N

N

Advanced Modelling and Verification Techniques
Applied to a Cluster File System
Charles Pecheur

» To cite this version:

Charles Pecheur. Advanced Modelling and Verification Techniques Applied to a Cluster File System.
RR-3416, INRIA. 1998. inria-00073273

HAL Id: inria-00073273
https://inria.hal.science/inria-00073273
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073273
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Advanced Modelling and Verification
Techniques Applied to a Cluster File System

Charles Pecheur

N° 3416
May 1998

THEME 1

apport
derecherche

Zd I N R I A

RHONE-ALPES

Advanced Modelling and Verification Techniques Applied
to a Cluster File System

Charles Pecheur*

Théme 1 — Réseaux et systémes
Projet VASY

Rapport de recherche n3416 — May 1998 — 55 pages

Abstract:

This report describes the application of elaborated formal modelling techniques and tools
from the CADP toolset for LOTOS to the validation of CFS, a distributed file system. After
a short overview of the LOTOS specification of CFS, we describe the techniques used for
model generation and validation, and their application to CFS. Two original aspects are put
forth: firstly, the model is generated in a compositional way, by putting together separately
generated sub-components; secondly, the extensible, data-aware temporal logic checker XTL
is used to express and validate properties of the system. In particular, an XTL extension pro-
viding richer diagnostics is presented. The full commented LOTOS specification is provided
in appendix.

Key-words: Formal Method, Specification, Model Checking, Distributed File System,
Compositional Generation, Temporal Logic, LOTOS, XTL.

(Résumé : tsuvp)

Short version of this report in Charles Pecheur, “Advanced Modelling and Verification Techniques
Applied to a Cluster File System”, submitted for publication.

* Charles.Pecheur@Qinria.fr

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Teéléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
Télécopie : 04 76 61 52 52 - International; +33 4 76 61 52 52

Techniques avancées de modélisation et de vérification
appliquées 4 un systéme de gestion de fichiers en grappe

Résumé :

Ce rapport relate ’application de techniques et d’outils de modélisation formelle élabo-
rés, appartenant & la boite & outils CADP pour LOTOS, pour la validation du systéme de
fichiers réparti CFS. Aprés un court apercu de la spécification de CFS en LOTOS, nous
décrivons les techniques utilisées pour générer et valider les modéles, et leur application &
CFS. Deux aspects originaux sont mis en évidence : premiérement, le modéle est généré
de maniére compositionnelle, en assemblant des composants générés séparément; deuxiéme-
ment, le vérificateur de logique temporelle XTL, extensible et supportant les données, est
utilisé pour exprimer et valider les propriétés du systéme. En particulier, on présente une
extension de XTL fournissant des diagnostics enrichis. La spécification LOTOS compléte et
commentée est fournie en appendice.

Mots-clé : Méthode Formelle, Spécification, Vérification de Modéles, Systéme de Fichiers
Réparti, Génération Compositionnelle, Logique Temporelle, LOTOS, XTL.

Modelling and Verification of a Cluster File System 3

1 Introduction

The benefits of formal methods for the design of complex distributed systems are now wi-
dely acknowledged. Many formalisms, algorithms and tools have been proposed for formally
describing concurrent applications, expressing their properties and automating their verifi-
cation. Two main approaches have been extensively studied: theorem proving and model
checking. The latter, while applicable only to systems with a finite state space, offers the
advantage of requiring much less participation from the user.

One should not conclude that model checking reduces to writing a specification and
calling the checker, though. The well-known state space explosion is always lurking, and
significant results only come out from the combination of large computing resources, sophis-
ticated tools and skilled formal method experts.

This report illustrates the use of advanced techniques for the modelling and verification
of Crs (Cluster File System) [Fas96], a distributed file system built on top of the ARIAS
shared memory architecture [DHMdP96]. Two original aspects are put forth:

e the use of compositional model generation [FKM93], in order to produce a model that
would have been impossible to generate in a single step, and

e the use of the extensible temporal logic checker XTL [Mat98] and the development of
an XTL extension providing richer diagnostics.

The rest of this first section gives a survey of the LoTos [ISO88] specification language
and the CADP/EUCALYPTUS toolset [Gar96], which have been used in this project. Section 2
presents the Crs system along with its specification, Section 3 describes the compositional
technique used to generate a model from this specification, and Section 4 discusses the
verification task, including the development of an extension for the XTL checker.

1.1 Overview of LOTOS

LoTos is a standardized Formal Description Technique intended for the specification of
communication protocols and distributed systems. Its design was motivated by the need
for a language with a high abstraction level and a strong mathematical basis, which could
be used for the description and analysis of complex systems. As a design choice, LOoTOS
consists of two “orthogonal” sub-languages:

The data part is based on the well-known theory of algebraic abstract data types [Gut77],
more specifically on the ACT ONE specification language [IMRV92]. Data types are
defined using an equational formalism, which we will not present here. Indeed, most
data types of our specification are defined in a higher level language, which is auto-
matically translated into plain ACT ONE [Pec96].

The control part is based on a process algebra, combining the best features of Ccs [Mil89]
and Csp [Hoa85]. A concurrent system is described as a collection of processes inter-
acting by rendez-vous. The behaviour of each process is built compositionally using

RR n3416

4 Charles Pecheur

an algebra of operators (choice, parallel composition, ...) Behaviours can manipulate
data values and exchange them through their interactions.

This report does not assume familiarity with LOTOS from the reader; the few forthcoming
commented LOTOS excerpts should be self-explanatory. Table 1 describes the main LOTOS
operators. Tutorials for LOTOS are available, e.g. [BB88, Tur93|.

stop An inactive behaviour (like 0 in arithmetics).

G !V 7X:S; B Interact on gate G, sending V and receiving a va-
lue of sort S in X, then behave as B (other in-
put/output combinations are possible).

B1 [1 B2 Behave as either B1 or B2, whichever does some-
thing first.

[E] -> B If E is true then behave as B.

B1 |[G1,..,6n]| B2 B1 in parallel with B2, synchronized on gates G1,
, Gn (11| means no synchronization, || means
full synchronization).

hide G1,..,Gn in B make actions of B on gates G1, ..., Gn invisible
from the outside.

exit Successful termination.

Bl >> B2 B1 followed by B2, when B1 terminates success-
fully.

Bi [> B2 Behave as Bl until either B1 terminates or B2 per-
forms its first action; in the latter case B1 is dis-
carded.

P [G1,..,6n] (V1,..,Vm) Call process P, with gate and value parameters G1,
...,Gnand Vi, ..., Vm.

Table 1: Main LOTOS operators

The model (i.e. the meaning) of a LOTOS specification is defined as the graph of all its
possible actions (technically, this kind of graph is called a Labelled Transition System, or
Lts, but we will keep the simpler words “model” and “graph” in this article). Models can be
compared according to different equivalence and refinement criteria. In this study, we use
observational equivalence [Mil89] for minimization, that is, we reduce models into minimal
observationally equivalent ones.

LoTos has been applied to many complex systems such as network services and pro-
tocols [ISO89, L94] but also cryptographic protocols [LBK*96] or hardware architectures
[CGM™96]. A number of tools have been developed for LOTOS, covering user needs in such
various areas as edition, simulation, compilation, test generation and formal verification.

INRIA

Modelling and Verification of a Cluster File System 5

1.2 The EUCALYPTUS/CADP Toolset

All the work reported in this report has been done within the framework of the EUCALYP-
TUS LoToS Toolset [Gar96], an X-Windows based, user-friendly interface federating several
complementary LOTOS tools from different sources. An important part of the EUCALYP-
TUS toolset is CADP (CESAR/ALDEBARAN Development Package) [FGKT96, GIM*97], a
leading edge toolbox dedicated to the formal validation of distributed systems.

CADP offers an integrated set of functionalities ranging from interactive simulation to
exhaustive, model-based verification methods, and includes sophisticated approaches to deal
with large case-studies. In addition to LOTOS, it also supports lower-level formalisms such
as finite state machines and networks of communicating automata. In this case study, the
following CADP tools were used:

e CESAR [GS90] compiles the control part of a LOTOS program into its transition graph.
The data part is translated by the CESAR.ADT compiler [Gar89] into executable C
code, which is used to compute the graph.

e ALDEBARAN [Fer89] is a verification tool for comparing or minimizing graphs with
respect to any of several simulation and bisimulation relations.

e OPEN/CASAR [Gar98| is an open programming interface allowing to explore a graph
in a controlled way. Several CADP tools, such as XSIMULATOR and GENERATOR
described below, are based on this technology. The CA&ESAR compiler can produce
OPEN/CAESAR code allowing on-the-fly execution of a LOTOS specification. EXp.OPEN
is another OPEN/CESAR code producer, giving access to a network of models of com-
municating processes.

e XSIMULATOR is an interactive program for exploring the behaviour of a LOTOS spe-
cification. It allows to walk through the alternative branches of the graph, using back
and forth step-by-step execution.

o GENERATOR performs an exhaustive exploration and generates the complete graph of a
model. Tt thus plays a similar role as CESAR but can be applied to other OPEN/CESAR
sources, such as networks of processes in combination with Exp.OPEN.

e XTL [Mat98] is a programmable temporal logic checker, based on a specialized functio-
nal programming language equipped with primitives for graph exploration. Definitions
of several well-known temporal logics such as ACTL and the modal u-calculus are pro-
vided, and new ones can easily be added. Further details about XTL are given in
Section 4.

The EUCALYPTUS toolbox also contains the APERO data type pre-processor [Pec96].
This compiler provides convenient concise syntax extensions for declaring many common
families of data structures such as records, enumerations, sets, lists, as well as general ML-
style constructor declarations. APERO translates these declarations into standard L.OTOS

RR n3416

6 Charles Pecheur

type definitions, equipped with all the usual associated operations (constructors, selectors,
equality, etc.).

2 Specification of CFS
2.1 Presentation of ARIAS and CFS

ARrias [DHMdAP96] is a shared memory support system implemented as an extension of the
AI1X operating system. It provides a virtual memory among a set of machines, in such a
way that applications share a unique address space. Rather than using a single coherence
protocol that would be expensive and overly restrictive for most applications, ARIAS allows
such protocols to be plugged into the system as specialization modules according to the
needs of specific applications, resulting in better performance. The ARIAS memory space is
composed of fixed size blocks (called zones in ARIAS) that are the smallest units of shared
access.

The Cluster File System (CFS) [Fas96] is a distributed file system built on top of ARIAS,
with the double purpose of validating the ARIAS system itself and experimenting with distri-
buted applications that use shared files as a programming paradigm. The resulting structure
is illustrated in Figure 1, where the shaded areas are not covered by the LOTOS specification.

