in
([n1 isin P] ->
IndividualKB [user,parentin,parentout,signall
(B,
G,
A,NA,
remove (n1,P))
]
[n1 notin P] ->
signal !B !signotinP !msg;
IndividualKB [user,parentin,parentout,signall
(B,
G,
A,NA,
P)

Uses Id 23b and IndividualKB 37.

A.5.2 Rules for Group bases

We distinguish between rules triggered by messages coming from a child or a parent. Each
half is given as a choice guarded by a corresponding event offer.

51 (group rules 51)=

childrenin 7?from : BaseId !B 7msg : Message;
((group register rules 52)
1

(group evaluate Tules 53a)

]
(group achieve rules 53b)

]

(group forward rules 54)
|

(group deny rules 55)

]
(group reply rules 56)

RR n3259

52

52 Charles Pecheur

parentin ?from : Baseld !B ?msg : Message;
((group notify rules 63)
|
(group askall rules 64)
|
(group error rules 65a)
|
(group poolnotify rules 67)
|
(group pooldeny rules 65b)
|
(group tell rules 68)

Uses Baseld 23a and Message 28b.

(cfc-register)
(reply-register)
(group register rules 52)=

[is_register(msg)] ->
(let b2 : Baseld = content(msg),
mil : Id = replywith(msg) in
let req : Request = reqregister(b2) in

[b2 = B] ->
([S ne {}1 >
(Broadcast [childrenout] (B, askall(NC,req), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
insert (cfc(NC,from,ml,req,card(S)),C), next(NC),
S,
K)
)
(|
[S eq {}] >

childrenout !B !from !notify(ml, acceptx);

childrenout !B !from !tell(assert(K));

signal !B !sigregistered !from;

GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,

INRIA

Specification and Verification of Coj Using LOTOS

A,NA,

P,

C,NC,
insert(from,S),
K)

Uses Baseld 23a, Broadcast 69a, GroupKB 38, Id 23b, and Request 27

(eval-reply)

53a (group evaluate Tules 53a)=

[is_evaluate(msg)] ->
(let pl : Proposal = content(msg),
mil : Id = replywith(msg) in
childrenout !B !from !motify(ml, answer(query(K,pl)));
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
C,NC,
S,
K)

Uses GroupKB 38, Id 23b, and Proposal 25b.

(cfc-achieve)
(error-achieve)

53b (group achieve rules 53b)=

[is_achieve(msg)] ->
(let pl : Proposal = content(msg),
mil : Id = replywith(msg) in
let req : Request = reqachieve(pl) in
([query(X,p1)] ->
(Broadcast [childrenout] (B, askall(NC,req), S)

>
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,

RR n3259

54

54

Charles Pecheur

P,
insert (cfc(NC,from,ml,req,card(S)),C) ,next (NC),
S,
K)

)

(|

[not (query(K,p1))]1 ->

(childrenout !B !from 'error(mil);

GroupKB [childrenin,childrenout,parentin,parentout,signall

(B,
G,
A,NA,
P,
C,NC,
S,
K)

Uses Broadcast 69a, GroupKB 38, Id 23b, Proposal 25b, and Request 27.

(cfe-forward)

(error-forward)

(group forward rules 54)=

[is_forward(msg)] ->
(let rl : Request = content(msg),
ml : Id = replywith(msg) in
let req : Request = reqforward(rl) in
([issome(G) or (isnone(G) and is_reqregister(r1l))] ->
(Broadcast [childrenout] (B, askall(NC,req), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(8B,
G,
A,NA,
P,
insert (cfc(NC,from,ml,req,card(S)),C) ,next (NC),
S,
K)
)
1
[isnone(G) and not(is_reqregister(r1))] ->
(childrenout !B !from !'error(mil);

INRIA

Specification and Verification of Coj Using LOTOS

55

GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
C,NC,
S,
K)

Uses Broadcast 69a, GroupKB 38, Id 23b, and Request 27

(deny-reply)
55 (group deny rules 55)=

[is_deny(msg)] ->
(let ml : Id = inreplyto(msg) in
[searchrequest (from,m1,C)] ->
(let n1 : Id = id(getrequest(from,m1,C)) in
(Broadcast [childrenout] (B, pooldeny(nl), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
remove(ni,C),NC,
S,
K)

)
(1

[not (searchrequest (from,m1,C))] ->
signal !B !signotinC !msg;
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
C,NC,
S,
K)

RR n3259

56

56

Charles Pecheur

Uses Broadcast 69a, GroupKB 38, and Id 23b.

The following piece gathers all rules pertaining to the reception of replies in a group
base. The treatment of reply is rather complex and involves a dozen rules, so we further
decompose it in several chunks.

(group reply rules 56)=

[is_reply(msg)] ->

(let

nl : Id = inreplyto(msg),
al : Answer = content(msg) in

[n1 isin C] ->

(let
let

entry : CfcEntry = get(n1,C) in
x1 : Nat = count(entry),

rl : Request = req(entry),

b2 : Baseld = sender(entry),

m2 : Id = senderid(entry) in

([is_acceptx(al)] ->

(

)
0

[x1 = 1] >
(
(group accept register rules 57)
]
(group accept achieve rules 58a)
(1
(group accept forward rules 58b)
(1
(group accept tell rules 60)
)
(1
[x1 gt 1] ->
GroupKB [childrenin,childrenout,parentin,parentout,signall
(8,
G,
A,NA,
P,
insert (set_count (pred(x1) ,entry),C) ,NC,
S,
K)

[is_reject(al)] ->

(

)
]

(group reject rules 61)

INRIA

Specification and Verification of Coj Using LOTOS

57

[is_challenge(al)] ->
(

(group challenge rules 62)
)

)
1
[n1 notin C] ->
signal !B !signotinC !msg;
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
C,NC,
S,
K)

Uses Answer 28a, BaseId 23a, GroupKB 38, Id 23b, and Request 27.

(accept-register)
57 (group accept register rules 57)=

[is_reqregister(r1)] ->
childrenout !B !b2 !motify(m2, acceptx);
childrenout !B !'b2 !tell(assert(X));
(Broadcast [childrenout] (B, poolnotify(nl,acceptx), S)
»
EnumerateAskall [childrenout] (B, remove(ni,C), b2)
»
signal !B !sigregistered !b2;
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
incallcount (remove(ni,C)),NC,
insert (b2,9),
K)

Uses Broadcast 69a, EnumerateAskall 69b, and GroupKB 38.

RR n3259

58 Charles Pecheur

(accept-achieve)

58a (group accept achieve rules 58a)=

[is_reqachieve(r1)] ->
childrenout !B !b2 !notify(m2, acceptx);
(let pl : Proposal = content(rl) in
(Broadcast [childrenout] (B, poolnotify(nl,acceptx), S)
»
Broadcast [childrenout] (B, tell(pl), S)
»
signal !B !sigstored !pl !query(X,pl);
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(8,
G,
A,NA,
P,
remove(ni,C),NC,
S,
K+p1)

Uses Broadcast 69a, GroupkB 38, and Proposal 25b.

