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Abstract: Measurements from an Internet backbone link carrying TCP traffic towards different
ADSL areas are analyzed in this paper. For traffic analysis, we adopt a flow based approach and
the popular mice/elephants dichotomy. The originality of the experimental data reported in this
paper, when compared with previous measurements from very high speed backbone links, is in that
commercial traffic comprises a significant part due to peer-to-peer applications. This kind of traffic
exhibits some remarkable properties in terms of mice and elephants, which are described in this
paper. It turns out that by adopting a suitable level of aggregation, the bit rate of mice can be
described by means of a Gaussian process. The bit rate of elephants is smoother than that of mice
and can also be well approximated by a Gaussian process.
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Modélisation du trafic ADSL sur un lien dorsal IP

Résumé : On analyse dans I’ article des mesures de trafic TCP sur un backbone Internet
entre différentes plaques ADSL. Pour 'analyse du trafic, nous adoptons une approche fluide
et la dichotomie trés répandue entre souris et éléphants. L’originalité des données expéri-
mentales analysées dans ’article, comparées aux mesures antérieures sur des liens dorsaux &
trés haut débits, est que ce trafic commercial comporte une part significative d’applications
pair-a-pair. Ce type de trafic a des propriétés remarquables en termes de souris et éléphants,
qui sont décrites dans ’article. En particulier, il y a en permanence des échanges de souris
entre les membres d’un réseau pair-a-pair. Il apparait qu’en adoptant un certain niveau
d’aggrégation, le débit des souris peut étre approximé par un processus gaussien. Le débit
des éléphants varie moins que celui des souris et peut aussi étre approximé par un proces-
sus gaussien. Dans la description de chaque composante, il est remarquable que la durée
des flots puisse étre approximé par une loi de Weibull & deux paramétres, méme pour les
“mini-éléphants” dont le volume d’information suit une loi de Pareto.

Mots-clés : trafic Internet, applications pair-a-pair, métrologie
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1 Introduction

Characterization of Internet traffic has become over the past few years one of the major
challenging issues in telecommunications networks. As a matter of fact, understanding the
composition and the dynamics of Internet traffic is essential for network operators in order
to offer quality of service and to supervise their networks. Since the celebrated paper by
Leland et al [11] on the self-similar nature of Ethernet traffic in local area networks, a huge
amount of work has been devoted to the characterization of Internet traffic. In particular,
different hypotheses and assumptions have been explored to explain the reasons why and
how Internet traffic should be self-similar (see for instance [7, 9]).

A common approach to describing traffic in a backbone network consists of observing
the bit rate process evaluated over fixed length intervals, say a few hundreds of milliseconds.
Long range dependence as well as self-similarity are two basic properties of the bit rate
process, which have been observed through measurements in many different situations. Dif-
ferent characterizations of the fractal nature of traffic have been proposed in the literature
(see for instance Norros [13] on the monofractal characterization of traffic and Levy-Véhel
[16], Abry et al [2] on the multifractal properties of traffic). An exhaustive account to fractal
characterization of Internet traffic can be found in the book by Park and Willinger [14].

Even though long range dependence and self similarity properties are very intriguing from
a theoretical point of view, their significance in network design has recently been questioned
in the paper by Cao and Ramanan [5], where it is shown that the overflow probability in
a buffer fed with the superposition of a large number of flows satisfying some reasonable
regularity assumptions can be well approximated by that obtained when the input process
is Poisson. While the above result may not be directly applicable in an access network with
limited transmission capacities, the assumption of a large number of flows is reasonable
on a high speed backbone link and are in favor of using a simple M/G/1 queue for buffer
dimensioning in a backbone network composed of gigarouters.

