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Abstract: Herein, we propose a local registration method for cartographic road net-
works on SPOT satellite images based on Markov Random Fields (MRF') on graphs.
Since the cartographic and image data are obtained from exogeneous sources, the
noises degrading these data are of different nature. This phenomenon can create
important differences between the data. In addition, cartographers sometimes intro-
duce distortions, in the so-called generalization process, in the road map in order to
emphasize some details of the road (like the bends of a mountain road). The pro-
posed algorithm aims at correcting the error due to noise and generalization, hence
increasing the accuracy of the road map. The proposed method consists in translat-
ing the cartographic data into a graph model, and then defining a MRF to fit the
graph on the image.

Key-words: Markov random fields, road networks, remote sensing, registration,
cartography.
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Recalage local et déformation d’un réseau routier
cartographique sur une image SPOT

Résumé : Dans ce rapport, nous présentons une méthode pour le recalage local d’un
réseau cartographique routier sur une image SPOT, reposant sur 'utilisation des
champs de Markov sur graphe. Les données image et cartographique étant obtenues
par des sources exogeénes, elles sont dégradées par du bruit de nature différente. Ce
phénomeéne peut étre & 'origine de différences importantes entre les données. De
plus, les cartographes peuvent parfois introduire des distortions dans les cartes afin
de souligner certains détails que presente la route (lacets d’une route de montagne) :
c’est la généralisation. L’algorithme proposé vise a corriger les erreurs dues au bruit
et & la généralisation, et & améliorer la précision du tracé des routes. La méthode
proposée consiste & transformer la donnée cartographique en un graphe, et ensuite a
définir un champ de Markov afin de faire correspondre le graphe et 'image

Mots-clés : Champs de Markov, réseaux routiers, télédetection, recalage, carto-
graphie.
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1 Introduction

The aim of this work is to match, through registration and distortion, a road car-
tographic database on a satellite image. Thus, part of the work consists in the
registration of the road map. This is a prerequisite for a further treatment since it
may be hard to increase the accuracy of the details if the road is not located at a cor-
rect position. This problem is usually treated by matching linear features extracted
from the image with the different pieces of the map [14] [4]. The principle of those
methods is to make associations between features from each source (the map and the
image), following some geometrical constraints. The difficulty of such an approach is
to build a set of features from the image which is complete and does not contain false
alarms. Moreover, a characteristic of this approach is that the obtained registrated
graph is the result of a global rigid transformation of the given graph. This is a
problem with networks presenting local errors, as it is the case with generalization.
One interest of the proposed method is that it performs a local registration instead.

Another interesting aspect of the proposed algorithm consists of a network dis-
tortion in order to improve the accuracy. In other words, we want to use a road
detection tool on the image so that the network better fits the image. There are
many ways to compute the path joining two points supposed to be situated on the
same road. A classical approach is to use gradient or Laplacian filtering, such as
a Canny-Deriche filter [2]| [3], possibly followed by hysteresis thresholding, and to
build linear features from the result [8]. This method is fast, but it does not take
into account any prior knowledge about the network shape and the connection of
the network is not adressed. Another way is to use active contours, or snakes [9].
The problem of this method is that the initialization of the contour has to be close
to the real road, to avoid local minima. Methods based on dynamic programming,
alone [11] [6] or mixed with stochastic models [1], have also proven to be powerful.
Their main drawback is the definition of starting and ending points, which requires
some supervision. Herein, these points are automatically defined within the proposed
algorithm.

We propose a method for registration based on a graph modeling of the road
database, and the use of Markov Random Fields on this graph. In section 2, we
present the modeling of objects and data, in particular the graph modeling of the
road networks. In section 3, we describe the Bayesian framework and the probabilistic
model used for performing the registration and deformation. Section 4 is devoted to
some registration results using the proposed method.

INRIA
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Figure 1: A cartographic network and the associated graph modeling

2 Modeling of the data

This particular problem of registration involves two different kinds of data, and
therefore needs a previous definition of the object used for the representation. The
first kind is a SPOT satellite panchromatic image, considered as a reference for
registration. For the second type of data, the road map, it is not obvious at first to
guess the most adapted representation for the problem.