(accept-forward)
(accept-forward-register)

58b (group accept forward rules 58b)=

[is_reqforward(r1l)] ->
([not(G eq some(b2))] ->
(let r2 : Request = content(rl) in
Broadcast [childrenout] (B, poolnotify(nl,acceptx), S)
»
([is_reqregister(r2)] ->
(let b3 : Baseld = content(r2) in
parentout !B !b3 !register(NA,b3);
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
insert (submitted (NA,r2,b2,m2),A) ,next (NA),
P,
remove (n1,C) ,NC,
S,
K)

INRIA

Specification and Verification of Coj Using LOTOS

59

(]

[is_reqevaluate(r2)] -> [issome(G)] ->

parentout !B !the(G) !evaluate(NA,content(r2));

GroupKB [childrenin,childrenout,parentin,parentout,signal]

(B,
G,
insert (submitted (NA,r2,b2,m2),A) ,next (NA),
P,
remove (n1,C),NC,
S,
K)
(]
[is_reqachieve(r2)] -> [issome(G)] ->
parentout !B !the(G) !achieve(NA,content(r2));
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
insert (submitted (NA,r2,b2,m2),A) ,next (NA),
P,
remove (n1,C) ,NC,
S,
K)
0
[is_reqforward(r2)] -> [issome(®)] ->
parentout !B !the(G) !forward(NA,content(r2));
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
insert (submitted (NA,r2,b2,m2),A) ,next (NA),
P,
remove (n1,C) ,NC,
S,
K)

)
(1
[G eq some(b2)] ->
([m2 isin P] -> [status(get(m2,P)) = new] ->
parentout !B !the(G) !reply(m2,acceptx);
(Broadcast [childrenout] (B, poolnotify(nl,acceptx), S)
>
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
insert (set_status(accepted,get(m2,P)),P),

RR n3259

60

Charles Pecheur

remove(ni,C),NC,
S,
K)
)
(|
[m2 notin P] ->
signal !B !signotinP !msg;
(Broadcast [childrenout] (B, poolnotify(nl,acceptx), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
remove(ni,C),NC,
S,
K)

Uses Baseld 23a, Broadcast 69a, GroupKB 38, and Request 27

(broadcast-tell)
60 (group accept tell rules 60)=

[is_reqtell(r1)] -> [G eq some(b2)] ->
(let pl : Proposal = content(rl) in
(Broadcast [childrenout] (B, poolnotify(nl,acceptx), S)
»
Broadcast [childrenout] (B, tell(pl), S)
»
signal !B !sigstored !pl !query(X,pl);
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
remove(ni,C),NC,
S,
K+p1)

Uses Broadcast 69a, GroupKB 38, and Proposal 25b.

INRIA

Specification and Verification of Coj Using LOTOS 61

(reject-reply)
61 (group reject rules 61)=

[not (G eq some(b2))] ->
childrenout !B !b2 !motify(m2, al);
(Broadcast [childrenout] (B, pooldeny(ni), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
remove(ni,C),NC,
S,
K)
)
1
[G eq some(b2)] ->
([is_reqforward(r1)] ->
([m2 isin P] -> [status(get(m2,P)) = new] ->
parentout !B !the(G) !reply(m2,reject);
(Broadcast [childrenout] (B, pooldeny(nl), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
insert(set_status(rejected,get(m2,P)),P),
remove(ni,C),NC,
S,
K)
)
[]
[m2 notin P] ->
signal !B !signotinP !msg;
(Broadcast [childrenout] (B, pooldeny(nil), S)
b3
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
remove(nl,C),NC,
S,
K)

RR n3259

62 Charles Pecheur

)
[
[is_reqtell(r1)] ->
(Broadcast [childrenout] (B, pooldeny(nl), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
remove(ni,C),NC,
S,
K)

Uses Broadcast 69a and GroupKB 38.

(challenge-reply)
62 (group challenge rules 62)=

[is_reqachieve(r1)] ->
(*x* should apply to forward*(achieve(...)) too ***)
([not(G eq some(b2))] ->
(let m1 : Id = replywith(al),
pl : Proposal = content(al),
p2 : Proposal = content(rl) in
let r2 : Request = reqachieve(p2*pl) in
childrenout !B !b2 !notify(m2, al);
(Broadcast [childrenout] (B, pooldeny(nl), S)
»
Broadcast [childrenout] (B, askall(NC,r2), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
insert (cfc(NC,from,ml,r2,card(S)),
remove(ni,C)),
next (NC),
S,
K)

INRIA

63

Specification and Verification of Coj Using LOTOS 63

(]
[G eq some(b2)] ->
(stop
(*** should not be reached *x*x*)
)
)

Uses Broadcast 69a, GroupKB 38, Id 23b, Proposal 25b, and Request 27.
Now comes the part of group bases concerned with messages coming from the parent
group.

(broadcast-notify)
(broadcast-notify-register)

(group notify rules 63)=

[is_notify(msg)] ->
(let ml : Id = inreplyto(msg),
al : Answer = content(msg) in
[m1 isin A] ->
(let entry : GrpSubmittedEntry = get(ml,A) in
let rl : Request = req(entry),
b2 : Baseld = sender(entry),
m2 : Id = senderid(entry) in
childrenout !B !b2 !notify(m2,al);
([is_reqregister(r1)] -> [content(rl) of Baseld = from] ->
([is_acceptx(al)] ->
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
some (from) ,
remove (mi,A),NA,
P,
C,NC,
S,
K)
]
[not (is_acceptx(al))] ->
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
remove (ml,A),NA,
P,
C,NC,
S,
K)

RR n3259

Charles Pecheur

64
0
[not (is_reqregister(r1))] ->
[G eq some(from)] ->
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
remove (m1,A) ,NA,
P,
C,NC,
S,
K)
)
)
|
[m1 notin A] ->
signal !B !signotinA !msg;
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
C,NC,
S,
K)
)

Uses Answer 28a, Baseld 23a, GroupKB 38, Id 23b, and Request 27.

(broadcast-cfc)
64 (group askall rules 64)=

[is_askall(msg)] ->
([G eq some(from)] ->
(let n1 : Id = replywith(msg),
rl : Request = content(msg) in
Broadcast [childrenout] (B, askall(NC,reqforward(ril)), S)

>
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,

insert (pending(nl,r1,new),P),
insert(cfc(NC,from,n1,reqforward(ri),card(S)),C) ,next (NC),

S:
K)

INRIA

65a

Specification and Verification of Coj Using LOTOS

65

Uses Broadcast 69a, GroupKB 38, Id 23b, and Request 27.

(broadcast-error)
(group error rules 65a)=

[is_error(msg)] ->
([G eq some(from)] ->
(let m1 : Id = inreplyto(msg) in
[m1 isin A] ->
(let entry : GrpSubmittedEntry = get(ml,A) in
let b2 : BaseIld = sender(entry),
m2 : Id = senderid(entry) in
childrenout 'B !'b2 !error(m2);
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
remove (mi,A) ,NA,
P,
C,NC,
S,
K)
)
(|
[m1 notin A] ->
signal !B !signotinA !msg;
GroupKB [childrenin,childrenout,parentin,parentout, signal]
(B,
G,
A,NA,
P,
C,NC,
S,
K)

Uses Baseld 23a, GroupKB 38, and Id 23b.