While self-similar models introduced so far in the literature aims at describing the global
traffic on a link, it is now usual to distinguish short transfers (referred to as mice) and long
transfers (referred to as elephants) [15]. This dichotomy was not totally clear up to a recent
past (see for instance network measurements from the MCI backbone network [6]). Yet, the
distinction between mice and elephants become more and more evident with the emergence
of peer-to-peer (p2p) applications, which give rise to a large amount of traffic on a small
number of TCP connections, as it will be shown in the following.

In this paper, we analyze TCP traffic on an Internet backbone link collecting data in
direction to several ADSL areas. The primary goal of this paper is to draw attention to
several salient features of ADSL traffic. In particular, we consider commercial traffic, which
comprises a significant part of p2p traffic, giving rise to very large elephants.

The above observation leads us to analyze ADSL traffic by adopting a flow based ap-
proach and more precisely the mice/elephants dichotomy. The intuitive definition of a mouse
is that such a flow comprises a small number of packets so that it does not leave or leaves
slightly the slow start regime. Thus, a mouse is not very sensitive to the bandwidth sharing
imposed by TCP. On the contrary, elephants are sufficiently large so that one can expect
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4 Nadia Ben Azzouna, Christine Fricker and Fabrice Guillemin

that they share the bandwidth of a bottleneck according to the flow control mechanism of
TCP. As a consequence, mice and elephants have a totally different behavior from a modeling
point of view.

The organization of this paper is as follows: Basic definitions are given in Section 2.
Mouse traffic is analyzed in Section 3 in the case of non p2p mice and in Section 4 in
the case of p2p mice. Elephant traffic is described in Section 5. Finally, some concluding
remarks are presented in Section 6. Theoretical results concerning convergence to Gaussian
processes as well as the computation of auto-correlation functions and spectral densities are
deferred to the Appendix.

2 'Traffic analysis

2.1 Definitions and notation

Throughout this paper, we consider a 1 Gbps link between the France Telecom IP backbone
network and several ADSL areas. Traffic originated or in direction to these different ADSL
areas is multiplexed on this single link. In the following, we observe TCP traffic from the
IP backbone network towards the ADSL areas (downstream traffic). It is worth noting that
traffic local to an ADSL area cannot be observed in the collected data.

To analyze traffic characteristics, we adopt the mice and elephants dichotomy. Before
proceeding further, we have to emphasize the fact that there is no commonly adopted def-
inition for a mouse. A mouse is intuitively a data transfer, which does not leave or leaves
slightly the slow start period. In fact, a mouse is a short time transfer, which has no time
to adapt to network conditions according to the fairness criterion imposed by TCP.

As a convention, we adopt in this paper the following definition: a mouse is a data
transfer comprising a number of packets less than or equal to 20; a flow is terminated when
no packets of the flow have been observed for a time period of 5 seconds. Other definitions
for mice are possible; for instance in the paper by Zhang et al [17], a small data transfer
contains at most 10* bytes. If the MTU is equal to 1500 bytes, 10* bytes roughly correspond
to 8 packets. The value of 20 packets is chosen because if we assume that the maximum
congestion window size is 8Kbytes and if there is an ACK for each packet received by the
destination, then about 15 packets are necessary to hit the maximum congestion window
size at the end of the slow start phase.

The timer of 5 seconds may appear at first glance very sharp. However, since we intend
to describe the bit rate of mice, we have to consider the time period when the mouse is
active (i.e., when some packets of the mouse are transmitted). Long mice are mostly due
to FIN segments, which arrive quite a long time after the last data segment or single SYN
segments, which eventually do not initiate any data transfer. This introduces some bias in
the evaluation of the duration of mice. To avoid this phenomenon, we use the 5 second timer
to remove segments, which are too far away from data segments. The counterpart of this
method is that single packet mice artificially appear.

INRIA
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Figure 1: Flows on a backbone link.