There are many ways to represent a linear network. In the case of roads, it is
possible to use pixel chains or to approximate the roads by linear primitives.

In the proposed approach, we use a non-oriented graph to model the network,
G = {X,U, A}, X being the set of nodes, U the set of edges and A the set of node
attributes. In the proposed model, the nodes are characteristic points of the network
(junctions, high curvature points), and the edges define the roads that join them.
The only attribute of each node is its position in the image. These attributes are
considered as random variables w.r.t. which a probabilistic model is built. The roads
between the nodes are computed in a deterministic way given the nodes position. The
graph is built using the information of shape (number of nodes and links between
them) and position of the cartographic data. Local registration is performed by
adjusting the nodes position and distortion of edges is performed by deterministic
“road detection”. Handling the graph is thus very simple.

This modeling is in accordance with the fact that the cartographic data are locally
inaccurate and approximated, making the use of the information between nodes not
reliable. It also allows to use efficient road tracking algorithms in addition to a simple
registration algorithm acting on the nodes only.

Figure 1 gives an example of correspondance between a road map and its graph
modeling where nodes are symbolized as circles.

RR n° 3939
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3 A markovian model for local registration and distor-
tion of road maps

3.1 Bayesian context

The approach we propose consists in performing a deformation of the given road
network in order to fit the image. Therefore we consider that the target network
X has a graph structure identical to the graph defined from the cartographic data.
In other words, the searched network x will be obtained from the initial data m by
moving its nodes.

This field X is assumed to follow a prior probability P(X = z) (noted P(x)
hereafter). The data are modeled as follows :

e the cartographic data M is assumed to be a graph similar to X, i.e. a graph
with the same “structure” (same number of nodes and edges), only the node
attributes may differ,

e the image data I is a SPOT satellite image, naturally represented as an array
of pixel values.

The fields X and M are viewed as mutual deformation of each other, and are both
assumed to be mutually dependant random variables. The image I parametrizes the
encountered solution, through a parametrization of the probabilities. This means
that the prior, the posterior probability and the likelihood depend on the parameter
I and are noted respectively Pr(x), Pr(z|m) and Pr(m|z) (or resp. P(z), P(z|m)
and P(m/|x) for convenience).

The application of the Bayesian rule gives for the posterior probability of X :

Pr(m|z)Pr(x)
Pr(z|lm) = By (m)
And since the map m is given :

Pr(z|m) o« Pr(m|z)Pr(x)

Modeling the likelihood and the prior by Gibbs fields, we have P(m|z) = LZ:"(I))
and P(;E) — exp(—Uap())

Zap

We assume that the total energy U(z) = Up(z) + Ugp(2) is a markovian energy,
so that it can be written as follows :

INRIA
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U(z) = Z Us(x)
ceC

Where C represents the cliques (i.e. finite sets of neighbor nodes). Taking this
assumption means we assume that there exist interactions only between neighbor
sites. This is a perfectly natural assumption, since if we choose for example a second
order neighborhood system (neighbor nodes are those joined by an edge), each clique
will represent a road section, and the energy will be a sum of terms depending on
the sections.

The solution is the configuration which optimizes the posterior in the sense of a

Bayesian criterion. We consider the maximum a posteriori (MAP) estimator defined
by :

& = arg IlelIl(Um(.CL') + Uap(x))

To reach the solution, we use simulated annealing which assures convergence to
the global minimum [7].

We now define the two components of the proposed model total energy : U(z) =
Un(x) + Ugp(x).

3.2 Map-dependent energy

The map-dependent term of the energy, U,,(x), expresses the consistency between the
graph x and the data m. Roughly speaking, a configuration of x has a low energy if
each road section of x is similar to its equivalent in m, and if the connections between
sections are also similar. This yields two types of constraints :

e the first constraint operates on pairs of nodes connected by a section of road.
It depends on the distance between the two nodes, which must be close to the
corresponding distance in the map,

e the second constraint operates on series of three nodes joined by two sections.
It depends on the angle formed by the nodes, which again must be close to the
corresponding angle in the map.