(broadcast-deny)

RR n3259

66

Charles Pecheur

65b (group pooldeny rules 65b)=

[is_pooldeny(msg)] ->
([G eq some(from)] ->
(let n1 : Id = inreplyto(msg) in
[n1 isin P] ->
([searchrequest(from,n1,C)] ->

(let n2 : Id = id(getrequest(from,n1,C)) in
(Broadcast [childrenout] (B, pooldeny(n2), S)

»

GroupKB [childrenin,childrenout,parentin,parentout,signall

(B,

G,

A,NA,
remove(ni,P),
remove(n2,C) ,NC,
S,

K)

)
(1

[not (searchrequest (from,n1,C))] ->
GroupKB [childrenin,childrenout,parentin,parentout,signal]

(B,
G,
A,NA,
remove(ni,P),
C,NC,
S,
K)
)
(N
[n1 notin P] ->
signal !B !signotinP !msg;

GroupKB [childrenin,childrenout,parentin,parentout,signall

(B,
G,
A,NA,
P,
¢,NC,
S,

K)

Uses Broadcast 69a, GroupKB 38, and Id 23b.

INRIA

Specification and Verification of Coj Using LOTOS 67

(broadcast-poolnotify)
67 (group poolnotify rules 67)=

[is_poolnotify(msg)] ->
([G eq some(from)] ->
(let n1 : Id = inreplyto(msg) in
[n1 isin P] ->
([searchrequest(from,n1,C)] ->
(let n2 : Id = id(getrequest(from,n1,C)) in
(Broadcast [childrenout] (B, poolnotify(n2,acceptx), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(8,
G,
A,NA,
remove(ni,P),
remove(n2,C) ,NC,
S,
K)

)
0
[not (searchrequest (from,n1,C))] ->
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(8,
G,
A,NA,
remove(ni,P),
C,NC,
S,
K)
)
]
[n1 notin P] ->
signal !B !signotinP !msg;
GroupKB [childrenin,childrenout,parentin,parentout,signall
(8,
G,
A,NA,

RR n3259

68

Charles Pecheur

Uses Broadcast 69a, GroupKB 38, and Id 23b.

(log-tell)
(cfe-tell)
68 (group tell rules 68)=

[is_tell(msg)] ->
([G eq some(from)] ->
(let pl : Proposal = content(msg) in
let req : Request = reqtell(pl) in
([query(X,p1)] ->
(Broadcast [childrenout] (B, askall(NC,req), S)
»
GroupKB [childrenin,childrenout,parentin,parentout,signal]
(B,
G,
A,NA,
P,
insert (cfc(NC,from,first,req,card(S)),C) ,next(NC),
S,
K)
)
1
[not (query(K,p1))]1 ->
(signal !B !signotconsistent !pil;
GroupKB [childrenin,childrenout,parentin,parentout,signall
(B,
G,
A,NA,
P,
C,NC,
S,
K)

Uses Broadcast 69a, GroupKB 38, Proposal 25b, and Request 27

A.5.3 Auxiliary Process Definitions

This section defines two auxiliary processes that iteratively produce several messages:

e Broadcast sends a message to a set of (subscriber) bases.

INRIA

Specification and Verification of Coj Using LOTOS 69

e EnumerateAskall sends a list of pending cfcs to a (newly registered) base.
69a. (GroupKB processes 38)+=

process Broadcast [out]
(B : Baseld,
msg : Message,
S : SubscriberSet) : exit :=
[S eq {}] -> exit
[]
[S ne {}1 ->
(let bl : BaseIld = pick(S) in
out !B !bl !msg;
Broadcast [out] (B, msg, remove(bl,S))
)

endproc

Defines:
Broadcast, used in chunks 52-55, 57, 58, 60-62, 64, 65b, 67, and 68
Uses BaseId 23a, Message 28b, and SubscriberSet 33a

69b (GroupKB processes 38)+=

process EnumerateAskall [childrenout]
(B : Baseld,
C : CfcTbl,
bl : BaseId) : exit :=
[C eq {}] -> exit
[
[C ne {}] ->
(let entry : CfcEntry = pick(C) in
childrenout !B !bl !askall(id(entry),req(entry));
EnumerateAskall [childrenout] (B, remove(id(entry), C), bl)
)

endproc

Defines:
EnumerateAskall, used in chunk 57.
Uses BaseId 23a and CfcTbl 33b.

A.6 System scenarios

This section contains the different system scenarios used to study different aspects of the
system.

RR n3259

70 Charles Pecheur

A.6.1 User Environment processes

The behaviours described in this section define particular combinations of user actions on
individual bases. These behaviours need not be finite: the CADP toolset provides tools that
generate the model of the specification incrementally, driven by some exploration strategy.
It is therefore possible to achieve validation results on a finite subpart of an infinite LTS.
Typically, the tool EXHIBITOR is used to explore the LTS according to a given trace specifi-
cation (e.g. all traces that contain only one achieve request). Nonetheless, it is still crucial
to reduce the state space as much as possible: if the model is too large or infinite, the tools
will take more time to produce results and will run forever if no result is to be found.

Two variants are defined for each kind of behaviour: User<xyz> applies to a single user,
A11User<xyz> applies concurrently to all users. In the case where all users are to exhibit
the same kind of behaviour, the latter should replace concurrent instances of the former,
producing less parallelism and thus better response time.

User Replies Unlimited number of actions that pertain to an existing conversation —
accept, reject or deny pending proposals.

70a (UserReply process 70a)=

process UserReply [user]

(B : BaseId) : noexit :=
user !B !'doaccept 7rl : Request;
UserReply [user] (B)

1

user !B !'doreject 7rl : Request;
UserReply [user] (B)

1

user !B !'dodeny ?rl : Request;
UserReply [user] (B)

endproc

Defines:
UserReply, used in chunk 85.
Uses BaseId 23a and Request 27.

70b (AllUserReply process T0b)=

process AllUserReply [user] : noexit :=
user 7 bl : Baseld !doaccept ?rl : Request;
Al11UserReply [user]

(1

user ? bl : Baseld !doreject ?rl : Request;
A11UserReply [user]

1

user 7 bl : Baseld !dodeny ?rl : Request;

INRIA

Tla

71b

Tlc

Specification and Verification of Coj Using LOTOS 71

Al11UserReply [user]
endproc

Defines:
AllUserReply, used in chunks 75-77, 79c, 82b, and 84b.
Uses Baseld 23a and Request 27.

User Accept Replies Unlimited number of accept on pending proposals.

(UserAccept process Tla)=

process UserAccept [user]

(B : BaseId) : noexit :=
user !B !doaccept ?rl : Request;
UserAccept [user] (B)
endproc

Defines:
UserAccept, never used.
Uses Baseld 23a and Request 27.

(AllUserAccept process T1b)=

process AllUserAccept [user] : noexit :=
user ? bl : Baseld !doaccept ?rl : Request;
Al1UserAccept [user]

endproc

Defines:
AllUserAccept, used in chunks 83a and 86¢.
Uses Baseld 23a and Request 27.

General User Input UserGeneral provides a large range of user input actions, repea-
tedly and in any order. It does not perform register requests; these are supposed to be
offered separately and only once.

UserGeneral produces a huge branching factor and thus a very rapid state blow-up; it
is intended for use in interactive simulations of the full spectrum of Co,’s features.