(generic part) ()

' Aprotocol calls A A
CFS v !
Icoherenc]y] CFS messages Cj
read/write protoco
A ARIAS calls A
\] v ¥
local copy local copy

ARIAS

shared virtual memory space

Figure 1: ARrias and CFs

INRIA

Modelling and Verification of a Cluster File System 7

Several file coherency protocols can co-exist, using different specialization modules. In
practice, four coherency protocols have been implemented in CrS. Among them, the migra-
tory protocol is designed to take full advantage of the ARIAS system and stands out after the
multiple benchmarks described in [Fas96]. The specification and verification work presented
here focuses on that protocol, which is referred to as the “CFs protocol” in the sequel. The
CFs protocol relies on the notion of mastership, inherited from ARIAS: at any time, a master
site owns the reference copy of the block data. Mastership can move between sites during
the lifetime of the block; this accounts for much of the flexibility offered by ARiAS. Every
CFs protocol message goes either from some slave to the master or vice-versa.

2.2 Structure of the Specification

To perform model-based verification, we need to generate a model of finite (and tractable)
size. This puts constraints on the LOTOS specification: for example, the number of parallel
processes must be statically bounded, and choices over infinite ranges are forbidden. Fur-
thermore, various parameters (data ranges, buffer sizes, etc.) are set to minimal values to
keep the size of the model within reachable bounds.

The CFs protocol manages each block of memory independently, so our LOTOS specifi-
cation focuses on the management of a single block (because of this, the block address field
in all interactions never changes and is therefore omitted in the specification). Both the
CFs protocol and the ARIAS service that is used by this protocol are specified. The size
of the system is fixed to three sites: this is both an imposed maximum w.r.t. state space
explosion and a requested minimum w.r.t. the coverage of possible scenarios in the system
(some interesting situations do not occur with only two sites).

Most data types have been defined using the APERO syntax extensions. Besides reducing
the size of data type declarations (82 vs. 433 lines of data type definitions), these notations
are also much more readable, avoid the burden of equational definitions and hide the tech-
nical complications needed to allow the compilation of algebraic data type definitions. The
complete specification (with APERO notations) is about 1000 lines long, and is provided in
appendix at the end of this report.

The specification models the CFs protocol at two different levels of abstraction:

e the process CFS covers the control level, where we consider only the calls to Crs
primitives for acquiring and releasing access to the CFs block;

e the process Complete adds complementary processes to CFS to compose the data level,
where we also take into account access to and modification of the data in the block of
memory itself.

The top-level structure of the resulting specification is shown on Figure 2.

The CFs protocol itself sits at the control level, and is specified for a given site as a
process Site with four gates: cfsreq and cfsans support calls from the applications, as
request /answer pairs of events, and send and rcv support emission and reception of CFs
protocol messages through the underlying ARIAS system. At this level, the behaviour of

RR n3416

8 Charles Pecheur

(sitel) (site2) (site3)

| |
| |
| |
| |
| OutputCell OutputCell OutputCell !

|
: .
| |
| |

|
|
|
|
|
| Memory
|
|
|
|

o mmm m e e m e — -

Figure 2: Structure of the LoTOS specification of CFs

ARIAS is reduced to a communication facility, described in the process Medium. For modelling
purposes, the buffering capacity is limited to one message per sending site: Medium is made
of single-slot queues OutputCell put in parallel, one per site.

The data level part in process Memory holds the local copies of the block at each site and
applies read and write events on them. It also observes the messages passing through the
send gate and propagates master copies accordingly, i.e. following any readok or writeok
message. The size of the model will depend on the cube of the range of possible block
values (since there are three sites and thus three local copies): this range has therefore been
reduced to only two values.

To complete the picture, a process User for each site enforces the correct use of CFs
synchronization primitives: for example, write events are only allowed between beginwrite
and endwrite CFs calls (this is an abstraction of the shaded upper layer of CFs on Figure 1).

Figure 3 gives an illustration of how these different parts work together.

INRIA

Modelling and Verification of a Cluster File System 9

User 1 User 2 User 3

A A A 4 readiwrite

CFScalls y v v
Sitel Site 2 Site3

\i \i \i

Figure 3: ARIAS service for CFs

2.3 The CFS Protocol

The source CFs definition [Fas96] describes the protocol as an input-output state automaton.
The definition of process Site essentially captures that automaton, although several rounds
of discussions with the designers were needed to reach the level of accuracy needed for
formal specification. For illustration, Figure 4 shows the automaton corresponding to the
specification: !m (resp. ?m) stands for emission (resp. reception) of m, CFs calls are in
bold (vs. CFs messages), and {m} denotes a repetition of m. Deadlocks detected in early
models revealed several missing cases in the original description, drawn as dotted edges.

In the LOTOS specification of CFs, the state variables of the protocol become parameters
of the LoTOs process. The state itself is also encoded as a parameter (this produces smaller
models than defining different mutually recursive processes for each state). The body of
Site is a non-deterministic choice between reception of CFS requests and messages. For
example, the reception of a readok message is specified as:

process Site [cfsreq,cfsans,send,rcv]

(s : Site, state : State, ...) : noexit :=

.0« (* ... or *)

[state eq waitread] -> (x if in state waitread then *)

rcv !s !readok !s; (* receive readok(s) *)

cfsans !s !read; (* answer pending read *)
Site [cfsreq,cfsans,send,rcv]

(s, valid, ...) (* goto state valid *)

)y o ... (*x or ... *)

endproc

RR n3416

10 Charles Pecheur

?Invalidates ~ \ ?Invalidater ~ ~\

7Read|
?Invalidate

'.7 ReadOK
IReaditq eitRead IRead

eginWrite

Read

I'WriteOK

{!Invalidate ?BeginWrite

?Invalidate
VR

'WriteOK
{!'Invalidate}
{'ReadRq}
{I'WriteRq}

IWriteOK ?Invalidate

f : s
!BeginWrite \ % 7ReadRq

- ?EndWritg/D
N - 1End Write Writin

{'ReadOK}

'ReadOK

7BeginWrite TBeginWrite
!Read {!Invalidate}
?WriteRq

?Read

Figure 4: State of a block in the CFS protocol

3 Model Generation

The resulting LOTOS specification of CFrs has a finite model, but is too complex to be
compiled in a monolithic way using available tools and computers. Indeed, early attempts
on the control part alone produced a (essentially unusable) model with 2.7 million states and
9.2 million transitions. Instead of this, we used a divide-and-conquer approach, compiling
sub-components of the system separately before combining them together, while minimizing
each intermediate model before using it. This section explains this compositional technique
and discusses its qualities and limits.

3.1 Tools for Compositional Model Generation

Compositional generation can be handled in CADP through the Exp.OPEN tool. EXp.OPEN
takes as input a LoTo0s-like behaviour expression using only parallel and hiding operators,
describing a network of communicating automata. It allows the exploration of the resulting
model by any OPEN/CZESAR tool. In particular, GENERATOR can be used to produce the ex-
plicit representation of that model. Concretely, this appears as a single program invocation,
in which object code produced by EXp.OPEN is linked with library code for GENERATOR and
executed. Using this technique, compositional generation is obtained through the following
steps:

INRIA

Modelling and Verification of a Cluster File System 11

1. generate the model for each component of the system using CASAR and minimize it
(modulo observational equivalence) using ALDEBARAN,

2. combine some components using Exp.OPEN, produce the combined graph with GE-
NERATOR and minimize it using ALDEBARAN,

3. repeat the previous step until obtaining the model of the whole system.

ALDEBARAN is also able to handle networks of communicating automata, merging the
combination and minimization phases. However, usage has shown that using Exp.OPEN and
GENERATOR and then minimizing the resulting graph with ALDEBARAN is more efficient,
in both terms of memory and time.

The delicate part of compositional generation, however, is to decide where to cut the
whole system into separate components and in which order to combine them. Indeed, two
interacting parts P||@ generally strongly constrain each other’s behaviour, and generating
P or () separately can produce a much larger graph than P||Q itself, or even an infinite one,
thus compromizing the approach.

To overcome this, a solution is to synchronize P with an environment Ep, so that
P||Ep produces a smaller model that can be substituted for P. This is sound provided that
the substitution does not modify the global model. In turn, this is guaranteed if Ep is a
conservative approximation of the rest of the system as seen from P, i.e. if Ep allows all
executions that P can go through as part of the whole system.

Let us mention that CADP provides a tool called PROJECTOR [KM97] that implements
a closely related principle and is even able to control the validity of the environment Ep.
However, PROJECTOR loops infinitely on some components of the CFs model and thus could
not be used here.

3.2 Generation of a Model of CFS

From the specification depicted on Figure 2, a complete model of the management of a single
CFs block has been generated compositionally, using environments to reduce the initial
sizes of processes User and OutputCell. Besides models for Complete and its components,
including CFS, The following models have also been generated:

Abstract = Complete where only gates read and write remain visible. This gives a very
abstract view in terms of values read and written in memory, while assuming (because
of User processes) that CFs primitives are called appropriately.

Abstract2 = two concurrent instances of Abstract, modelling read/write access to two
different blocks. An “address” attribute is added to the events of each instance to
distinguish them.

Table 2 gives the sizes of the different components and the generation and minimization
times (in seconds, on a Sun Ultra-1 workstation).

RR n3416

12 Charles Pecheur

Table 2: Model generation statistics

process | gen. | min. | #states | #trans |
Site || 5.0 0.1 75 130
EnvSite (x3)
OutputCell || 4.5 <0.1 13 30
Env0OutputCell (x3)
Medium 3.8 3.1 2,197 15,210
CFS 8.0 79| 11,031 | 34,728
User (x3) 2.0 0.1 6 14
Memory 19.9 57.5 8 504
UserMemory 9.5 13.7 1,728 | 103,680
Complete 1:57.7 2:39.7 66,324 | 350,532
Abstract — | 5:07:53.2 14 90
Abstract2 2.9 2.7 196 2,520

It is worth noting that our simplifications (three sites, single-slot communication chan-
nels, two block values) affect dimensions in the system itself only, not the behaviour of its
environment (the correlation imposed by User processes is part of the definition of CFs).
In this sense, we obtain a general model of the system, in contrast with some of our other
previous experiments [Pec97| in which only restricted and finite scenarios have been model-
led.

The model obtained for process Abstract is particularly interesting: it is a highly sym-
metrical graph with only 14 states, shown in Figure 5 (labels are abbreviated for clarity: R
(resp. W) Is v stands for read (resp. write) value v from site s). In states 0 and 11, all
local copies have the same value. The three outgoing edges correspond to any of the sites
changing that value, and the following internal transitions show the propagation of the new
value to other sites.

From a technical point of view, the two copies of Abstract combined to produce
Abstract2 were obtained by relabelling the Abstract model using the UNIX sed utility.
This solution is much cheaper than generating each copy separately from the source LO-
TOS process.