From these two constraints, it is possible to build the map-dependent energy

function in the following way.
Define a graph-associated distance :

RR n° 3939
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DEFINITION 1

ath between x; and x; is a set of nodes (x; = xg,21,...,ZN = x;) where two
A path bet d x; t d 3Ty eees i) where t
consecutive nodes xy and Tpy1 are joined by an edge.

DEFINITION 2 (GRAPH DISTANCE)

The distance between two points x; and x; of a graph X, noted d(x;,x;), is equal to
the minimum number of edges for every path (x;,z;) (which is equal to the number
of nodes minus one).

For example, the distance between to nodes joined by an edge is 1.
We define the map-dependent energy as :

Un () = Z Ur%z(xi’xj) + Z Ugrz(xi’xj’xk)
d(z;,x;)=1 d(zi,z;)=1
! d(zj,x,) =1

This is a Markovian energy w.r.t. the following neighborhood system :

z; € Vg, if and only if { 22;5 i]) <9
Hdly) >
The potentials UL, (z;, ;) and UZ (zi,xj, zx) stand respectively for the first and
the second constraints defined previously.

Up (i, 25) = fij(dist(xi, ;)
where dist(a, b) is the Euclidean distance between node a and b.
And :

U2 (wi,wj,28) = gijr(cijr)

where «; 1, is the angle formed by the two segments [z;,z;] and [z}, zx].

The function f;;, whose argument is the Euclidean distance between two nodes is

a convex function taking its minimum value when dist(z;, z;) = dist(z{",z}") (where

dist(z]",z7") is the Euclidean distance of the corresponding nodes in the map).

The function g; ; » takes as argument the value of the angle formed by the con-
sidered three consecutive nodes. Its characteristics is to be defined for the interval
[0,27], to take its minimum for a;;x = o], (where o  is the angle of the corre-

sponding nodes in the map), and to increase with the difference between «; ; and
;.
Jrk

INRIA
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For the experiments, f;; and g; j » were defined as follows :

fij(d) = (d — dz’st(.’Jc;”,ac;-”))2

gijr(a) = {(a = afy,) [27]}?

Therefore, the optimal configurations with respect to this first term are the config-
uration equal to the map and the configurations obtained by any rigid transformation
of the data. Configurations consisting of small local deformations of these are also
close to optimality.

3.3 Prior energy

The term U,y(x) takes into account the information given by the image, since this
energy depends on the parameter I. It is composed of two terms, both depending
on the parameter I, directly or indirectly.

The treatment of the edges of the graph z is the starting point of prior energy
definition. The edges represent the road sections joining the different nodes of the
network. They are represented as segments on the map. Therefore, they have to
be distorted to match the SPOT satellite image. The chosen solution is to compute
the expected section of the road between two nodes in a deterministic way using
a dynamic programming algorithm. The resulting path between two nodes only
depends on their position in the image and the grey level configuration of the image.

The path between two connected nodes is obtained by minimizing a cost function
(depending on the contrast between the path and the background, the gray level
along the path and the local curvature). The minimization of this cost function is
performed by the dynamic programming algorithm presented in [11] [10], derived
from the F* algorithm [5], thanks to the ELIESER program, implementing this
algorithm.

Let z; and x; be the two nodes ending the considered edge. Define a function
®, called potential. This function is defined on the set of three distinct pixel series
s;, s; and sg, such that s; and s; on one hand, and s; and s, on the other, are
neighbor in 8-connectivity ; s; and s, must not be neighbors, in order to limit the
local curvature. This yields three different places for s, when s; and s; are fixed (see
figure 2).