(UserGeneral process Tlc)=

process UserGeneral [user] (B : BaseId) : noexit :=
let pl : Proposal = assert(black) + <>,
p2 : Proposal = assert(white) + <>
in
user !B !doevaluate !pl; UserGeneral [user] (B)

(1

RR n3259

72 Charles Pecheur

user !B !doevaluate !p2; UserGeneral [user] (B)

(]
user !B !doachieve !pl; UserGeneral [user] (B)
(]
user !B !doachieve !p2; UserGeneral [user] (B)
(1
user !B !dodeny ?rl : Request; UserGeneral [user] (B)
(1
user !B !doaccept 7rl : Request; UserGeneral [user] (B)
(]
user !B !doreject 7rl : Request; UserGeneral [user] (B)
(1
user !B !dochallenge !reqachieve(pl) !p2; UserGeneral [user] (B)
(]
user !B !dochallenge !reqachieve(p2) !pl; UserGeneral [user] (B)
1
user !B !doforward !reqachieve(pl); UserGeneral [user] (B)
(1
user !B !doforward !reqachieve(p2); UserGeneral [user] (B)
endproc
Defines:

UserGeneral, never used.
Uses BaseId 23a, Proposal 25b, and Request 27.

72 (AllUserGeneral process T2)=

process AllUserGeneral [user] : noexit :=
let pl : Proposal = assert(black) + <>,
p2 : Proposal = assert(white) + <>

in
user 7 bl : Baseld !doevaluate !pl; AllUserGeneral [user]
(1
user 7 bl : Baseld !doevaluate !p2; AllUserGeneral [user]
(1
user 7 bl : Baseld !doachieve !pl; AllUserGeneral [user]
]
user 7 bl : BaseId !doachieve !p2; AllUserGeneral [user]
(1
user ? bl : BaseId !dodeny 7rl : Request; AllUserGeneral [user]
(1
user 7 bl : BaselId !doaccept ?rl : Request; AllUserGeneral [user]
]
user 7 bl : Baseld !doreject ?rl : Request; AllUserGeneral [user]
(1
user 7 bl : Baseld !dochallenge !reqachieve(pl) !p2; AllUserGeneral [user]
(1

INRIA

73

Specification and Verification of Coj Using LOTOS 73

user ? bl : BaseId !dochallenge !reqachieve(p2) !pl; AllUserGeneral [user]

0

user ? bl : BaseId !doforward !reqachieve(pl); AllUserGeneral [user]

[

user 7 bl : Baseld !doforward !reqachieve(p2); AllUserGeneral [user]
endproc

Defines:
AllUserGeneral, used in chunks 80a and 82c.
Uses Baseld 23a, Proposal 25b, and Request 27.

User Consistency Tests UserConsistency only does achieve requests with two different
and incompatible proposals. It is intended to search for violations of knowledge consistency.

(UserConsistency process 73)=

process UserConsistency [user] (B : BaseId) : noexit :=

user !B !doachieve !assert(white) + <>; UserConsistency [user] (B)
|

user !B !doachieve !assert(black) + <>; UserConsistency [user] (B)
endproc

Defines:
UserConsistency, never used.
Uses Baseld 23a.

A.6.2 Constraints on parallelism

The following process is used to further restrict the possible behaviours of the system. It
deliberately eliminates some perfectly valid behaviours; it must be asserted in some way
that the reduced behaviour is still representative.

Serialize individual bases The process SerializeIndividualKB strongly reduces the
possible interleavings between the behaviours of concurrent individual bases. It forces a
strictly sequential application of the rules, relying on the fact that individual KB rules are
either:

1. a user request followed by sending of a message to the group base,

2. reception of a message from the group base.
The soundness of this restriction is supported by the following arguments:

1. Individual bases are fully interleaved; user interactions are independent events.

2. Upward messages are always accepted by the upward queue.

RR n3259

T4a

74b

74

Charles Pecheur

(serialize process Tda)=

process SerializeIndividualKB [user,parentin,parentout] : exit
exit
1
user 7b: BaseIld 7act: UserAction 7bl: Baseld;
parentout !b 7b2: Baseld 7msg: Message;
SerializeIndividualKB [user,parentin,parentout]
1
user 7?b: Baseld 7act: UserAction 7pl: Proposal;
parentout !b 7b2: Baseld 7msg: Message;
SerializeIndividualkB [user,parentin,parentout]
1
user 7?b: Baseld 7act: UserAction ?rl : Request;
parentout !b 7b2: Baseld ?msg: Message;
SerializeIndividualKB [user,parentin,parentout]
1
user 7b: Baseld 7act: UserAction 7rl: Request 7pl : Proposal;
parentout !b 7b2: Baseld 7msg: Message;
SerializeIndividualkB [user,parentin,parentout]
(1
parentin 7bl: Baseld 7b2: Baseld 7msg: Message;
SerializeIndividualKB [user,parentin,parentout]
endproc

Defines:
SerializeIndividualKB, used in chunks 77b, 78a, 80b, and 83b.
Uses Baseld 23a, Message 28b, Proposal 25b, Request 27, and UserAction 30a.

A.6.3 System Scenarios

This section defines hierarchies of bases of different sizes and structures, then the user input

scenarios that can be applied to them.

Hierarchy 1: 1I4+1G The simplest non-trivial situation: one individual base, one group

base. Already allows interesting observations.

basel
——
base3

(KBHierarchy process 1 T4b)=

process KBHierarchy [user,upl,downi,up2,down2,signa1] : exit :=
InitIndividualKB [user,downl,upl,signal] (basel)
| fup1l,downi] |
(hide up in InitQueue [upl,up]l | [up]|

INRIA

75a

75b

75¢

Specification and Verification of Coj Using LOTOS 75

InitGroupKB [up,downl,down2,up2,signal] (base3))
| [up2,down2] |
exit
endproc

Uses InitGroupKB 38, InitIndividualKB 37, and InitQueue 42c.

(KB gates 1 T5a)=
upl,downl,up2,down2

Scenario 1.1: 1I+1G, one achieve Register then achieve one proposal. Suitable for
exhaustive generation.

(UserInput process 1.1 T5b)=
process UserInput [user] : noexit :=

user !basel !doregister !base3;

user !basel !doachieve !assert(square) + <>;
stop

1

Al11UserReply [user]

where
(AllUserReply process T0b)

endproc

Uses AllUserReply 70b.

Scenario 1.2: 1I41G, contradictory proposals Register then achieve two contradic-
tory proposals. Used to study violations of knowledge consistency. Suitable for exhaustive
generation.

(UserInput process 1.2 T5c)=
process UserInput [user] : noexit :=

user !basel !doregister !base3;

user !basel !doachieve !assert(white) + <>;
user !basel !doachieve !assert(black) + <>;
stop

11

A11UserReply [user]

RR n3259

76 Charles Pecheur

where
(AllUserReply process T0b)
endproc

Uses AllUserReply 70b.

Scenario 1.3: 1I14+1G, three achieves Register then achieve three proposals. Suitable
for exhaustive generation; intended to demonstrate exponential blow-up.