A fully non-synchronized composition as in Abstract2 is hit headlong by exponential
inflation, however: for n independent components, the number of states is S, = S1™ and
the number of transitions is T}, = n.T}.51""'. According to this, combining two concurrent
instances of Complete would go far beyond available computing resources.

INRIA

Modelling and Verification of a Cluster File System 13

Figure 5: Model of the Abstract process

4 Verification

The properties of the CFs protocol have been expressed and evaluated as temporal logic
formulas, using the XTL tool. This section gives an overview of XTL, describes how temporal
logic operators have been re-defined to obtain more detailed evaluation results, and discusses
the verification of the CFs specification using XTL.

4.1 Overview of XTL

Though primarily intended for evaluation of temporal logic formulas, X TL is in full generality
a compiler for a functional language applied to a labelled transition system. The XTL
language is equipped with data types for states, transitions and labels, and sets thereof, and
functions for manipulating them (e.g. initial state, incoming and outgoing transitions of a
state, source and target states of a transition). For example, the following XTL expression
computes the set of all non-deterministic states:

{ S : state where
exists T1 : edge among out(S), T2 : edge among out(S) where

RR n3416

14 Charles Pecheur

(T1 <> T2) and (label(T1) = label(T2))
end_exists

}

It can also do pattern matching on the labels of transitions and thus access the individual
attributes of structured LoTOS events. The following example searches for some transition
on G with integer attribute larger than 10:

exists T : edge where
T ->[G ?X : integer where X>10]
end_exists

Results are reported using a side-effect print function. Temporal operators are defined
as functions and/or macros using these primitives; definitions for standard logics (e.g. HML,
ACTL, modal mu-calculus) are provided as XTL libraries. We have used (a fragment of)
the ACTL logic [NV90], which has four primitive temporal operators (besides usual boolean
connectors):

F = EXAF | AXAF | E[F 4U F] | A[F U F]

The following table gives their meaning, their XTL syntax, and introduces a few other
derived operators used in this report:

| XTL syntax | math syntax | definition | meaning |
EX_A(A,F) EXaF (primitive) Some path does an A step that
reaches F'.
AX_A(A,F) AXsF (primitive) All paths do an A step that reaches
F

EU_A(F,A,G) E[F 4UG] (primitive) Some path stays in F' through A
steps until it reaches G.

AU_A(F,A,G) A[F 4UG] (primitive) All paths stay in F through A steps
until they reach G.
Dia(A,F) (A)F EX4F Some A step reaches F.
Box(A,F) [A]lF —EX4—F All A steps reach F.
EF_A(A,F) EFAF E[tt AU F| Some A path reaches F'.
EF(F) EFF EF.F Some path reaches F'.
AG_A(A,F) AGaF -E[tt saU—F] | All A paths stay in F'.
AG(F) AGF AGuF All paths stay in F'.

4.2 Generating diagnostics in XTL

The standard libraries provided with XTL evaluate temporal operators by computing their
denotational semantics, i.e. a temporal formula produces the set of states that satisfy it. For
example, the EX4 operator, whose semantics is

[EXAF] ={s|3s s .ac Ans €[F]}

is defined in the standard XTL library as

INRIA

Modelling and Verification of a Cluster File System 15

def EX_A (A : labelset, F : stateset) : stateset =
{ S : state where
exists T : edge among out(S) in
(label(T) among A) and (target(T) among F)
end_exists

}
end_def

This approach gives a linear complexity w.r.t. the size of the formula, but provides no
justification of why the computed states satisfy the formula. For example, when some state
s satisfies EX4F', we would like to exhibit a transition s -2 &' where @ is in A and s’
satisfies F. More generally, we seek a more sophisticated evaluation method that produces
ezplanations [Ras91]: the evaluation of a temporal formula F' on a state s

e evaluates whether F' holds on s, and

e prints out a trace from s that confirms the result whenever possible.

Apparently this turns formulas into predicates over states, and thus temporal operators
into functions over predicates, which would require a higher-order language. Nevertheless, a
similar effect can be achieved thanks to the availability of macros in XTL. We turn formulas
into open boolean expressions with a free variable CURRENT containing the current state, and
operators into macros. For example, EX 4 becomes

macro EX_A (A, F) =
if exists T : edge among out (CURRENT) in
(label(T) among A) and
(let CURRENT : state = target(T) in (F) end_let)
end_exists
then do(print(T), true)
else false
end_if
end_macro

Assuming CURRENT contains some state s, T ranges over transitions s — s’ such that
a is in A and s’ satisfies F. The let construct binds (a fresh incarnation of) CURRENT to s')
before evaluating F. The use of macros is essential: a function would evaluate F in the calling
context instead, losing the opportunity to re-bind CURRENT. do(a,z) is a macro call that
performs action a then returns z.

The other basic macro implements E[F' 4U G]. The XTL code uses general iteration
operators and will not be detailed here. In summary, the macro EU_A(F,A,G) performs a
breadth-first search from CURRENT for a state that satisfies G through edges that match F
and A, and stores the search tree. When a successful state is reached, it follows and prints
a path through the search tree from that state back to the start state.

Since the search is breadth first, a shortest path is reported. This is a very useful
property in practice, because facilitates the interpretation of the diagnostic: shortest paths
contain the minimal sequence of events leading to the obtained result, whereas arbitrary

RR n3416

16 Charles Pecheur

paths may go through events that are irrelevent to the result being diagnosed. Combining
several breadth-first searches does not necessarily result in the shortest overall trace, though.

All other operators can be defined in terms of (a slight generalization of) these two
magcros. In particular, since we work on finite models, infinite traces always end in circuits,
which can be found using the following macro:

macro LOOP_A (F,A) =
let MARK : state = CURRENT in
(F) and EX_A(A, EU_A(F, A, CURRENT = MARK))
end_let
end_macro

The body of LOOP_A keeps the start state in MARK, then searches for a path of at least
one A step that stays in F' and comes back to MARK.

Some evaluations of temporal formulas have no useful diagnostic trace: for example, if
EXAF does not hold in s, it means that all traces fail to reach F' through an A step, so
all outgoing edges from s should belong to the diagnostic. Such diagnostics generate huge
output with little information; we do not attempt to produce them. In particular, ACTL
operators come in pairs, performing dual quantification over traces: E operators (i.e. EX
and E[U]) search for the existence of one path satisfying certain criteria. Accordingly,
the implementation of these operators will report that path as a diagnostic when the result
is positive, but remain silent on negative results. Conversely, A operators will provide a
diagnostic only on negative results. Nested E (or A) operators will produce consecutive
pieces of a larger path. Conversely, an A nested inside an E should and will remain silent in
all cases. A general discussion this issue can be found in [Ras91].

All diagnostic traces are produced “on the fly”, that is, as soon as the XTL operator
obtains the corresponding result. Because of this, the trace has to be printed backwards,
since more deeply nested operators, which produce further parts of the trace, necessarily
obtain their result first. Doing otherwise would require to store the trace and process it
afterhand, which is currently not possible: XTL only supports sets (vs. lists) of edges,
which are not adequate in to store traces (which may contain loops in all generality). This
also restricts diagnostics to a single trace: for example, producing two diagnostic traces for
conjunctive formulas F' A G (one for F and one for G) would require to store the first one
until a second one is obtained.

The generation of diagnostics adds a cost, in both terms of memory and time: since all
operators are macros, formulas expand into big XTL expressions, which can stretch the XTL
compiler to its limits. The linear complexity is also lost: n nested EU_A will produce n nested
breadth-first searches, with an exponential worst-case complexity O(k™), where k is the size
of the model. This is the price to pay to obtain diagnostic traces within the current XTL
implementation. Things can be improved by pre-computing sub-formulas that will never be
traced, although this requires a finer analysis from the user.

On the other hand, because everything gets expanded into a single expression, bound va-
riables can be used in nested sub-formulas. This allows to capture and refer to intermediate
states in the exploration, as illustrated in the LOOP_A macro above, and even more interes-

INRIA

Modelling and Verification of a Cluster File System 17

tingly to propagate attribute values, allowing to express things such as “any message sent is
eventually received”. The verification of CFs below shows the usefulness of this possibility.

4.3 Properties of CFS

Besides generic properties such as absence of deadlocks and non-determinism, our verification
work focuses on the read/write coherency properties of the CFs protocol. These properties
are expressed at the data level, in terms of events on gates read and write.

We proceed in two steps. First the formulas are evaluated on the Abstract model, where
only the concerned gates are visible. The evaluation is fast since this model is very small.
However the diagnostic traces are not informative because all the inner workings of the
protocol have been abstracted. The interesting formulas are then evaluated again, this time
on the Complete model. This takes longer but provides fully detailed diagnostic traces.

Since there is no CFs call for ending a read session, it was expected that the read/write
coherency is rather loose. This coherency was not formally expressed at the start of this
study, though, so the work consisted as much in determining the expected properties as in
verifying them.

The following nine properties have been expressed and evaluated (the outcome of the
evaluation is shown in parentheses):

1. Global Liveness: there is no global deadlock (holds).

AG(
out (CURRENT) <> empty
)

2. Determinism: no state has non-deterministic transitions (fails).

AG(
not(
exists
T1 : edge among out(CURRENT), T2 : edge among out(CURRENT)
where
(T1 <> T2) and (label(T1) = label(T2))
end_exists
))

3. Local liveness: at any time, all sites can eventually read and write (holds).

AG(
EF(Dia(READ !SITE1 _, true)) and
EF(Dia(READ !SITE2 _, true)) and
EF(Dia(READ !SITE3 _, true)) and
EF(Dia(WRITE !SITE1 _, true)) and
EF(Dia(WRITE !SITE2 _, true)) and
EF(Dia(WRITE !SITE3 _, true))

RR n3416

18 Charles Pecheur

4. Atomic coherency: if no write occurs inbetween,

4a. two different sites always read the same value (fails).

AG(
Box(READ 7S1:Site 7Vi:Val,
AG_A(not(WRITE _ _),
Box(READ 7S82:Site 7V2:Val where S1<>S2, Vi1=V2)
))

4b. a single site always reads the same value (fails).

AG(
Box(READ 7S1:Site ?7Vi:Val,
AG_A(not(WRITE _ _),
Box(READ 7S82:Site 7V2:Val where S1=52, V1=V2)
ADED]

4c. if one site writes a value, another site will always read that value afterwards
(fails).

AG(
Box(WRITE 7S1:Site 7?7Vi:Val,
AG_A(not(WRITE _ _),
Box(READ 782:Site 7V2:Val where S1<>82, V1=V2)
))

4d. if one site writes a value, the same site will always read that value afterwards
(holds).