The potential ®, or cost function, is designed in order to penalize pixel series
which do not match road characteristics. Pixel series with gray level configuration
matching the following constraints will have a low cost :

RR n° 3939
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(21 L1 [ ] /J&
si/{Sj Kl 3;7%-\ [ |
(s L1 [ ][] [

Figure 2: The possible s positions, s; and s; being fixed.

e gray level homogeneity along the series,

e contrast between the three road pixels and the six neighbors.

We also add a local curvature constraint, penalizing curved paths in favor of
straight paths. This yields the following expression :

=0+ Py + D3
Q1 (x4, 25, x5) = a(max(x;, xj, x) — min(z;, x5, )

@2(.%‘1',1‘3',1‘]9) = /BH'Tmedl - CCmed2||

Where Zeqt and Tmeqo are respectiveley the median value of the three road
pixels and the median value of the six background pixels.

0 if the three pixels are on a straight line

(i, 25, Tk) = { «v if the three pixels exhibit a 7/4 angle

Let a path p be defined by the series of pixels so = w;, ..., Sk, Sp+1, .-, SN = T
such that each three consecutive pixel series belongs to the domain of definition of
®. Define the energy of the path p :

U(p) = Z @(81‘_1, S, S’i+1)

Because of the definition of the cost function U, the target path p is such that :

INRIA
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~TN

Figure 3: right, the road joining two extremities given by ELIESER ; left, the corre-
sponding piece of SPOT image.

zj
]3 = arg ngn U(p) = ngn Z <I>(5,-_1, Si, 8,'4.1)
Ty
Then the problem reduces to find this minimum energy path. The minimal path
is obtained using a dynamic programming scheme. The algorithm is based on F*,
and consists in sweeping the image in four directions and performing a summation-
minimization process, using potential ® (see [11] for more details).
As a result of this step we obtain, for a given configuration of z, the expected
paths between neighboring nodes which will be used to compute the prior energy.
The prior energy is depends if the computed network, given the node configura-
tion z, is likely to be a real road network or not. Two points of view are taken into
account in the prior energy. The first one defines some geometrical aspect, and the
second one is about compatibility with the image data. This yields the expression
for prior energy :

Uap(2) = Uap,1(2) + Uap 2()

The first term expresses geometrical constraints on the network. This term aims
at avoiding that two sections joining two separated pairs of nodes merge even par-
tially, since by the definition of the graph, each couple of nodes represents a separate
section.

Some roads can be very pronounced, and thus attract unexpected pairs of nodes,
because of the very low image-dependent potential they provide. This is the reason
why this “non-overlapping” energy U,y 1(z) is needed. The potential associated to
Uqp,1(x) is equal to the number of pixels the considered section of road has in common
with the other sections of road.

The expression of Uy, 1(x) is given by :

RR n° 3939
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a) b)

Figure 4: Two possible configurations for two pairs of nodes : influence of the node
positions on the computed paths (in red) which can overlap if some nodes are too
near (right)

Uap1 Z Usl’s2 () = Z Uap,1($i,$j,$k,$l)
51,52€8 d(z;, z;) =
d(zg, z;) =

where s; = (z;, ;) is the road section joining x; and x;, s = (x,x;) the road

section joining xp and z;, and the potential is :
U7 (€) = 04

where n;; is the number of common pixels between s; and s;.

Figure 4 shows a case where the first term will penalize the fact that two roads
overlap (on the right hand side), and will favour a configuration with no overlapping,
like the left one.

The second part of the prior energy UZ,(x) is directly related to the image. It
gives a measure, for the computed path of each couple of nodes, related to how
the grey level configuration characteristics of the path in the image are road-like
characteristics.

Choosing an intuitive neighborhood system in which neighbor nodes are those
joined by a section of road, we have :

ap2 E Uap2 -731,,33] E ap,

dij=1 sES

where S is the set of road sections s and d;; the graph-distance between two
nodes x; and ;.

INRIA
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Each term Ug, ,(z) expresses the probability for the considered section s to be
situated at the current position given the image data.