76a (UserInput process 1.8 T6a)=
process UserInput [user] : noexit :=

user !basel !doregister !base3;

user !'basel !doachieve !assert(white) + <>;
user !basel !doachieve !assert(black) + <>;
user !basel !doachieve !assert(square) + <>;
stop

11

Al11UserReply [user]

where
(AllUserReply process 70b)
endproc

Uses AllUserReply 70b.

Hierarchy la: 1I4+1G, no queue Same as hierarchy 1 but without queues, as in the
first version of this specification. The resulting model contains numerous deadlocks due to
simultaneous output attempts.

76b (KBHierarchy process la T76b)=

process KBHierarchy [user,upl,downl,up2,down2,signal] : exit :=
InitIndividualKB [user,downl,upl,signal] (basel)
| fup1,downi] |
InitGroupKB [upl,downl,down2,up2,signal]l (base3)
| fup2,down2] |
exit
endproc

Uses InitGroupKB 38 and InitIndividualKB 37

INRIA

Specification and Verification of Coj Using LOTOS 77

77a (KB gates la T7a)=
upl,downl,up2,down2

Hierarchy 2: 2I+1G Same as previous but with two individual bases. Uses
SerializeIdividualKB to reduce state space explosion.

basel base2
—_——
base3

77b (KBHierarchy process 2 TTb)=

process KBHierarchy [user,upl,downl,up2,down2,signal] : exit :=
(
(
InitIndividualKB [user,downl,upl,signal] (basel)
11
InitIndividualKB [user,downl,upl,signal] (base2)
)

| luser,down1,upi] |
SerializeIndividualKB [user,downl,upi]

)
| fup1l,downi] |
(hide up in InitQueue [upl,up]l | [up]|
InitGroupKB [up,downl,down2,up2,signal] (base3))
| [up2,down2] |
exit (* group has no parent *)
where

(serialize process T4a)
endproc

Uses InitGroupKB 38, InitIndividualKB 37, InitQueue 42c, and SerializeIndividualKB T74a.

T7c (KB gates 2 T7c)=
upl,downl,up2,down2

Scenario 2.1: 2I+1G, one achieve Register then achieve one proposal. Suitable for
exhaustive generation.

77d (UserInput process 2.1 77d)=
process UserInput [user] : noexit :=

user !basel !doregister !base3;

RR n3259

78 Charles Pecheur

user !base2 !doregister !base3;
user !basel !doachieve !assert(square) + <>;
stop

1
A11UserReply [user]

where
(AllUserReply process T0b)

endproc

Uses AllUserReply 70b.

Hierarchy 2a: 2I14+1G, downward queues Same as hierarchy 2 but using a queue for
downward iso. upward traffic. Experience shows that this produces larger transition systems
than the previous one. To be used with the same user environments as hierarchy 2.

78a (KBHierarchy process 2a T8a)=

process KBHierarchy [user,upl,downl,up2,down2,signal] : exit :=
(
(
InitIndividualKB [user,downl,upl,signal] (basel)
11
InitIndividualKB [user,downl,upl,signal] (base2)
)
| [user,down1,upi] |
SerializeIndividualKB [user,downl,upi]
)
| fup1l,downi] |
(hide down in InitQueue [down,downl] | [down] |
InitGroupKB [upl,down,down2,up2,signal] (base3))
| [up2,down2] |
exit (* group has no parent *)
where

(serialize process T4a)
endproc

Uses InitGroupKB 38, InitIndividualKB 37, InitQueue 42c, and SerializeIndividualkB 74a.

78b (KB gates 2a 78b)=
upl,downl,up2,down2

INRIA

Specification and Verification of Coj Using LOTOS 79

Hierarchy 3: 1I14+2G Simplest three-level hierarchy with one individual and two group

bases:
basel
———
base3
——
based
79a (KBHierarchy process 8 79a)=
process KBHierarchy [user,upl,downl,up2,down2,up3,down3,signal] : exit :=
InitIndividualKB [user,downl,upl,signal] (basel)

| fup1l,downi] |
(hide up in InitQueue [upl,up] |[up]l

InitGroupkB [up,downl,down2,up2,signal] (base3))
| [up2,down2] |
(hide up in InitQueue [up2,up] |[[up]|

InitGroupkB [up,down2,down3,up3,signal] (baseb))
| [down3,up3] |

exit (* baseb has no parent *)
where

(serialize process T4a)

endproc

Uses InitGroupKB 38, InitIndividualKB 37, and InitQueue 42c.
79b (KB gates 8 T9b)=
upl,downl,up2,down2,up3,down3

Scenario 3.1: 1I+2G, one achieve Register then achieve one proposal in base3.
79¢ (UserInput process 3.1 T9c)=
process UserInput [user] : noexit :=

user !basel !doregister !base3;

user !basel !'doforward !reqregister(baseb);

user !basel !doforward !reqachieve(assert(white) + <>);

stop

11

Al1UserReply [user]

where

(AllUserReply process 70b)

RR n3259

80 Charles Pecheur

endproc

Uses AllUserReply 70b.

Scenario 3.2: 1I4+2G, general user Uses UserGeneral and therefore usable for inter-
active simulation or strongly confined exploration only.

80a (UserInput process 3.2 80a)=
process UserInput [user] : noexit :=

user !basel !doregister !base3;

user !basel !doforward !reqregister(baseS);
stop

11

AllUserGeneral [user]
where
(AllUserReply process 70b)

endproc

Uses Al1UserGeneral 72.

Hierarchy 4: 3I+2G Three-level hierarchy with three individual and two group bases:

basel base2
——~—"— based
base3

~ S

ba§e5

Still uses SerializeIndividualKB, but only on basel and base2 — there is no simple
way to serialize base4 w.r.t. its peer subgroup.

80b (KBHierarchy process 4 80b)=

process KBHierarchy [user,upl,downi,up2,down2,up3,down3,signa1] : exit :=
(
(
(
(
InitIndividualKB [user,downl,upl,signal] (basel)
1
InitIndividualKB [user,downl,upl,signal] (base2)

INRIA

8la

81b

Specification and Verification of Coj Using LOTOS 81

)
| [user,downl,upi] |
SerializeIndividualKB [user,downl,upi]
)
| [up1,downi] |
(hide up in InitQueue [upl,upl | [up]ll
InitGroupKB [up,downl,down2,up2,signal] (base3))
)
11
InitIndividualKB [user,down2,up2,signal] (base4)
)
| [up2,down2] |
(hide up in InitQueue [up2,up] |[up]|
InitGroupKB [up,down2,down3,up3,signal] (baseb))
| [down3,up3] |
exit (* baseb has no parent *)
where

(serialize process T4a)

endproc

Uses InitGroupKB 38, InitIndividualKB 37, InitQueue 42c, and SerializeIndividualKB T74a.

(KB gates 4 8la)=
upl,downl,up2,down2,up3,down3

Hierarchy 4a: 314+2G, full interleave Same as hierarchy 4 but without
SerializeIndividualKB.