AG(
Box(WRITE 7S1:Site ?Vi:Val,
AG_A(not(WRITE _ _),
Box(READ 7S2:Site ?7V2:Val where S1=S2, Vi=V2)
)))

5. Propagation of values: assuming a fair execution, if one site writes a value and no one
writes inbetween, all sites will eventually read that value afterwards (holds).

AG(
Box(WRITE 7S1:Site ?Vi:Val,
AG_A(not (WRITE _ _),
EF_A(not(WRITE _ _), Dia(READ !SITE1 !V1, true)) and
EF_A(not(WRITE _ _), Dia(READ !SITE2 !V1, true)) and
EF_A(not(WRITE _ _), Dia(READ !SITE3 !V1, true))
)))

According to [QS83], we express the fairness assumption using the AG4EF4F com-
bination, which means: it is always possible to eventually reach F while staying on
A paths, or yet, all fair executions of A paths will eventually reach F. Without the
fairness assumption, we would have written AF 4 F instead (= A[tt 4U F)).

INRIA

Modelling and Verification of a Cluster File System 19

6. Sequential consistency: if one site writes a value, no one writes inbetween, and another
site reads that value, it cannot read another value afterwards (holds).

AG(
Box(WRITE ?7S1:Site 7Vi:Val,
AG_A(not(WRITE _),
Box(READ 7S2:Site !V1,
AG_A(not (WRITE _ _),
Box(READ !S2 ?V2:Val, Vi=V2)
VADEDEDED)

Compilation and evaluation of all nine formulas on the Abstract model takes 93 seconds
of CPU time (on a Sun Ultra-1). As expected, evaluation on the Complete model takes
much longer: 273 seconds and 52490 seconds (more than 14 hours) for properties 2 and 4b
to report diagnostic traces of length 32 and 21, respectively. The trace produced for formula
4b follows, as an illustration. The transitions s — s’ are displayed as triples (s, a, s'), where
s and s’ are given as internal state numbers.

20 (4580, "READ !SITE2 !VAL2", 4580)
Box(A, F) is FALSE

19 (474, "CFSANS !SITE2 !BEGINWRITE", 4580)

18 : (45433, "RCV !SITE2 !WRITEOK !SITE2", 474)

17 (296, "SEND !SITE1 !WRITEOK !SITE2", 45433)

16 (48817, "RCV !SITE1 !WRITERQ !SITE2", 296)

15 (49464, "SEND !SITE2 !WRITERQ !SITE2", 48817)

14 (33775, "CFSANS !SITE1 !ENDWRITE", 49464)

13 (64972, "CFSREQ !SITE2 !BEGINWRITE", 33775)

12 (46594, "RCV !SITE2 !INVALIDATE !SITE2", 64972)

11 (47225, "CFSREQ !SITE1 !ENDWRITE", 46594)

10 (900, "SEND !SITE1 !INVALIDATE !SITE2", 47225)
AG_A(A, F) is FALSE

9 : (900, "READ !SITE2 !VAL1i", 900)

Box(A, F) is FALSE

8 (884, "WRITE !SITE1 !VAL2", 900)

7 (48772, "CFSANS !SITE1 !BEGINWRITE", 884)
6 (37290, "CFSANS !SITE2 !'READ", 48772)

5 (49238, "CFSREQ !SITE1 !BEGINWRITE", 37290)
4 (369, "RCV !SITE2 !'READOK !SITE2", 49238)
3 (308, "SEND !SITE1 !'READOK !SITE2", 369)

2 (172, "RCV !SITE1 !READRQ !SITE2", 308)

1 (24, "SEND !SITE2 !READRQ !SITE2", 172)

0 : (0, "CFSREQ !SITE2 !READ", 24)
AG(F) is FALSE
Failure.

We use the possibility to bind and use attribute values to express properties 4a to 4d,
5 and 6 in their full generality, each as a single formula. For example, in property 4a, the
variables S1, V1, S2 and V2 are used to capture and compare the sites and values of two
consecutive READ events. Without this possibility, we would have had to repeat the formula
for all possible combinations of values of these variables.

Let us now comment some evaluation results:

RR n3416

20

Charles Pecheur

e Non-determinism is not a failure of the protocol but rather a consequence of the

abstraction level of its LOTOS specification: diagnostic traces for property 2 show that
the non-deterministic transitions correspond to possible reception of the same message
from two different sources, a perfectly legal situation in the protocol.

Failure of properties 4a, 4b and 4c is not surprising, since this kind of atomic cohe-
rency is quite strong and the protocol was known to have loose read synchronization
mechanisms.

Property 6 is more characteristic of typical distributed memory systems. It is related to
the notion of sequential consistency [Mos93], which requires that events in the system
are seen in the same order on all sites, though the time scales can be stretched or
shifted from one site to another. In essence, property 6 captures the fact that values
are read in the order in which they are written. This is even stronger than sequential
consistency, which would allow two unrelated writes on different sites to be seen (at
all sites) in the opposite order than that in which they really occurred.

If several memory blocks are considered, however, sequential coherency does no longer

hold. This is illustrated on model Abstract?2 using the following property:

7. If one site writes values in two blocks in some order (and no other write occurs inbet-

ween), another site cannot read the written value in the second block then fail to read
the written value in the first block afterwards.

AG(
Box(WRITE 7A1:Addr 7S1:Site ?7Vi:Val,
AG_A(not (WRITE _ _),
Box(WRITE ?7A2:Addr !S1 7V2:Val,
AG_A(not (WRITE _ _),
Box(READ !'A2 7S2:Site !V2,
AG_A(not(WRITE _ _),
Box(READ !A1 182 7V3:Val, V1i=V3)
VD EDEDEDEDED)

Property 7 is implied by sequential consistency and is not satisfied by Abstract2: intui-

tively, writes to different blocks can propagate at different speeds. CFs is thus sequentially
consistent at the block level but not at the file level.

5

Conclusions

Although the LoTOS specification of CFS has a modest size, it produces excessively large
models if processed in a straightforward manner. The modelling and verification work
presented here illustrates how sophisticated tools can be used to achieve significant results
in such complex cases.

INRIA

Modelling and Verification of a Cluster File System 21

Strictly speaking, the restrictions and simplifications needed to obtain a model of trac-
table size restrict the generality of the results we obtain. In this sense, model checking can
be considered as a (very powerful) debugger, that is, a tool to find problems rather than
prove their absence. In practice though, is is reasonable to expect most properties to be
stable w.r.t the size of the system.

Beyond the validation of the CFs protocol, this case study has also demonstrated the
practical applicability and usefulness of two technologies for dealing with complex specifica-
tions and supported by the CADP toolset:

e Using ALDEBARAN and OPEN/CESAR technology to generate and compose models
of different components of the system, we have been able to build up a model for
a complete system that would have been impossible to produce in a single LoTOS
compilation.

e CFs properties have been expressed and evaluated using the XTL temporal logic che-
cker, with two important advantages. Firstly, XTL supports data, so that properties
about values exchanged in the system have been conveniently expressed. Secondly,
the XTL language is extensible, so that we have been able to define new temporal
operators that produce execution traces to illustrate their results.

[Mat98] provides all the technical basis for the next version of XTL which will, hopefully,
allow properties to be expressed even more conveniently and evaluated even more efficiently.

6 Acknowledgements

This study has been carried in close collaboration with both AR1As/CFs developers and
CADP tool designers. In particular, we would like to mention Thierry Jacquin and Daniel
Hagimont on the former side, Hubert Garavel and Radu Mateescu on the latter. Many
thanks too to some of them for their judicious comments on this text. Norman Ramsey’s
NOWESB literate programming system has been used to write the LOTOS specification. AI1x
is a trademark of IBM Corporation.

RR n3416

22

Charles Pecheur

References

[BBSS]

[CGM+96]

[DHMdP96]

[dMRV92]

[Fas96]

[Fer89]

[FGK*96]

[FKMO93]

Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification
Language LOTOS. Computer Networks and ISDN Systems, 14(1):25-29, Ja-
nuary 1988.

Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and
Ferruccio Zulian. Specification and Verification of the PowerScale Bus Ar-
bitration Protocol: An Industrial Experiment with LOTOS. In Reinhard
Gotzhein and Jan Bredereke, editors, Proceedings of the Joint International
Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification
FORTE/PSTV’96 (Kaiserslautern, Germany), pages 435-450. IFIP, Chapman
& Hall, October 1996. Full version available as INRIA Research Report RR-
2958.

Pascal Dechamboux, Daniel Hagimont, Jacques Mossiére, and Xavier Rous-
set de Pina. The Arias Distributed Shared Memory: an Overview. In 28rd
Intl Winter School on Current Trends in Theory and Practice of Informatics,
volume 1175 of Lecture Notes in Computer Science, 1996.

Jan de Meer, Rudolf Roth, and Son Vuong. Introduction to Algebraic Speci-
fications Based on the Language ACT ONE. Computer Networks and ISDN
Systems, 23(5):363-392, 1992.

Jean-Philippe Fassino. Utilisation d’une mémoire virtuelle répartie pour le
support d’un systéme de fichiers réparti. DEA, Université Joseph Fourier, Gre-
noble, June 1996.

Jean-Claude Fernandez. ALDEBARAN: A Tool for Verification of Communi-
cating Processes. Rapport SPECTRE C14, Laboratoire de Génie Informatique
— Institut IMAG, Grenoble, September 1989.

Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu,
Laurent Mounier, and Mihaela Sighireanu. CADP (CESAR/ALDEBARAN
Development Package): A Protocol Validation and Verification Toolbox. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Confe-
rence on Computer-Aided Verification (New Brunswick, New Jersey, USA),
volume 1102 of Lecture Notes in Computer Science, pages 437-440. Springer
Verlag, August 1996.

Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic Equi-
valence Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop
on Computer-Aided Verification (Heraklion, Greece), volume 697 of Lecture
Notes in Computer Science. Springer Verlag, June 1993.

INRIA

Modelling and Verification of a Cluster File System 23

[Gar89]

[Gar96]

[Gar9g]

[GIM*97]

[GS90]

[Gut77]

[Hoa85]
[1SO88]

[1SO89]

[Jac]

RR n3416

Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T.
Vuong, editor, Proceedings of the 2nd International Conference on Formal
Description Techniques FORTE’89 (Vancouver B.C., Canada), pages 147-162.
North-Holland, December 1989.

Hubert Garavel. An Overview of the Eucalyptus Toolbox. In Z. Brezo¢nik and
T. Kapus, editors, Proceedings of the COST 247 International Workshop on
Applied Formal Methods in System Design (Maribor, Slovenia), pages 76-88.
University of Maribor, Slovenia, June 1996.