A road is defined as a linear structure forming exhibiting a contrast with respect
to the background. We thus define three zones : a “road” zone, a “background” zone,
and an “intermediate” zone (to deal with different road thicknesses), as shown in
figure 5. We calculate the means of the “road” and the “background” zones. Pixels
of the intermediate zone are classified as “road” (resp. “background”) if their value
is closer to the “road” (resp. “background”) mean than to the “background” (resp.
“road”) mean.

A statistical hypothesis test between the obtained zones is then computed. This
test discriminates between the two gray level distributions. We choose the student
t test :

M1 — 2
N10’2—|—N20'2 1 1
VOO G + )
A decreasing function of the test value gives the image-dependent potential of
the considered section of road :

t_test(Dl, DQ) =

ap.2 (x) = U(t_test(D1, D))

where Dy and Dy are the “background” and the “road” grey level distributions
along path computed for section s, ¥'(x) = A\/x and ) is a parameter to be set. Using
this test for the prior energy is more accurate than using directly the energy given
by ELIESER, because the latter strongly depends on the number of pixels along the
path. For example, if ELIESER potential is positive for all series of three pixels,
this energy would have a tendency to prefer short roads, and even roads reduced to
a point.

Finally, the expression of the prior energy is :

Usp(x) = D Ugpt (@) + ) Ulpa(®)

si,SjES sES

where S is the set of road sections, that is the set of couples of nodes joined by
an edge.

4 Results

To optimize the proposed model we run a simulated annealing algorithm [13].

RR n° 3939
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Figure 5: The 3 different zones for the test : the road (in black), the background (in
grey), the intermediate zone (hatched).

Herein, we sample the field = using a Metropolis dynamics [12]. For each node
successively, we draw a new position within a window centered on this node position,
and validate or not using Metropolis dynamics :

1.

. For each node z

Initialization : T = Tp, (%) defined by the map, n = 0 and set the total number
of iterations to NIT,

(n) .

e

2.1. Choose randomly a new position y of x; within a window centered on

(n)

7

the current position x

(n)

2.2. Compute the conditional energy variation of the movement z, ' — >y

AU =U(y|N;) - U(a{"|Ny)
where NV; is x;’s neighborhood,

92.3. If AU < 0, then 2™ = 4,

i

If AU > 0, then 2{™ = y with probability p = exp(—Al),

. If n = NIT stop, else n = n+1 and T(" 1) = %T("),

+2)
Goto 2.
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Figure 6: Example of result (bottom) obtained from a shifted map (top)

Experiments are performed on SPOT satellite images using cartographic data
artificially corrupted with noise, i.e. artificially shifted, rotated or deformed.

Figure 6 shows the result with an initial map shifted by 15 pixels from the real
cartographic data. The result is the expected one, despite an important initial shift.

Figure 7 shows the result of the algorithm with an initial map rotated by 0.2
radian from the real cartographic data. The nodes have been located at the right

RR n° 3939
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Figure 7: Example of result (bottom) obtained from a rotated map (top)

place. Small errors appear in the upper right part of the image due to a very low
SNR.

Finally we introduce noise on the distances and on the angles by randomly trans-
lating each node of the initial graph within an 10 by 10 pixel window centered on
the exact position.

INRIA
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Figure 8: Example of result (bottom) obtained from a distorted map (top)

RR n° 3939
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5 Conclusion

Herein, we have proposed a model to locally register a map on a satellite image and
to improve maps accuracy. This model, based on Markov Random Fields, gives ac-
ceptable results for noisy images or road maps. The model is robust towards global
position errors of the map, for instance when there is a shift or a rotation. One in-
teresting point of the model is that the registration is done locally, and not through
a global rigid transformation. This is very useful when the map exhibits local er-
rors, for example due to generalization. Another point of interest is the coupling of
stochastic and deterministic methods, since completely stochastic methods (with sto-
chastic road detection) would have a prohibitive computational cost, and completely
deterministic methods would be very sensitive to local minima and initialization.

An open problem is still the computational time, which remains long because
of the frequent computations of the path between nodes. Also a further investiga-
tion could be the addition, and perhaps the removal of roads, for applications like
updating cartographic databases.

INRIA
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