(KBHierarchy process 4a 8lb)y=

process KBHierarchy [user,upl,downl,up2,down2,up3,down3,signal] : exit :=
(
(
(
InitIndividualKB [user,downl,upl,signal] (basel)
11
InitIndividualKB [user,downl,upl,signal] (base2)
)
| [up1,downi] |
(hide up in InitQueue [upl,up] | [up]l
InitGroupKB [up,downl,down2,up2,signal] (base3))
)
11

InitIndividualKB [user,down2,up2,signal] (base4)

RR n3259

82a

82b

82¢c

82 Charles Pecheur

)
| [up2,down2] |
(hide up in InitQueue [up2,up]l | [up]|
InitGroupKB [up,down2,down3,up3,signal] (baseb))
| [down3,up3] |
exit (* baseb has no parent *)

endproc

Uses InitGroupKB 38, InitIndividualKB 37, and InitQueue 42c

(KB gates 4a 82a)=
upl,downl,up2,down2,up3,down3

Scenario 4.1: 3I+2G, one achieve Register then achieve one proposal in base5. Too
large for exhaustive generation, at time of writing.

(UserInput process 4.1 82b)=

process UserInput [user] : noexit :=
user !basel !doregister !base3;
user !base2 !doregister !base3;
user !base4 !doregister !baseb;
user !basel !doforward !reqregister(baseb);
user !basel !doforward !reqachieve(assert(white) + <>);
stop
1
Al11UserReply [user]

where

(AllUserReply process 70b)

endproc

Uses AllUserReply 70b.

Scenario 4.2: 3I+2G, general user Uses UserGeneral and therefore usable for inter-
active simulation or strongly confined exploration only.

(UserInput process 4.2 82c)=
process UserInput [user] : noexit :=

user !basel !doregister !base3;

INRIA

83a

Specification and Verification of Coj Using LOTOS 83

user
stop
1
user
stop
1
user
stop

'basel !doforward !reqregister(baseb);

!base2 !doregister !base3;

!base4 'doregister !baseb;

Al1UserGeneral [user]

where

(AllUserGeneral process 72)

endproc

Uses Al1UserGeneral 72.

Scenario 4.3: 3I+2G, one achieve with all accept The minimal interesting case.
There is a hope to generate the model for this one, though this could not be achieved at
time of writing.

(UserInput process 4.3 83a)=

process UserInput [user] : noexit :=

user
user
user
user
stop
1

!basel !doregister !base3;
!base2 !doregister !base3;
!base4 'doregister !baseb;
'basel !doforward !reqregister(baseb);

Al1UserAccept [user]

where

(AllUserAccept process T1b)

endproc

Uses AllUserAccept 71b.

Hierarchy

5: 3I+2G, Registered Same as hierarchy 4 but with already registered

bases, to prune the registering phase of the scenario.

RR n3259

84 Charles Pecheur

83b (KBHierarchy process 5 83b)=

process KBHierarchy [user,upl,downi,up2,down2,up3,down3,signa1] : exit :=
(
(

(
IdleIndividualKB [user,downi,upl,signal] (basel, some(base3))
1

IdleIndividualKB [user,downl,upl,signal] (base2, some(base3))
)
| [user,downl,upi] |
SerializeIndividualKB [user,downi,upi]
)
| [up1,downi] |
(hide up in InitQueue [upl,up] | [up]l
IdleGroupKB [up,downl,down2,up2,signal] (base3, some(baseb),
insert(basel, insert(base2, {}))))
)
11
IdleIndividualKB [user,down2,up2,signal] (base4, some(base5))
)
| [up2,down2] |
(hide up in InitQueue [up2,up]l | [up]|
IdleGroupKB [up,down2,down3,up3,signal] (baseb, none,
insert(base3, insert(base4, {}))))
| [down3,up3] |
exit (* baseb has no parent *)
where

(serialize process T4a)
endproc

Uses InitQueue 42c¢ and SerializeIndividualKB 74a.

84a (KB gates 5 84a)=
upl,downl,up2,down2,up3,down3

Scenario 5.1: 3I42G, one achieve Achieve one proposal in baseb. Exhaustive gene-
ration is achievable (albeit lengthy).

84b (UserInput process 5.1 84b)=

process UserInput [user] : noexit :=

INRIA

85

Specification and Verification of Coj Using LOTOS 85

user !basel !doforward !reqachieve(assert(white) + <>);
stop

1
A11UserReply [user]

where

(AllUserReply process T70b)

endproc

Uses AllUserReply 70b.

Scenario 5.2: 3I42G, one achieve, separate users Same as scenario 5.1 but uses

separate UserReply processes for each user instead of a single A11UserReply process. For
performance comparisons.

(UserInput process 5.2 85)=
process UserInput [user] : noexit :=

user !basel !doforward !reqachieve(assert(white) + <>);
stop

1
UserReply [user] (basel)
11
UserReply [user] (base2)
1
UserReply [user] (based)

where
(UserReply process 70a)

endproc

Uses UserReply 70a.

Hierarchy 6: 1I4-3G, competing groups A three-level hierarchy with two competing
group bases at root level. Intended to study concurrent forward(register) requests.

basel
——

base3
~—

——
baseb baseb

RR n3259

86 Charles Pecheur

86a (KBHierarchy process 6 86a)=

process KBHierarchy [user,upl,downi,up2,down2,up3,down3,signa1] : exit :=
InitIndividualKB [user,downl,upl,signal] (basel)
| fup1l,downi] |
(hide up in InitQueue [upl,up]l | [up]|
InitGroupKB [up,downl,down2,up2,signal] (base3))
| fup2,down2] |

(hide up in InitQueue [up2,up]l | [up]|
(

InitGroupKB [up,down2,down3,up3,signal]l (baseb)
1
InitGroupKB [up,down2,down3,up3,signal] (base6)
)
)
| [down3,up3] |
exit (* no parent *)
where

(serialize process T4a)

endproc

Uses InitGroupKB 38, InitIndividualKB 37, and InitQueue 42c.

86b (KB gates 6 86b)=
upl,downl,up2,down2,up3,down3d

Scenario 6.1: 1I4+-3G, two forward(achieve) with all accept User tries to subscribe
the intermediate group base to two groups simultaneously.

86¢ (UserInput process 6.1 86¢c)=
process UserInput [user] : noexit :=
user !basel !doregister !base3;
user !basel !'doforward !reqregister(baseb);

user !basel !doforward !reqregister(base6);
stop

11
AllUserAccept [user]

where

(AllUserAccept process T1b)

INRIA

Specification and Verification of Coj Using LOTOS

87

endproc

Uses AllUserAccept 71b.