Hubert Garavel. OPEN/CAESAR: An Open Software Architecture for Verifi-
cation, Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of
the First International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems TACAS’98, Lecture Notes in Computer Science,
Berlin, March 1998. Springer Verlag. Full version available as INRIA Research
Report RR-3352.

Hubert Garavel, Mark Jorgensen, Radu Mateescu, Charles Pecheur, Mihaela
Sighireanu, and Bruno Vivien. CADP’97 — Status, Applications and Perspec-
tives. In Ignac Lovrek, editor, Proceedings of the 2nd COST 247 International
Workshop on Applied Formal Methods in System Design (Zagreb, Croatia),
June 1997.

Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS
Specifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Procee-
dings of the 10th International Symposium on Protocol Specification, Testing
and Verification (Ottawa, Canada), pages 379-394. IFIP, North-Holland, June
1990.

J. Guttag. Abstract Data Types and the Development of Data Structures.
Communications of the ACM, 20(6):396-404, June 1977.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, Interna-
tional Organization for Standardization — Information Processing Systems —
Open Systems Interconnection, Genéve, September 1988.

ISO/IEC. LOTOS Description of the Session Protocol. Technical Report 9572,
International Organization for Standardization — Open Systems Interconnec-
tion, Genéve, 1989.

Thierry Jacquin. Le protocole de cohérence mémoire de CFS. unpublished
notes.

24

Charles Pecheur

[KM97]

[L94]

[LBK*96]

[Mat9g]

[Mil89]
[Mos93]

[NV90]

[Pec96]

[Pec97]

[Qs83]

[Ras91]

Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Genera-
tion from Lotos Programs. In Ed Brinksma, editor, Proceedings of TACAS’97
Tools and Algorithms for the Construction and Analysis of Systems (Univer-
sity of Twente, Enschede, The Netherlands), volume 1217 of Lecture Notes in
Computer Science, Berlin, April 1997. Springer Verlag. Extended version with
proofs available as Research Report VERIMAG RR97-01.

Luc Léonard. The LOTOS Specification of the Enhanced Transport Service.
In The OSI95 Transport Service with Multimedia Support, pages 239-244 and
398-515. Springer Verlag, 1994.

Guy Leduc, Olivier Bonaventure, Eckhart Koerner, Luc Léonard, Charles Pe-
cheur, and Didier Zanetti. Specification and verification of a TTP protocol
for the conditional access to services. In Proceedings of 12th J. Cartier Work-
shop, Formal Methods and their Applications: Telecommunications, VLSI and
Real-Time Computerized Control System, Montreal, Canada, October 1996.

Radu Mateescu. Vérification des propriétés temporelles des programmes paral-
léles. Thése de Doctorat, Institut National Polytechnique de Grenoble, April
1998.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

David Mosberger. Memory Consistency Models. Operating Systems Review,
27(1):18-26, 1993.

R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Tran-
sition Systems. In Proceedings Ecole de Printemps on Semantics of Concur-
rency, volume 469 of Lecture Notes in Computer Science, pages 407-419. Sprin-
ger Verlag, 1990.

Charles Pecheur. Improving the Specification of Data Types in LOTOS. Docto-
rate thesis, University of Liége, November 1996. Collection of Publications of
the Faculty of Applied Sciences, Nr 171.

Charles Pecheur. Specification and Verification of the CO4 Distributed Know-
ledge System Using LOTOS. In Michael Lowry and Yves Ledru, editors, Pro-
ceedings of the 12th IEEE International Conference on Automated Software
Engineering ASE-97 (Incline Village, Nevada, USA), November 1997. Exten-
ded version available as INRIA Research Report RR-3259.

Jean-Pierre Queille and Joseph Sifakis. Fairness and Related Properties in
Transition Systems — A Temporal Logic to Deal with Fairness. Acta Informa-
tica, 19:195-220, 1983.

Anne Rasse. Error diagnosis in finite state systems. In Proceedings of CAV’91,
number 575 in Lecture Notes in Computer Science. Springer Verlag, 1991.

INRIA

Modelling and Verification of a Cluster File System 25

[Tur93] Kenneth J. Turner, editor. Using Formal Description Techniques — An Intro-
duction to ESTELLE, LOTOS, and SDL. John Wiley, 1993.

RR n3416

26a

26b

26 Charles Pecheur

Specification of the CFS coherency protocol in LOTOS

A Introduction

This document contains the LOTOS specification of the CFs coherency protocol, presented
in a litterate programming style. The specification covers access to a single block of a CFS
file (a zone in CFS terminology), and describes both the CFS coherency protocol (see process
Site) and the real transfer and access to file data (see process Memory).

Notational Convention The full LOTOS code is provided, in the form of labelled chunks
like the following sample!:

(sample 26a)=

(* ... some LOTOS text here ... *)

A chunk may contain references to other chunks, to be interpreted as textual inclusion:

(other sample 26b)=

(x ... %)
(sample 26a)
(k... %)

The LoTos language is officially defined by the ISO standard 8807 [ISO88]. Tutorials
can be found in [BB88, Tur93].

Model Generation This specification is intended for model-checking using the CADP
validation tools [Gar96]. This has some consequences in the way it is written:

e To limit state space explosion, data types are kept as small as possible. In particular,
small sets of constants are often used to model potentially large data domains.

e The behaviour part has a bounded synchronization structure (no recursion over paral-
lelism), and the number of concurrent processes is kept to a minimum.

o Equations are written assuming sequential evaluation (i.e. the first applicable equation
is applied). This often allows a drastic reduction of the number of equations, but
relies on the particular evaluation strategy used by CADP. It is not to be interpreted
according to the standard algebraic semantics of LOTOS.

1This is produced automatically using N. Ramsey’s Noweb literate programming system.

INRIA

27a

Modelling and Verification of a Cluster File System 27

Data Type Syntax Extensions The APERO syntax extensions [Pec96] are used to shor-
ten and clarify the definitions of data types. These notations are not standard LoTOS;
a translator is used to expand them into plain LoTos data type definitions (taking into
account the requirements of CADP).

B Version History

Version 1 First version, based on the automaton found in [Fas96], p. 52, plus [Jac].
Describes the synchronization part of different sites for one block (actual memory transfer
is not covered). Different control states are modelled as different LOTOS processes.

Version 2 To tackle state space explosion, the different processes are merged in a single
one, with the control state represented explicitly as a data variable.

Version 3 Add modelling of block contents. Since the latest revisions of version 2, model
generation is handled compositionally, so we take less care into reducing the number of va-
riables in processes. CESAR’s inefficiency in state representation is eliminated in subsequent
minimizations.

Version 4 Drastic housecleaning: all unused processes and definitions removed. Intended
for final distribution.

C Data Types

C.1 Base Domains

Booleans are used throughout.

(data types 27a)=
library Boolean endlib

Defines:
Bool, used in chunk 29.

Each site is identified by an identifier of sort Site. This sort is defined as an enumerated
type and is iterated upon in model generations; it should be kept as small as possible. This
specification is bounded to three different sites.

RR n3416

27b

28a

28b

28¢c

28 Charles Pecheur

(data types 27a)+=

enumtype SiteType is
enum sitel,site2,site3 : Site
endtype

Defines:

Site, used in chunks 30, 33-45, and 52.

Val is the sort of block content. This sort is iterated upon and thus is kept as small as
possible, i.e. two different values.

(data types 27a)+=

enumtype ValType is
enum vall, val2 : Val
endtype

Defines:

Val, used in chunks 30c, 31, 39b, and 45.

C.2 Interaction Primitives

CfsCall describes the CFS primitives offered to applications.
(data types 27a)+=

enumtype CfsCallType is
enum read, beginwrite, endwrite : CfsCall
endtype

Defines:

CfsCall, never used.
Message defines the message exchanged between CFS entities.

(data types 27a)+=

enumtype MessageType is
enum readrq,readok,writerq,writeok,invalidate,firstmaster : Message
endtype

Defines:

Message, used in chunks 30b and 39.

State is used in monitoring interactions, to observe the internal state of the different
sites. The last four are transient states where internal information is processed; no message
or request can be received in those states.

INRIA

Modelling and Verification of a Cluster File System 29

e master The site is master, no one is writing.

e writing The site is master and in a writing session.

e invalid The site has no valid copy.

e valid The site owns a valid copy.

e waitread The site is waiting for a valid copy.

e waitwrite The site is waiting for mastership.

e flushrqgs The site is master and is flushing pending requests (transient).

e forwardrqs The site has no valid copy and is forwarding pending requests to the
current master (transient).

e invalwriting The site is invalidating remote copies before writing (transient).

e invalinvalid The site is invalidating remote copies while giving up mastership (tran-
sient).

(data types 2Ta)+=

enumtype StateType is

enum master,writing,invalid,valid,waitread,waitwrite,
flushrgs,forwardrqs,invalwriting,invalinvalid : State

endtype

type StateOpns is stateType

opns istransient : State -> Bool

ismaster : State -> Bool
egns forall s : State
ofsort Bool
istransient (flushrqgs) = true ;

istransient (forwardrqs) = true ;
istransient(invalinvalid) = true ;
istransient (invalwriting) = true ;

istransient(s) = false ;

ismaster (master) = true ;

ismaster(writing) = true ;

ismaster(s) = false ;
endtype

Defines:
State, used in chunk 32.
Uses Bool 27a.

RR n3416

30a

30b

30c

30 Charles Pecheur

C.3 State Variables

SiteSet defines sets of site identifiers, used by a block master to remember all remote copy
requesters and holders.

(data types 27a)+=

csettype SiteSetType is SiteType
cset SiteSet
elements sitel,site2,site3 : Site
endtype

Defines:

SiteSet, used in chunks 31 and 32.
Uses Site 27b 32.

PktList defines a list of (Site, Message) pairs. It is used by the underlying communica-
tion channel to store transitting messages. the Site is the remote (i.e. non-master) site; it
can be either the source or the destination of the message, depending on the message type.

(data types 27a)+=

recordtype PktType is SiteType, Messagetype
record pkt : Pkt
fields site : Site
msg : Message
endtype
listtype PktListType is PktType
list PktList
elements Pkt
endtype
Defines:

Pkt, never used.
PktList, used in chunks 31 and 32.
Uses Message 28c and Site 27b 32.

ValArray is an array of Val indexed on Site, used in process Memory to store the different
copies of a block for each site.

(data types 27a)+=

arraytype ValArrayType is ValType, SiteType
array ValArray

elements Val

indices sitel,site2,site3 : Site

endtype

INRIA

31

Modelling and Verification of a Cluster File System 31

Defines:
ValArray, used in chunks 31 and 39b.
Uses Site 27b 32 and Val 28a.

Some complementary constants for convenience.