The flow size distribution is displayed in Figure 1(a). It turns out that the majority of
flows comprise less than 1000 bytes and actually correspond, as shown in the following, to
mice. Even though these flows are the most numerous, they contribute a very small pro-
portion of the total amount of traffic, as shown in Figure 1(b) representing the distribution
of X;/Z,, where {X;} is the amount of traffic due to mice and {Z;} is the global bit rate
process. Mice actually contribute about 6% of global traffic but represent more than 97%

of the total number of flows.

Finally, more than 49% of traffic is due to p2p applications (Kazaa, Morpheus, Edonkey,
Gnutella, etc.), as shown in Table 1. The significant proportion of p2p traffic gives rise to
remarkable phenomena, which are described in the next sections.

RR n° 4909

Applications percentage
non p2p http 14.6
ftp 2.1
nntp 1.9
others 31.8
total non p2p traffic 50.4
p2p Edonkey 37.5
Kazaa&Morpheus 7.8
Napster 3.8
Gnutella 0.5
Total p2p traffic 49.6

Table 1: Composition of ADSL traffic per application.
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2.2 First observations

Figure 2 displays the distribution of the number of packets and bytes comprised in a mouse.
It turns out that most of mice comprise less than 1000 bytes and as stated in the previous
section, most of flows are indeed mice (see Figure 1(a)).
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Figure 2: Characteristics of a mouse.

From Figure 2, we also observe that a large number of mice are composed only of one
or two packets. Single packet mice are Reset segments, SYN segments, which are not really
associated to a mouse because of transaction interruption or very long response times by
servers, or FIN segments, which arrive far away from the last data segments and which
appear as single packet mice because of the 5 second timer used to terminate a mouse.
Moreover, a large number of single packet mice are generated by p2p protocols.

Two packet mice are composed of SYN and FIN segments only. This is due to the fact
that a large number of TCP connections (associated with HTTP transactions for instance)
are opened and immediately closed or not used at all; this may be caused by too long
response times by servers, which lead users to interrupt their transactions, or by the fact that
certain implementations of HTTP systematically opens several TCP connections in parallel.
Actually, only a small number of mice carry useful information (data segments). This
phenomenon has to be taken into account when characterizing the mouse arrival process, as
shown in the following.

When analyzing more carefully the generation process of mice, it turns out that mice
generated by p2p protocols exhibit a behavior, which is quite different from that of other
mice (regular mice related to usual applications using TCP, such HTTP, ftp, etc.). This is
why we analyze the two types of mice separately. Note that since mice are not sensitive
to TCP fairness, global mice traffic is the superposition of p2p and non p2p mice traffic;
these two types of traffic do not really interact one with each other and can be analyzed
separately.

INRIA
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3 Non p2p mouse traffic

In this section, we analyze mice, which are not generated by p2p protocols, i.e., with port
numbers different from 1214 (Kazaa), 4662 (Edonkey), 6346 (Gnutella) and other p2p pro-
tocol port numbers. The objective of this section is to describe the bit rate process of those
mice and to propose a probabilistic model approximating this process.

3.1 Observation of the bit rate process

Let X denote the number of bits due to non p2p mice in the time interval (nA, (n + 1)A]
divided by A = 100 ms. The process {X™} representing the “instantaneous” bit rate offered
by non p2p mice is highly varying as displayed in Figure 3(a); { X™} has been observed over a
time period of 4900 seconds between 1:27 pm to 2:51 pm; only a time interval of 700 seconds
is displayed in Figure 3(a). The empirical distribution of X is displayed in Figure 3(b).
As it will turn out in the following, the process {X[} can indeed be approximated by a
Gaussian process.
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Figure 3: Instantaneous bit rate and stationary distribution of the bit rate process {X}
estimated over time intervals with length A = 100 ms.
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Explaining the form of the sample path of the process {X} requires an in-depth de-
scription of non p2p mouse traffic. This is done in the next sections.