RR n3259

88 Charles Pecheur

A.7 Index of Lotos Definitions

AllUserAccept: 71b, 83a, 86¢

Al11UserGeneral: 72, 80a, 82c

A11UserReply: 70b, 75b, 75¢c, 76a, 77d, 79c, 82b, 84b

Answer: 28a, 28b, 47b, 56, 63

Atom: 25a, 25b

BaseId: 23a, 27, 28b, 30b, 33a, 33b, 34, 35b, 37, 38, 39b, 42b, 42c, 43, 44, 45a, 47b, 51,
52, 56, 58b, 63, 65a, 69a, 69b, 70a, 70b, 71a, 71b, 7lc, 72, 73, T4a

Broadcast: 52, 53b, 54, 55, 57, 58a, 58b, 60, 61, 62, 64, 65b, 67, 68, 69a

Cell: 42b

CfcTbl: 33b, 38, 69b

Change: 25b

EnumerateAskall: 57, 69b

GroupKB: 38, 39b, 52, 53a, 53b, 54, 55, 56, 57, 58a, 58b, 60, 61, 62, 63, 64, 65a, 65b, 67, 68

GrpSubmittedTbl: 30b, 38

Id: 23b, 28a, 28b, 30b, 31, 33b, 37, 38, 46¢c, 47a, 47b, 49a, 49¢, 50a, 50b, 52, 53a, 53b, 54,
55, 56, 62, 63, 64, 65a, 65b, 67

IndividualKB: 37, 39b, 45a, 45b, 46a, 46b, 46¢, 47a, 47b, 49a, 49b, 49c¢, 50a, 50b

InitBufGroupKB: 42c

InitGroupKB: 38, 74b, 76b, 77b, 78a, 79a, 80b, 81b, 86a

InitIndividualKB: 37, 74b, 76b, 77b, 78a, 79a, 80b, 81b, 86a

InitQueue: 42c, 74b, 77b, 78a, 79a, 80b, 81b, 83b, 86a

Knowledge: 25b, 38

Message: 28b, 35b, 42b, 42c, 43, 44, 51, 69a, T4a

Packet: 35b

PacketQueue: 35b, 42¢

ParentBase: 34, 37, 38

PendingTbl: 31, 37, 38

Proposal: 25b, 27, 28a, 28b, 31, 45b, 46a, 47a, 53a, 53b, 58a, 60, 62, 68, 71c, 72, 74a

Queue: 42c

Request: 27, 28b, 30b, 31, 33b, 46b, 47a, 49a, 52, 53b, 54, 56, 58b, 62, 63, 64, 68, 70a,
70b, 71a, 71b, 7Tlc, 72, 74a

Ring: 41, 42a

SerializeIndividualKB: 74a, 77b, 78a, 80b, 83b

SignalVal: 30a

SubmittedTbl: 30b, 37, 45a

SubscriberSet: 33a, 38, 69a

UserAccept: T7la

UserAction: 30a, 74a

UserConsistency: 73

UserGeneral: Tlc

UserReply: 70a, 85

INRIA

Specification and Verification of Coj Using LOTOS 89

B Detailed Verification Results

This appendix provides a representative sample of the results obtained from the LoTOS
specification, in the form of diagnostic traces produced by EXHIBITOR. Each sub-section
has the following structure:

Specification Variant: Hierarchy z, Scenario y.
The variant of the specification from which the results are obtained. The numbers z and
y refer to the definitions in Appendix A.

Trace Pattern:

The pattern used to obtain the traces, in EXHIBITOR’s input format.

Results:

**xx sequence found at depth ...

The traces matching the given pattern, as reported by EXHIBITOR.

RR n3259

90 Charles Pecheur

B.1 Dialogue of the Deaf

Specification Variant: Hierarchy la, Scenario 1.1.
One individual and one group base, directly synchronized (no buffering). User registers
then submits a single proposal.

Trace Pattern:

<while> <any>
<deadlock>

Any sequence leading to deadlock.

Results:

*** sequence found at depth 8

<initial state>

"USER !1 !'DOREGISTER !3"

"UP1 !'1 !3 !REGISTER (0, 3)"

"DOWN1 !3 !'1 !NOTIFY (0, ACCEPTX)"

"DOWN1 !3 !'1 !TELL (<>)"

"USER !1 !DOACHIEVE '+ (ASSERT (SQUARE), <>)"

"SIGNAL '3 !'SIGREGISTERED !'1"

"UP1 !1 !3 'ACHIEVE (1, + (ASSERT (SQUARE), <>))"

"USER !1 !DODENY !'REQACHIEVE (+ (ASSERT (SQUARE), <>))"
<deadlock>

A deadlock due to the lack of asynchronism: both bases 1 and 3 are willing to send a
message to each other while not willing to receive. The end of the trace is illustrated on
Figure 5. Five other traces were found (one at depth 4, four at depth 12).

basel base3
doachieve
— = achieve
dodeny
— —jdeny % askall

Figure 5: “Dialogue of the Deaf” deadlock

INRIA

Specification and Verification of Coj Using LOTOS 91

B.2 Unexpected Receptions

Specification Variant: Hierarchy 3, Scenario 3.1.
A three-level hierarchy with one individual and two group bases (resp. 1, 3 and 5). User
registers 1 to 3 and 3 to 5, then submits a single proposal to 5.

Trace Pattern:
<until> [.*SIGNOTINA.=*ERROR.x*]

Find a signotina signal for an error message. signotina reports messages that cannot
be dealt with because the corresponding request cannot be found in table A.

Results:

% sequence found at depth 14

<initial state>

"USER !1 !DOREGISTER !3"

"UP1 !'1 !3 !'REGISTER (0, 3)"

"DOWN1 !3 !1 !NOTIFY (0, ACCEPTX)"

"DOWN1 !3 !'1 !TELL (<>)"

"USER !1 !'DOFORWARD !REQREGISTER (5)"

"SIGNAL !3 !SIGREGISTERED !1"

"UP1 '1 !3 !FORWARD (1, REQREGISTER (5))"

"USER !1 !'DOFORWARD !'REQACHIEVE (+ (ASSERT (WHITE), <>))"
"UP1 !'1 '3 !FORWARD (2, REQACHIEVE (+ (ASSERT (WHITE), <>)))"
"USER !1 !DODENY !REQFORWARD (REQACHIEVE (+ (ASSERT (WHITE), <>)))"
"UP1 !'1 !3 !DENY (2)"

"DOWN1 !3 '1 !'ASKALL (0, REQFORWARD (REQREGISTER (5)))"
"DOWN1 '3 !1 !'ERROR (2)"

"SIGNAL !'1 !SIGNOTINA !'ERROR (2)"

<goal state>

The proposal to base 5 produces an error message from 3, because registration of 3 to
5 is not fulfilled yet. Meanwhile, 1 withdraws its proposal with a deny message and then
wipes it out of its local A table. As shown on Figure 6, the deny and error messages cross
each other so that 1 has lost trace of its request when it receives the error message.

Three further cases, not listed here, were found using the following patterns:

<until> [.*SIGNOTINC.*REPLY.x]
(]

<until> [.*SIGNOTINA.*NOTIFY.x]
(]

<until> [.*SIGNOTINC.*DENY.x]

RR n3259

92 Charles Pecheur

basel base3
doforward
_—=
dodeny UK
\%
error
? o

Figure 6: Unexpected reception

Finally, the following pattern (re-formatted for readability) searches for other cases than
the four previous ones. No matching trace could be found in any of the tested scenarios.

<until> [SIGNAL.*SIGNOTIN.x]
& ~[.*SIGNOTINC.*REPLY.x*]
& ~[.*SIGNOTINA.*ERROR.x*]
& ~[.*SIGNOTINC.*DENY.x*]
& ~[.*SIGNOTINA.*NOTIFY.*]

INRIA

Specification and Verification of Coj Using LOTOS 93

B.3 Knowledge Inconsistency

Specification Variant: Hierarchy 1, Scenario 1.2.
One individual and one group base. User registers then submits two proposals asserting
contradictory atoms assert(white) and assert(black).