(data types 27a)+=

type ConstantsType is SiteSetType, PktListType, ValArrayType
opns nocopies : -> SiteSet

norqgs : -> PktList

init : -> Val

init : -> ValArray
eqns

ofsort SiteSet
nocopies = {} ;
ofsort PktList
norqs = <> ;
ofsort Val
init = vall ;
ofsort ValArray
init = fill(init of Val) ;
endtype

Uses PktList 30b, SiteSet 30a, Val 28a, and ValArray 30c.

D System Processes

D.1 CFs entity

The process Site describes the management of a single block by a Crs site. This is a state-
oriented specification, originally based on the state machine presented in [Fas96]. All state
is specified as process parameters:

e state:State encodes the control part of the state.

e copies:SiteSet holds the set of other sites that have obtained a copy of the block
from this master site.

e rqgs:PktList holds the list of pending requests from other sites received while this site
is writing.

As a special case, the first site to request (read or write) access to the block receives
initial mastership. This is modelled as a firstmaster message received before the readrq
or writerq has been sent.

RR n3416

32 Charles Pecheur

Note: for simplification, initial mastership assignment is not covered in the generated
models. Instead, mastership is given arbitrarily to sitel.

32 (processes 32)=
process Site [cfsreq,cfsans,send,rcv]

(s : Site,
state : State,
copies : SiteSet,
rqs : PktList)

: noexit :=

((local read 34a))

|

((local beginwrite 34b))

|

((local endwrite 35a))

|

((remote readrq 35b))

|

((remote writerq 35c))

]

((remote readok 36a))

|

((remote writeok 36b))

|

((remote invalidate 36¢c))

]

((transient flushrgs 37c))

(1

INRIA

33a

33b

Modelling and Verification of a Cluster File System

33

((transient forwardrgs 38))

|

((transient invalwriting 37a))

]

((transient invalinvalid 37b))
endproc

Defines:
Site, used in chunks 30, 33—45, and 52.
Uses PktList 30b, SiteSet 30a, and State 29.

InitSite defines a site in initial state, i.e. with no valid copy of the block and no

mastership.

(processes 32)+=
process InitSite [cfsreq,cfsans,send,rcv] (s : Site) : noexit :=
Site [cfsreq,cfsans,send,rcv] (s,invalid,nocopies,norqgs)
endproc

Defines:
InitSite, used in chunk 46.
Uses Site 27b 32.

InitMaster is similar to InitSite, except that the site is given mastership.

(processes 32)+=
process InitMaster [cfsreq,cfsans,send,rcv] (s : Site) : noexit :=
Site [cfsreq,cfsans,send,rcv] (s,master,nocopies,norqs)
endproc

Defines:
InitMaster, used in chunk 46.
Uses Site 27b 32.

D.1.1 Local Requests

The following paragraphs detail the handling of CFs requests from local applications.

RR n3416

34 Charles Pecheur

local read

34a (local read 34a)=

[(state eq master) or (state eq valid) or (state eq invalid)] ->
cfsreq !s !read;
([state eq master] ->

cfsans !s !read;

Site [cfsreq,cfsans,send,rcv] (s,master,copies,rqs)

1

[state eq valid] ->
cfsans !s !read;
Site [cfsreq,cfsans,send,rcv] (s,valid,copies,rqs)

]

[state eq invalid] ->
(send !s !readrq !s;
Site [cfsreq,cfsans,send,rcv] (s,waitread,copies,rgs)
(|
rcv !s !firstmaster !s;
cfsans !s !read;
Site [cfsreq,cfsans,send,rcv] (s,master,copies,rqs)))
Uses Site 27b 32.

local beginwrite

34b (local beginwrite 34b)=
[(state eq master) or (state eq valid) or (state eq invalid)] ->
cfsreq !s !beginwrite;
([state eq master] ->
cfsans !s !beginwrite;
Site [cfsreq,cfsans,send,rcv] (s,invalwriting,copies,rqgs)

]

[state eq valid] ->
send !s !writerq !s;
Site [cfsreq,cfsans,send,rcv] (s,waitwrite,copies,rqgs)

]

[state eq invalid] ->
(send !s !writerq !s;
Site [cfsreq,cfsans,send,rcv] (s,waitwrite,copies,rqgs)

1

INRIA

Modelling and Verification of a Cluster File System 35

rcv !s !firstmaster !s;

cfsans !s !beginwrite;

Site [cfsreq,cfsans,send,rcv] (s,writing,copies,rqs)))
Uses Site 27b 32.

local endwrite

35a (local endwrite 35a)=
[state eq writing] ->
cfsreq !s !endwrite;
cfsans !s !endwrite;
Site [cfsreq,cfsans,send,rcv] (s,flushrgs,copies,rqs)
Uses Site 27b 32.

D.1.2 Remote Messages

The following paragraphs detail the handling of CFs protocol messages received from remote
CFSs sites.

remote readrq

35b (remote readrq 35b)=
[(state eq master) or (state eq writing)] ->
rcv !s !readrq 7s1:Site;
([state eq master] ->
send !s !readok !si;
Site [cfsreq,cfsans,send,rcv] (s,master,insert(sl,copies),rqgs)

]

[state eq writing] ->
Site [cfsreq,cfsans,send,rcv]
(s,writing, copies, rqs+pkt(sl,readrq)))
Uses Site 27b 32.

remote writerq

35¢ (remote writerq 35c)=
[(state eq master) or (state eq writing)] ->
rcv !s l!writerq ?sl1:Site;
([state eq master] ->
send !s !writeok !si;
Site [cfsreq,cfsans,send,rcv] (s,invalinvalid,copies,rqgs)

(1

RR n3416

36a

36b

36¢

36 Charles Pecheur

[state eq writing] ->
Site [cfsreq,cfsans,send,rcv]
(s,writing, copies, rqs+pkt(sl,writerq)))
Uses Site 27b 32.

remote readok

(remote readok 36a)=

[state eq waitread] ->

rcv !s !readok !s;

cfsans !s !read;

Site [cfsreq,cfsans,send,rcv] (s,valid,copies,rqs)
Uses Site 27b 32.

remote writeok

(remote writeok 36b)=

[state eq waitwrite] ->

rcv !s lwriteok !s;

cfsans !s !beginwrite;

Site [cfsreq,cfsans,send,rcv] (s,writing,copies,rqs)
Uses Site 27b 32.

remote invalidate Note: unexpected reception of invalidate is possible in any state
other than valid. This has been observed as a cause of deadlock in previous versions of
this specification. These cases have been added in the specification; the message is ignored
in these cases.

(remote invalidate 36c)=

[(state eq valid) or
(state eq master) or
(state eq writing) or
(state eq waitwrite) or
(state eq waitread) or
(state eq invalid)] ->

rcv !s !invalidate !s;

([state eq valid] ->
Site [cfsreq,cfsans,send,rcv] (s,invalid,copies,rqs)

[1
[state ne valid] ->

Site [cfsreq,cfsans,send,rcv] (s,state,copies,rqs))
Uses Site 27b 32.

INRIA

37a

37b

37c

Modelling and Verification of a Cluster File System 37

D.1.3 Transient States

The following paragraphs detail the processing done in transient states. Typically this
involves flushing some internal list and sending corresponding messages.

transient invalwriting Invalidate remote copies in copies before going to writing.

(transient invalwriting 37a)=
[state eq invalwriting] ->
([copies ne nocopies] ->
send !s !invalidate !min(copies);
Site [cfsreq,cfsans,send,rcv] (s,invalwriting,butmin(copies),rqs)

(1

[copies eq nocopies] ->
Site [cfsreq,cfsans,send,rcv] (s,writing,copies,rqs))
Uses Site 27b 32.

transient invalinvalid Invalidate remote copies in copies before going to invalid.

(transient invalinvalid 37b)=
[state eq invalinvalid] ->
([copies ne nocopies] ->
send !s !invalidate !min(copies);
Site [cfsreq,cfsans,send,rcv] (s,invalinvalid,butmin(copies),rqs)

]

[copies eq nocopies] ->
Site [cfsreq,cfsans,send,rcv] (s,invalid,copies,rqs))
Uses Site 27b 32.

transient flushrqs Answer the pending requests in rgs.

(transient flushrgs 37c)=
[state eq flushrqs] ->
([rgs ne norgs] ->
([msg(first(rqs)) eq readrq] ->
send !s !readok !site(first(rqgs));
Site [cfsreq,cfsans,send,rcv]
(s, flushrqs, insert(site(first(rqs)),copies), butfirst(rqgs))

]

[msg(first(rqs)) eq writerql ->

RR n3416

38

38 Charles Pecheur

send !s !writeok !site(first(rgs));
Site [cfsreq,cfsans,send,rcv] (s,forwardrgs,copies,butfirst(rgs)))

]

[rqs eq norqs] ->
Site [cfsreq,cfsans,send,rcv] (s,master,copies,rqgs))
Uses Site 27b 32.

transient forwardrqs Invalidate remote copies in copies, then forward pending requests
in rgs to the current master.

(transient forwardrqs 38)=
[state eq forwardrqs] ->
([copies ne nocopies] ->
send !s !invalidate !min(copies);
Site [cfsreq,cfsans,send,rcv] (s,forwardrqgs,butmin(copies),rqs)

(1

[copies eq nocopies] ->
([rgs ne norgs] ->
send !s !'msg(first(rgs)) !site(first(rqgs));
Site [cfsreq,cfsans,send,rcv] (s,forwardrgs,copies,butfirst(rgs))

1

[rgs eq norqgs] ->
Site [cfsreq,cfsans,send,rcv] (s,invalid,copies,rqs)))
Uses Site 27b 32.

D.2 Communication Channel

The following processes define the medium through which CFS sites communicate. All
events on send and rcv have the following attributes:

send ?sl : Site 7m : Msg 7s2 : Site

rcv ?sl : Site 7?m : Msg 7s2 : Site

s1 is the site that sends/receives the message; s2 is the site concerned by the message.
The channel ignores s1 and keeps s2. Note that no destination address is given; each site
is responsible for accepting only the messages it is supposed to receive. This works because
each kind of message has a well-defined destination: requests go to the master, responses go
to the concerned site.

OutputCell is a one-slot bounded buffer whose input is restricted to a single site. The
restriction to a single message avoids state space explosion. Using a different channel for

INRIA

39a

39b

Modelling and Verification of a Cluster File System 39

each site allows messages from different sites to be received in any order (and blows up the
state space). This is necessary for a correct working of the protocol; deadlocks have been
observed in models with a single common channel.

(processes 32)+=

process OutputCell [send,rcv] (s : Site) : noexit :=
send !s ?m:Message 7sl:Site;
rcv 7dest:Site !'m !si;
OutputCell [send,rcv] (s)

endproc

Defines:
OutputCell, used in chunks 49 and 52.
Uses Message 28c and Site 27b 32.