3.2 Mice arrival process

In a first step, we have observed arrivals of individual mice. The mouse inter-arrival time is
remarkably exponential and the mouse duration is Weilbull as shown in Figure 4, where the
complementary distribution function (cdf) of the inter-arrival time and that of the duration
of mice are displayed. The inter-arrival time can be approximated by an exponential random
variable with mean 0.003578. The cdf of the mouse duration S can be well approximated by
a Weibullian distribution with zero location parameter, scale parameter n = 1.035 and skew
parameter S = 0.673034; the mean mouse duration is equal to 1.39 s (which is very close to
the theoretical value nI'(1 + 1/8) = 1.36, I'(z) denoting the Euler Gamma function). This

means that
s
P(S > x) ~ exp (- (%) ) . 1)

0.001

0.0001 0.001 =
0 0005 001 0015 002 0025 003 0035 0 5 10 15 2

(a) Inter-arrival time (b) Duration

Figure 4: Complementary distribution functions of the inter-arrival time and the duration
of non p2p mice.

At first glance, one may conclude that mice arrive according to a Poisson process. How-
ever, when we compute the stationary distribution of the number of active mice at an
arbitrary instant, we should obtain a Poisson distribution if the mouse arrival process were
Poisson (namely, the stationary distribution of the number of customers in an M/G/c0
queue). In particular, the variance should be equal to the mean value. However, experi-
mental data show that this last property is not verified. We specifically have the mean and
the variance equal to 372 and 566.12, respectively. This is sufficient to show that the mouse
arrival process is not Poisson.

To overcome this problem, we note that, as mentioned in the previous section, mice are
actually not independent. In reality, for a same destination IP address, a certain number of

INRIA
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mice arrive near one to each other, forming what we call in the following a macro-mouse. We
specifically define a macro-mouse as a set of non p2p mice, which have the same destination
address and which arrive within a rather short time interval, say with a length of 1 second;
moreover, we impose that a macro-mouse comprises more than one packet.

The inter-arrival time of macro-mice is displayed in Figure 5(b) and the distribution of
their duration is displayed in Figure 5(a). Their inter-arrival time is exponential with mean
1/Am = 0.00562. The probability distribution of the duration of a macro-mouse can be well
approximated by a two parameter Weibullian distribution with scale parameter 7, = 1.78
and skew parameter §,, = 0.8; the mean duration of a macro-mouse is E[S] = 2.136 seconds
(the theoretical value is 7, I'(1 + 1/8,,) = 2.01 s). Finally, the distribution of the number
of mice in a macro-mouse is displayed in Figure 5(c); the mean value is equal to 2.27.

T
Empirical distribution ——
Approximation -~

001
0.001

0.0001
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0.001 =
0 15 20

(a) Duration (b) Inter-arrival time

045

035

03

/
/
|
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[

|

]

I

02
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0.05

(¢) Number of mice in a
mMacro-mouse

Figure 5: Characteristics of a mouse group.

When computing the stationary distribution of the number of macro-mice active at a
given instant (stationary distribution at an arbitrary instant), we get a Poisson distribution
(see Figure 6). Moreover, we have computed the distribution of the number of macro-mice
active at the arrival time of a macro-mouse (distribution at arrival instants). It turns out
that these two experimental distributions are almost indistinguishable. As a consequence,
we have the celebrated ASTA (Arrival See Time Averages) property. In view of the classical
ANTIPASTA results [4], it is then reasonable to conjecture that the macro-mouse arrival
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process is Poisson. Of course, the Poisson process verifies ASTA; this is the well known as
PASTA (Poisson Arrival See Time Averages) property. In Figure 6, the theoretical Poisson
distribution with mean AE[S] has been plotted to illustrate the coincidence of the different
distributions.

T T
arbitrary instants
arrival instants -----
theoretical ------

./

0
250 300 350 400 450 500 550

Figure 6: Distribution of the number of active macro-mice at arbitrary and arrival instants.

Thus, in spite of the fact that the individual mouse arrival process is not Poisson, group-
ing mice in an adequate manner yields a Poisson process. We then proceed wit the descrip-
tion of the bit rate process on the basis of macro-mice.

