Existence of Primitive Divisors of Lucas and Lehmer Numbers - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 1999

Existence of Primitive Divisors of Lucas and Lehmer Numbers

Yuri Bilu
Guillaume Hanrot
  • Function : Author
  • PersonId : 831392
Paul M. Voutier
  • Function : Author

Abstract

We prove that for $n$ > 30, every $n$-th Lucas and Lehmer number has a primitive divisor. This allows us to list all Lucas and Lehmer numbers without a primitive divisor.
Fichier principal
Vignette du fichier
RR-3792.pdf (701.98 Ko) Télécharger le fichier

Dates and versions

inria-00072867 , version 1 (24-05-2006)

Identifiers

  • HAL Id : inria-00072867 , version 1

Cite

Yuri Bilu, Guillaume Hanrot, Paul M. Voutier. Existence of Primitive Divisors of Lucas and Lehmer Numbers. [Research Report] RR-3792, INRIA. 1999, pp.41. ⟨inria-00072867⟩
247 View
14455 Download

Share

Gmail Facebook Twitter LinkedIn More