D.3 Memory

Memory holds the data (of sort Val) of the block controlled through the CFS protocol.
Different copies are kept for each site. The CFS messages are seen through gate ctrl and
cause data to be transfered on readok and writeok messages. Gates read and write model
the access to memory by the application, with the following profiles:

read ?s : Site ?v : Val

write ?s : Site ?v : Val

(processes 32)+=
process Memory [read,write,ctrl] (mems: ValArray) : noexit :=

(choice s:Site []
read !s !get(s, mems) ;
Memory [read,write,ctrl] (mems))

(1

write 7s:Site 7v:Val;
Memory [read,write,ctrl] (set(s, v, mems))

1

ctrl 7?sl:Site ?m:Message 7s2:Site;
([(m eq readok) or (m eq writeok)] ->
Memory [read,write,ctrl] (set(s2, get(sl, mems), mems))

]

RR n3416

40

40 Charles Pecheur

[(m ne readok) and (m ne writeok)] ->
Memory [read,write,ctrl] (mems))

endproc

process InitMemory [read,write,send] : noexit :=
Memory [read,write,send] (init of ValArray)
endproc

Defines:
InitMemory, used in chunk 52.
Memory, never used.
Uses Message 28c, Site 27b 32, Val 28a, and ValArray 30c.

E Environment processes

This section defines processes which describe the expected behaviour of the environment
of a Crs system. These processes are used to filter out impossible execution paths when
generating those components separately, in a compositional approach.

E.1 Environment for Sites

MasterSiteProxy, SlaveSiteProxy abstract the behaviour of another site, as seen from
a given site through gates send and rcv. MasterSiteProxy covers messages to and form a
master site, independently of its number; SlaveSiteProxy covers messages to and from a
given slave site.

(processes 32)+=
process MasterSiteProxy [send,rcv] (s:Site) : noexit :=

send !s !readrq !s;
MasterSiteProxy [send,rcvl (s)

(1

send !s !writerq !s;
MasterSiteProxy [send,rcv] (s)

]

rcv !s !readok !s;
MasterSiteProxy [send,rcvl (s)

]

INRIA

Modelling and Verification of a Cluster File System 41

rcv !s lwriteok !s;
MasterSiteProxy [send,rcv] (s)

]

rcv !s !invalidate !s;
MasterSiteProxy [send,rcv] (s)

endproc
process SlaveSiteProxy [send,rcv] (s:Site, other:Site) : noexit :=

rcv !s !readrq !other;
(send !s !readok !other;
SlaveSiteProxy [send,rcv] (s,other)

(|
send !s !readrq !other;
SlaveSiteProxy [send,rcv] (s,other))

(1

rcv !s !writerq !other;
(send !s !'writeok !other;
SlaveSiteProxy [send,rcv] (s,other)

0
send !'s !writerq !other;
SlaveSiteProxy [send,rcv] (s,other))

(1

send !s !invalidate !other;
SlaveSiteProxy [send,rcv] (s,other)

endproc

Defines:
MasterSiteProxy, used in chunk 41.
SlaveSiteProxy, used in chunk 41.
Uses Site 27b 32.

To constitute an environment for a given site, Site2Proxy and Site3Proxy combine a
single MasterSiteProxy with one SlaveSiteProxy for one and two other sites, respectively.
It is not necessary to include a SlaveSiteProxy for the constrained site, because in no case
can a site become its own master: it cannot receive a readrq or writerq from itself, nor
need to send an invalidate to itself.

RR n3416

42 Charles Pecheur

41 (processes 32)+=

process Site2Proxy [send,rcv] (s:Site, other:Site) : noexit :=
MasterSiteProxy [send,rcvl (s)
11
SlaveSiteProxy [send,rcv] (s,other)

endproc

process Site3Proxy [send,rcv]
(s:Site, other1:Site, other2:Site) : noexit :=
MasterSiteProxy [send,rcvl (s)

SlaveSiteProxy [send,rcv] (s,otherl)

11
SlaveSiteProxy [send,rcv] (s,other2)
endproc

Defines:
Site2Proxy, used in chunk 47.
Site3Proxy, used in chunk 47.
Uses MasterSiteProxy 40, Site 27b 32, and SlaveSiteProxy 40.

E.2 Environment for Channels

SlaveSendProxy, MasterSendProxy fix the messages sent by a site on its output channel,
resp. in slave and master state. Note that the former depends only on the sender while the
latter also depends on the receiver. They are used for restricting the environment of channel
processes.

42 (processes 32)+=
process SlaveSendProxy [send] (s:Site) : noexit :=

send !s !readrq !s;
SlaveSendProxy [send] (s)

(1

send !s l!writerq !s;
SlaveSendProxy [send] (s)

endproc
process MasterSendProxy [send] (s:Site, other:Site) : noexit :=

send !s !readok !other;

INRIA

43

Modelling and Verification of a Cluster File System 43

MasterSendProxy [send] (s,other)

(1

send !s !writeok !other;
MasterSendProxy [send] (s,other)

(1

send !s !readrq !other;
MasterSendProxy [send] (s,other)

(1

send !s !writerq !other;
MasterSendProxy [send] (s,other)

(1

send !s !invalidate !other;
MasterSendProxy [send] (s,other)

endproc

Defines:
MasterSendProxy, used in chunk 44.
SlaveSendProxy, used in chunk 44.
Uses Site 27b 32.

RcvProxy fixes message received from some channel by another site. It is used for restric-
ting the environment of channel processes.

(processes 32)+=

process RcvProxy [rcv]l (s:Site, other:Site) : noexit :=

rcv !other !readrq 7z:site;
RcvProxy [rcv] (s,other)

(1

rcv !other !writerq 7z:site;
RcvProxy [rcv] (s,other)

(1

RR n3416

44

44

Charles Pecheur

rcv !other !readok !other;
RcvProxy [rcv] (s,other)

]

rcv 'other !writeok !other;
RcvProxy [rcv] (s,other)

(1

rcv !other !readrq !other;
RevProxy [rcv] (s,other)

]

rcv !other !writerq !other;
RevProxy [rcv] (s,other)

]

rcv 'other !invalidate !other;
RcvProxy [rcv] (s,other)

endproc

Defines:
RcvProxy, used in chunk 44.
Uses Site 27b 32.

Channel2Proxy and Channel3Proxy combine channel proxies to constrain a given chan-
nel, according to the expected number of sites (two and three, respectively). With the same
reasoning as for site proxies, we can safely omit communications from a site to itself.

(processes 32)+=

process Channel2Proxy [send,rcv]
(s:Site, other:Site) : noexit
SlaveSendProxy [send] (s)
1

MasterSendProxy [send] (s,other)

11
RcvProxy [rcv] (s,other)
endproc

process Channel3Proxy [send,rcv]

(s:Site, other1:Site, other2:Site)

SlaveSendProxy [send] (s)

: noexit :=

INRIA

Modelling and Verification of a Cluster File System 45

11
MasterSendProxy [send] (s,otherl)

11
MasterSendProxy [send] (s,other2)

11

RcvProxy [rcv] (s,otherl)

11

RcvProxy [rcv] (s,other2)
endproc

Defines:
Channel2Proxy, used in chunk 50.
Channel3Proxy, used in chunk 50.
Uses MasterSendProxy 42, RcvProxy 43, Site 27b 32, and SlaveSendProxy 42.

E.3 User behaviour

Process GeneralUser links calls to Crs and accesses to memory. It encodes the expected
use of CFs by the application:

o call (request/answer) read then read the block any number of times;

e call beginwrite and endwrite before and after writing and/or reading the block any
number of times.

(processes 32)+=

process GeneralUser [read,write,cfsreq,cfsans] (s:Site) : noexit :=

cfsreq !s !read;
cfsans !s !read;
ReadingUser [read,write,cfsreq,cfsans] (s)

(1

cfsreq !s !beginwrite;
cfsans !s !beginwrite;
WritingUser [read,write,cfsreq,cfsans] (s)

endproc

process ReadingUser [read,write,cfsreq,cfsans] (s:Site) : noexit :=

read !s 7v:Val;
ReadingUser [read,write,cfsreq,cfsans] (s)

RR n3416

46 Charles Pecheur

(1
GeneralUser [read,write,cfsreq,cfsans] (s)
endproc
process WritingUser [read,write,cfsreq,cfsans] (s:Site) : noexit :=

read !'s 7v:Val;
WritingUser [read,write,cfsreq,cfsans] (s)

(]
write !s 7v:Val;
WritingUser [read,write,cfsreq,cfsans] (s)

1

cfsreq !s !endwrite;
cfsans !s !endwrite;
GeneralUser [read,write,cfsreq,cfsans] (s)

endproc

Defines:
GeneralUser, used in chunks 51b and 52.
ReadingUser, never used.
WritingUser, never used.

Uses Site 27b 32 and Val 28a.

F Instanciated Processes

This section defines instances of previously defined processes as parameter-less processes.
They are used with CAESAR’s -root option to generate models of system components in
a compositional approach.

Site instances
(processes 32)+=

process Sitel [cfsreq,cfsans,send,rcv] : noexit :=
InitSite [cfsreq,cfsans,send,rcv] (sitel)
endproc

process Site2 [cfsreq,cfsans,send,rcv] : noexit :=

InitSite [cfsreq,cfsans,send,rcv] (site2)
endproc

INRIA

Modelling and Verification of a Cluster File System

process Site3 [cfsreq,cfsans,send,rcv] : noexit :=
InitSite [cfsreq,cfsans,send,rcv] (site3)
endproc

process Masterl [cfsreq,cfsans,send,rcv] : noexit :=
InitMaster [cfsreq,cfsans,send,rcv] (sitel)
endproc

process Sitel2 [cfsreq,cfsans,send,rcv] : noexit :=
Masterl [cfsreq,cfsans,send,rcv]
1
Site2 [cfsreq,cfsans,send,rcv]

endproc

process Sitel23 [cfsreq,cfsans,send,rcv] : noexit :=
Masterl [cfsreq,cfsans,send,rcv]
1
Site2 [cfsreq,cfsans,send,rcv]
1
Site3 [cfsreq,cfsans,send,rcv]
endproc

Defines:
Masterl, used in chunk 48.
Sitel, used in chunk 48.
Sitel2, never used.
Site123, never used.
Site2, used in chunk 48.
Site3, used in chunk 48.
Uses InitMaster 33b and InitSite 33a.