3.3 Bit rate process of mice

When we consider the bit rate created by macro-mice, we can adopt a fluid flow approach.
More precisely, by neglecting discrete packet arrivals, we assume that the bit rate of a
macro-mouse is constant and equal to the total number of bits divided by the duration of
the macro-mouse. We then get the fluid approximation of the bit rate of the macro-mouse.
The key point is in that since the mean arrival rate A,, &~ 178 of macro-mice is large, the
fluid bit rate {A*} of macro-mice, defined by

AP =Y

JEA:

where Ay is the set of macro-mice active at time ¢ and Yj is the fluid bit rate of the jth macro-
mouse, can be approximated in distribution by a Gaussian process, which auto-correlation
function is perfectly known (see Appendix). The fluid bit rate over the nth time interval
with length A is defined by

B 1 (n+1)A
ATV = — ATds. (2)
n A ,nA 8

Once we have computed the fluid bit rate process {A”}, we can reasonably assume that
discrete packet arrivals give rise to a white noise since the number of packets is very large.

Thus, the actual bit rate process {X™} of macro-mice should be equal to the fluid bit rate

INRIA
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process {/LT} perturbed by a white noise. To validate this approach, we use a Kalman filter
to eliminate the white noise altering the actual bit rate process.

For this purpose, we compute the mean and the variance of the difference of the actual
bit rate process {X™} and the approximating process {A™}. Experimental data give the
mean and the standard deviation equal to d,,, = 372 bit/s (negligible when compared with
the mean bit rate) and o, = 840 Kbit/s, respectively. On the basis of these experimental
mean and standard deviation, the actual bit rate has been filtered by a Kalman filter, to

~m = ~
give the process {X,, }. The comparison between {X,} and the process {A”} is illustrated
in Figure 7. It appears that the filtered bit rate and the fluid bit rate are very close one to
each other and we may reasonably approximate the actual bit rate process {X™} as

Xm = A" + opmen
where {e,} is a standard white noise.

6e+06

T T
Filtered bit rate
Fluid approximation ------

5.5e+06

5e+06

4.5e+06 [ttt

40406 [ 1|

3.5e+06

3e+06

2.5e+06
1000 1005 1010 1015 1020 1025

Figure 7: Filtered bit rate process {)NZ' :} and fluid approximation.

Let us now consider the fluid bit rate process. Since the length A of the integration
interval in equation (2) is small, one may expect that A7' ~ A7\. It follows that the
auto-correlation function cg.. (£) of the process {A])'}, defined by
B cov[f\ﬁf\z’ij)]

Var[f\m

Cxm s

should be close to cam(£A), where cam(h) is the autocorrelation function of the process
{A["}, given by (see Appendix)

cam (h) = E[Y;3 (Sm — h)]/EY,7 S,

where Y,,, and §,,, denote the fluid bit rate and the duration of a macro-mouse, respectively.

Of course, the bit rate of a macro-mouse depends upon its duration. The conditional
density of bit rate Y;, for different values of the duration S,, is given by Figure 8. It turns
out that for a fixed value of S,,, the distribution of Y;, can be well approximated by a
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gamma distribution. Moreover, it is experimentally observed that E[Y,2 | S,,] is almost a
constant. For the different values of S, used in Figure 8, E[Y,2 | S,,] € [3.10%,3.10°]. In the
following, to simplify the computations, we assume that E[Y,2 | S,,] is a constant equal to
km = 1.5.10°. As a consequence, we have

cam (h) ~ %ﬁm
=1—P(1/Bm, (h/nm)"™), (3)

where we have taken into account the fact that the distribution of S, has the form given
by equation (1) and P(a, z) is the incomplete Gamma function [1] defined by

1 T
P(a,z) = m/o e “u® ldu.

0.6

0.5

0.4 =41

03 -

) 5000 10000 15000 20000

Figure 8: Conditional distribution of the bit rate process Y, of a mouse (in bit/s) for
different values of the macro-mouse duration S,,.