Trace Pattern:
<until> [SIGNAL.*SIGSTORED.*FALSE]

Find a sigstored signal with attribute false, indicating an inconsistent update of a
knowledge repository

Results:

*** sequence found at depth 23

<initial state>

"USER !1 !DOREGISTER !3"

"UP1 !1 !3 !'REGISTER (0, 3)"

"DOWN1 !3 !1 !NOTIFY (0, ACCEPTX)"

"DOWN1 !3 !1 !TELL (<>)"

"USER !1 !DOACHIEVE !'+ (ASSERT (WHITE), <>)"

"SIGNAL !3 !SIGREGISTERED !1"

"UP1 !'1 !3 'ACHIEVE (1, + (ASSERT (WHITE), <>))"

"USER !1 !DODACHIEVE !+ (ASSERT (BLACK), <>)"

"UP1 !1 !3 'ACHIEVE (2, + (ASSERT (BLACK), <>))"

"DOWN1 !3 !1 'ASKALL (0, REQACHIEVE (+ (ASSERT (WHITE), <>)))"
"USER !1 !DOACCEPT !'REQACHIEVE (+ (ASSERT (WHITE), <>))"
"UP1 !1 !3 !'REPLY (0, ACCEPTX)"

"DOWN1 !3 !1 'ASKALL (1, REQACHIEVE (+ (ASSERT (BLACK), <>)))"
"DOWN1 !3 !1 !NOTIFY (1, ACCEPTX)"

"DOWN1 !3 !1 !'POOLNOTIFY (0O, ACCEPTX)"

"USER !1 !DOACCEPT !'REQACHIEVE (+ (ASSERT (BLACK), <>))"
"UP1 !1 !3 !'REPLY (1, ACCEPTX)"

"DOWN1 !3 !'1 !TELL (+ (ASSERT (WHITE), <>))"

"SIGNAL !3 !SIGSTORED !+ (ASSERT (WHITE), <>) !TRUE"
"DOWN1 !3 !1 !NOTIFY (2, ACCEPTX)"

"DOWN1 !3 !1 !'POOLNOTIFY (1, ACCEPTX)"

"DOWN1 !3 !1 !TELL (+ (ASSERT (BLACK), <>))"

"SIGNAL !3 !SIGSTORED !+ (ASSERT (BLACK), <>) !FALSE"
<goal state>

RR n3259

94 Charles Pecheur

This trace is summarized in Figure 7. Essentially, both proposals are voted concurrently,
and since base 3 checks the consistency w.r.t. its own repository before starting the vote,
the contradiction is not detected and both end up being added to the repository.

basel base3
doachieve(white)
—_—— A .
doachieve(black) achieve(white)
E————
achieve(black
askall
d t
oaccep —_
eply(accept), y .11
doaccept o
—) reply(accept)
\\\\\\\\gisigstored(true)

!sigstored(false)

Figure 7: Inconsistent knowledge

INRIA

Specification and Verification of Coj Using LOTOS 95

B.4 Hierarchy Inconsistency

Specification Variant: Hierarchy 6, Scenario 6.1.

A three-level hierarchy with an individual base 1, an intermediate group base 3 and two
competing root group bases 5 and 6. The user registers 1 to 3 and then attempts to register
3 to both 5 and 6.

Trace Pattern:

<until> [.*SIGREGISTERED !3]
<until> [.*SIGREGISTERED !3]
<until> "OK"

Find a successfully terminating trace where 3 registers twice.

Results:

*x*x sequence found at depth 40

<initial state>

"USER !1 !'DOREGISTER !3"

"UP1 !'1 !3 !'REGISTER (0, 3)"

"DOWN1 !3 !'1 !NOTIFY (0, ACCEPTX)"

"DOWN1 !3 !'1 !TELL (<>)"

"USER !1 !'DOFORWARD !REQREGISTER (5)"

"SIGNAL !3 !SIGREGISTERED !1"

"UP1 !'1 !3 !FORWARD (1, REQREGISTER (5))"

"USER !1 !'DOFORWARD !'REQREGISTER (6)"

"UP1 !'1 !3 !FORWARD (2, REQREGISTER (6))"

"DOWN1 !3 !'1 'ASKALL (0, REQFORWARD (REQREGISTER (5)))"
"USER !1 !'DOACCEPT !'REQFORWARD (REQREGISTER (5))"
"UP1 !'1 '3 !REPLY (0, ACCEPTX)"

"DOWN1 !3 !'1 !'ASKALL (1, REQFORWARD (REQREGISTER (6)))"
"DOWN1 !3 !'1 !'POOLNOTIFY (0, ACCEPTX)"

"UP2 '3 !5 !'REGISTER (0, 5)"

"DOWN2 !5 '3 !NOTIFY (0, ACCEPTX)"

"DOWN1 !3 !'1 !NOTIFY (1, ACCEPTX)"

"DOWN2 !5 '3 !TELL (<>)"

"SIGNAL !5 !SIGREGISTERED !3"

"DOWN1 '3 '1 !ASKALL (2, REQTELL (<>))"

"USER !1 !DOACCEPT !'REQTELL (<>)"

"UP1 !'1 '3 !REPLY (2, ACCEPTX)"

"USER !1 !'DOACCEPT !'REQFORWARD (REQREGISTER (6))"
"UP1 !'1 !3 !'REPLY (1, ACCEPTX)"

RR n3259

96

Charles Pecheur

"DOWN1 !3 !1 !'POOLNOTIFY (2, ACCEPTX)"
"DOWN1 !3 !1 !TELL (<>)"

"SIGNAL !3 !SIGSTORED !<> !TRUE"
"DOWN1 !3 !1 !POOLNOTIFY (1, ACCEPTX)"
"UP2 !3 !6 !'REGISTER (1, 6)"

"DOWN2 !6 !3 !NOTIFY (1, ACCEPTX)"
"DOWN1 !3 !1 INOTIFY (2, ACCEPTX)"
"DOWN2 !6 !3 !TELL (<>)"

"SIGNAL !6 !'SIGREGISTERED !3"

"DOWN1 !3 !1 !ASKALL (3, REQTELL (<>))"

"USER !1 !DOACCEPT !REQTELL (<>)"

"UP1 !'1 !3 !REPLY (3, ACCEPTX)"

"DOWN1 !3 !1 !'POOLNOTIFY (3, ACCEPTX)"
"DOWN1 !3 !'1 !TELL (<>)"

"SIGNAL !3 !SIGSTORED !<> !TRUE"

" OKII

<goal state>

This long trace is summarized in Figure 8. Again, base 3 checks that it is not already

registered before starting the vote on the registration requests, so both votes can proceed to
completion concurrently.

Other executions of the same scenario leading to deadlocks have also been found. The
shortest one is at depth 26 and results from the same kind of situation.

INRIA

Specification and Verification of Coj Using LOTOS

97

basel
dofwd (reg(5))
— =

dofwd (reg(6))
— =

doaccept
—_—

doaccept
et

RR n3259

fwd(reg(5))

&(reg(@) askall

base3

s
reply(accept), ;.17

register(5)

register(6)

A

Figure 8: Double registration

baseb baseb

sigregistered

-

sigregistered
greg

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