Proxy instances
(processes 32)+=

process Proxyl2 [send,rcv] : noexit :=
Site2Proxy [send,rcv] (sitel,site2)

endproc

process Proxy21 [send,rcv] : noexit :=
Site2Proxy [send,rcv] (site2,sitel)

endproc

process Proxy123 [send,rcv] : noexit :=
Site3Proxy [send,rcv] (sitel,site2,site3)
endproc

RR n3416

48

Charles

Pecheur

process Proxy213 [send,rcv] : noexit :=
Site3Proxy [send,rcv] (site2,sitel,site3)
endproc

process Proxy312 [send,rcv] : noexit :=
Site3Proxy [send,rcv] (site3,sitel,site2)
endproc

Defines:
Proxy12, used in chunk 48.
Proxy123, used in chunk 48.
Proxy21, used in chunk 48.
Proxy213, used in chunk 48.
Proxy312, used in chunk 48.

Uses Site2Proxy 41 and Site3Proxy 41.

Site instances with proxies
48 (processes 32)+=

process SitelWith2 [cfsreq,cfsans,send,rcv]
Sitel [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxyl2 [send,rcv]

endproc

process Site2Withl [cfsreq,cfsans,send,rcv]
Site2 [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy21 [send,rcv]

endproc

process SitelWith23 [cfsreq,cfsans,send,rcv]
Sitel [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy123 [send,rcv]

endproc

process Site2With13 [cfsreq,cfsans,send,rcv]
Site2 [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy213 [send,rcv]

endproc

process Site3With12 [cfsreq,cfsans,send,rcv]
Site3 [cfsreq,cfsans,send,rcv]

: noexit

: noexit

: noexit

: noexit

: noexit

INRIA

Modelling and Verification of a Cluster File System

| [send,rcv] |
Proxy312 [send,rcv]
endproc

process MasteriWith2 [cfsreq,cfsans,send,rcv] : noexit :=
Masterl [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxyl2 [send,rcv]

endproc

process MasterlWith23 [cfsreq,cfsans,send,rcv] : noexit :=
Masterl [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy123 [send,rcv]

endproc

Defines:
MasteriWith2, never used.
Master1With23, never used.
SitelWith2, never used.
SitelWith23, never used.
Site2Withl, never used.
Site2With13, never used.
Site3With12, never used.
Uses Masterl 46, Proxyl2 47, Proxy123 47, Proxy21 47, Proxy213 47, Proxy312 47, Sitel 46, Site2 46,
and Site3 46.

Cell instances

(processes 32)+=

process OutputCelll [send,rcv] : noexit :=
OutputCell [send,rcv] (sitel)
endproc

process OutputCell2 [send,rcv] : noexit :=
OutputCell [send,rcv] (site2)
endproc

process OutputCell3d [send,rcv] : noexit :=
OutputCell [send,rcv] (site3d)
endproc

process OutputCelll2 [send,rcv] : noexit :=
OutputCelll [send,rcv]
11
OutputCell2 [send,rcv]

endproc

RR n3416

50

50

Charles Pecheur

process OutputCelll23 [send,rcv] : noexit :=
OutputCelll [send,rcv]
11
OutputCell2 [send,rcv]
[
OutputCell3 [send,rcv]
endproc

Defines:
OutputCelll, used in chunk 51la.
OutputCelli2, never used.
OutputCell123, never used.
OutputCell2, used in chunk 51a.
OutputCell3, used in chunk 51a.
Uses OutputCell 39a.

Channel proxy instances

(processes 32)+=

process ChannelProxyl2 [send,rcv] : noexit :=
Channel2Proxy [send,rcv] (sitel,site2)
endproc

process ChannelProxy21 [send,rcv] : noexit :=
Channel2Proxy [send,rcv] (site2,sitel)
endproc

process ChannelProxy123 [send,rcv] : noexit :=
Channel3Proxy [send,rcv] (sitel,site2,site3d)
endproc

process ChannelProxy213 [send,rcv] : noexit :=
Channel3Proxy [send,rcv] (site2,sitel,site3)
endproc

process ChannelProxy312 [send,rcv] : noexit :=
Channel3Proxy [send,rcv] (site3,sitel,site2)
endproc

Defines:
ChannelProxy12, used in chunk 5la.
ChannelProxy123, used in chunk 51a.
ChannelProxy21, used in chunk 51a.
ChannelProxy213, used in chunk 51a.
ChannelProxy312, used in chunk 5la.

Uses Channel2Proxy 44 and Channel3Proxy 44.

INRIA

5la

51b

Modelling and Verification of a Cluster File System 51

Cell instances with proxies

(processes 32)+=

process OutputCelllwith2 [send,rcv] : noexit :=
OutputCelll [send,rcv]
| [send,rcv] |
ChannelProxy12 [send,rcv]

endproc

process OutputCell2withl [send,rcv] : noexit
OutputCell2 [send,rcv]
| [send,rcv] |
ChannelProxy21 [send,rcv]

endproc

process OutputCellilwith23 [send,rcv] : noexit
OutputCelll [send,rcv]
| [send,rcv] |
ChannelProxy123 [send,rcv]

endproc

process OutputCell2withl3 [send,rcv] : noexit
OutputCell2 [send,rcv]
| [send,rcv] |
ChannelProxy213 [send,rcv]

endproc

process OutputCell3withl2 [send,rcv] : noexit
OutputCell3 [send,rcv]
| [send,rcv] |
ChannelProxy312 [send,rcv]

endproc

Defines:
OutputCelliwith2, never used.
OutputCelliwith23, never used.
OutputCell2withl, never used.
OutputCell2withl3, never used.
OutputCell3withl2, never used.
Uses ChannelProxyl2 50, ChannelProxyi23 50, ChannelProxy21 50, ChannelProxy213 50,
ChannelProxy312 50, OutputCelll 49, OutputCell2 49, and OutputCell3 49.

General User instances

(processes 32)+=

process GeneralUserl [read,write,cfsreq,cfsans] : noexit :=

RR n3416

52

52 Charles Pecheur

GeneralUser [read,write,cfsreq,cfsans] (sitel)
endproc

process GeneralUser2 [read,write,cfsreq,cfsans] : noexit :
GeneralUser [read,write,cfsreq,cfsans] (site2)
endproc

process GeneralUser3 [read,write,cfsreq,cfsans] : noexit :
GeneralUser [read,write,cfsreq,cfsans] (site3)
endproc

Defines:
GeneralUserl, never used.
GeneralUser2, never used.
GeneralUser3, never used.
Uses GeneralUser 45.

G Top Level specification

Note: the models used for the validation of CFs have been generated compositionally, using
the instanciated processes above to produce separate components. The following top-level
behaviour is given for illustration only; currently it cannot be compiled monolithically within
available memory.

The specification covers the management of and access to a single block by three concur-
rent sites. An initial firstmaster message is generated spontaneously before the channel
starts its normal operation.

(behaviour 52)=

(
GeneralUser [read,write,cfsreq,cfsans] (sitel)
[11
GeneralUser [read,write,cfsreq,cfsans] (site2)
11
GeneralUser [read,write,cfsreq,cfsans] (site3)
)
| [read,write,cfsreq,cfsans] |
(
(
Initsite [cfsreq,cfsans,send,rcv] (sitel)
11
Initsite [cfsreq,cfsans,send,rcv] (site2)
11
Initsite [cfsreq,cfsans,send,rcv] (site3)
)

| [send,rcv] |

INRIA

Modelling and Verification of a Cluster File System

53

(rcv ?sl1:Site !firstmaster 7s2:Site;
(OutputCell [send,rcv] (sitel)
Cllllnl:putCell [send,rcv] (site2)
(|11|11|:putCe11 [send,rcv] (site3)

)
| [send] |
InitMemory [read,write,send]

)
)

Uses GeneralUser 45, InitMemory 39b, OutputCell 39a, and Site 27b 32.
Finally, here is the specification itself.
53 (cfs.LOTOS 53)=

(ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok K o o e ok ok s s o ok o s o sk sk ko ok ok ok ok ok ok ok kK kK ok o ok o ok
Compiled from Q(#)cfs.nw 4.5 - 98/04/24
Charles Pecheur, INRIA Rhone-Alpes
sk dokokokokokokkok ook ook ko ok ook ok okl sk sk ok ok sk ok ok ok sk ok Kok K K Kk ok ok ok ok ook)
specification CfsSystem [cfsreq,cfsans,send,rcv,read,write] : noexit
(data types 27a)
behaviour
(behaviour 52)
where
(processes 32)

endspec

This code is written to file cfs.LOT0S.

RR n3416

54 Charles Pecheur

Index of LOTOS Identifiers

Bool: 27a, 29

CfsCall: 28b
Channel2Proxy: 44, 50
Channel3Proxy: 44, 50
ChannelProxyl12: 50, 5la
ChannelProxy123: 50, 5la
ChannelProxy21: 50, 51a
ChannelProxy213: 50, 51a
ChannelProxy312: 50, 5la
GeneralUser: 45, 51b, 52
GeneralUserl: 51b
GeneralUser2: 51b
GeneralUser3: 51b
InitMaster: 33b, 46
InitMemory: 39b, 52
InitSite: 33a, 46
Masterl: 46, 48
MasterSendProxy: 42, 44
MasterSiteProxy: 40, 41
Master1With2: 48
Master1With23: 48
Memory: 39b

Message: 28c, 30b, 39a, 39b
OutputCell: 39a, 49, 52
OutputCelll: 49, 5la
OutputCelll2: 49
OutputCelll123: 49
OutputCell2: 49, 5la
OutputCell3: 49, 5la
OutputCelllwith2: 5la
OutputCelllwith23: 5la
OutputCell2withl: 5la
OutputCell2with13: 5la
OutputCell3with12: 5la
Pkt: 30b

PktList: 30b, 31, 32
Proxyl2: 47,48
Proxy123: 47, 48
Proxy21: 47, 48
Proxy213: 47, 48
Proxy312: 47, 48

S

INRIA

Modelling and Verification of a Cluster File System 55

RcvProxy: 43, 44

ReadingUser: 45

Site: 27b, 30a, 30b, 30c, 32, 33a, 33b, 34a, 34b, 35a, 35b, 35¢c, 36a, 36b, 36¢c, 37a, 37b,
37c, 38, 39a, 39b, 40, 41, 42, 43, 44, 45, 52

Sitel: 46, 48

Sitel2: 46

Sitel23: 46

Site2: 46, 48

Site3: 46, 48

Site2Proxy: 41,47

Site3Proxy: 41,47

SiteSet: 30a, 31, 32

SitelWith2: 48

SitelWith23: 48

Site2Withl: 48

Site2With13: 48

Site3With12: 48

SlaveSendProxy: 42, 44

SlaveSiteProxy: 40, 41

State: 29, 32

Val: 28a, 30c, 31, 39b, 45

ValArray: 30c, 31, 39b

WritingUser: 45

RR n3416

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http:/ /www.inria.fr
ISSN 0249-6399