Finally, it remains a fraction of single packet mice, which are not included in macro-
mice. The bit rate created by these mice is very small (a few tens of Kbps). The station-
ary distribution of this residual bit rate process {X™} is given in Figure 9(a) and can be
very well approximated by a Gaussian distribution with mean dm = 3,668 bit/s and stan-
da:rd deviatiop Gm = 606.8 bit/s. It can be checked by consi(iering linear combinations of
(X5 -+ > X4y, ) for arbitrary €1, ... , £k that the process {X™} is indeed Gaussian, with
an autocorrelation function displayed in Figure 9(b). It turns out that there are almost no
correlations and that the process {X™} can be represented as X™ = dp + Gmén, wWhere
{en} is a standard white noise.

By taking into account the above results and assuming independence between the differ-
ent white noise processes, we come up with the conclusion that the non p2p mouse bit rate
can be represented as

X7 = A" + £,\/02, + 62, + dpy + dpm, (4)

INRIA
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Figure 9: Characteristics of the residual bit rate {X™}.

where {¢,} is a standard Brownian motion and {A”} is a Gaussian process with mean
E[A7?] = 4.411 Mbit/s, standard deviation o5,» = 591.34 Kbit/s, and autocorrelation func-
tion given by equation (3).

To check the above representation for the bit rate process, we compute the spectral
density ¢xm of the chronological series { X'}, forn = 0,1,2,... defined by cov[X}", X", ,] =
[T _€*"pxm(z)dz. The quantity cov[X7"X™ ] is computed by averaging XX , for
n=1,2,... , M where M is the total number of samples. From equation (3), we have

27T¢Xm (117) ~ 072n + 5—72n + QWmeL"‘ (.Z'),

where ¢ is the spectral density associated with the process {L\}, L{* denoting the
number of macro-mice active at time ¢. It then follows that for z € [—n, 7], we should have

Vxm (@) A) ~ (o7, + 67,)/(27) + Kim Apm (2),

where 1, is the spectral density of the process {L{*} and is given by Proposition 2 in the
Appendix. Note that the motivation for using spectral densities is in that such functions are
more robust to possible non stationary phenomena and characterize chronological series.

The comparison between ¢ x=(./A) obtained by filtering the white noise and &, A1)y, is
illustrated in Figure 10. It is clearly appears that the two spectral densities are very close
one to each other. This validates representation (4) for the bit rate of non p2p mice.

4 P2p mouse traffic
To describe the bit rate process of p2p mice, we proceed as in the previous section by

introducing macro-mice via the aggregation of p2p mice according to some criterion and
over an adequate time interval.

RR n° 4909
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Figure 10: Comparison of spectral densities for non p2p mice.

4.1 Introduction of p2p macro-mice

We analyze in this section the traffic offered by p2p applications, i.e., mice with a port
number corresponding to a p2p protocol. Figure 11(a) represents the number of active
p2p mice. The empirical complementary probability distributions of the inter-arrival time
as well as the duration of p2p mice are displayed in Figures 11(b) and 11(c), respectively.
While the p2p mouse inter-arrival time is remarkably exponential, it clearly appears that
the process counting the number of active p2p mice is composed of “bursts” as shown in
Figure 11(a). This indicates that the p2p mouse arrival process is not Poissonian. To
complete the characterization of p2p mice, we note that the cdf of their duration can be
approximated by a two-parameter Weibullian distribution with scale parameter n = 2.8 and
skew parameter 3 = 1.03. Finally, the size of p2p mice is rather small (in general less than
8 packets).

As in the previous section, we are led to group mice comprising more than one packet
according to some criterion. At a first glance, we may group p2p mice according to their
source address. Intuitively, this criterion corresponds to the fact that a member of a p2p
network seeking a content sends requests to different nodes. But this level of aggregation is
not sufficient because the process counting the aggregated p2p mice on the basis their source
address remains quite irregular. In fact, the search for a content and the transmission of
requests give rise to response messages by the users connected to the p2p network. Hence,
a second level of aggregation consists of grouping the aggregated p2p mice on the basis of
their destination address.

This second level of aggregation gives rise to macro p2p mice, which are composed of
p2p mice with the same IP source address and/or the same destination address and arriving
in a time interval of § = 1 second. Note that § is a critical parameter since p2p mice are
aggregated over time intervals of § seconds, which should correspond to the time needed to
send requests and get answers by the different members of a p2p network.

The cdf of the inter-arrival times and the duration of p2p macro-mice are given in Fig-
ure 12(b) and 12(a). It turns out that the inter-arrival time is remarkably exponential with
mean 1/, = 0.00174.
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(a) Number of active p2p mice
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Figure 11: Characteristics of p2p mice in terms of the cdf of the duration and the inter-arrival
time, and the number of active p2p mice over time.

Moreover, the macro-mice duration can be approximated by a two parameter Weibullian
distribution with skew parameter 8, = 1.1927 and scale parameter 7, = 3.898; the mean
value of the duration is E[S,,] = 3.55 s (which is close to the theoretical value n,I'(1+1/3,) =
3.67 s). Finally, the distribution of the number of p2p mice in a macro-mouse is displayed
in Figure 12(c); the mean number of p2p mice in a macro-mouse is 3.43.

To check that the process counting p2p macro-mice is Poisson, we compute the distri-
bution of the number of active p2p macro-mice at an arbitrary instant and the distribution
of the number of active macro-mice at the arrival instant of a macro-mouse. These two
distributions are given in Figure 13 and are very close one to each other. It follows that we
may reasonably assume that the p2p macro-mouse arrival process is Poissonian.

4.2 Bit rate of p2p macro-mice

From a theoretical point of view, p2p macro mice can be described as Poisson clouds. But,
for characterizing their offered bit rate, we can consider as in the previous section the fluid
bit rate {A}'} of p2p macro mice. We then assume that the exact bit rate can then be
roughly approximated by the fluid bit rate perturbed by a white noise; this latter white
noise is due to discrete packet arrivals.

To check the above assumption, we compute the mean and the standard deviation of the
difference between the bit rate {X#} of p2p macro-mice and the fluid bit rate {A#} over the
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Figure 12: Characteristics of p2p macro-mice (cdf of duration and the inter-arrival time,
and number of p2p mice in a macro-mouse).
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Figure 13: Distribution of the number of active p2p macro-mice at arbitrary and arrival
instants.
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nth time interval with length A defined as in equation (2). These two quantities are equal
to d, = 76.471 Kbit/s and o, = 165.86 Kbit/s, respectively. We then use a Kalman filter

~ =~ ~
to obtain the filtered bit rate {X,,}. Ideally, the two processes {X,} and {A, +d,} should
be very close one to each other. This is illustrated in Figure 14. Since the two processes are
reasonably close one to each other, we can then approximate the process {XF} as

Xt = At o0 +d,,
where {e,} is a standard white noise.

2.4e 106

T T
Filtered bit rate
id approximation -----

2.35e 106

2.3e 106

2.25e 106

2.2e 106 [
2.15e 106 (VY

21106 [

2.05¢106 |

2e 106

1.95e + 06

1.9e 106
1000 1005 1010 1015 1020 1025

Figure 14: Comparison of the filtered bit rate process of p2p macro-mice and the associated
fluid bit rate.

Finally, as in the previous section, it remains a residual bit rate due to single packet p2p
mice. We admit without further details that this residual bit rate is a white noise with mean
d, ~ 4 Kbit/s and standard deviation &, = 432.35 bit/s.

As a consequence, in view of the above results, we have the following representation for

the bit rate of p2p mice
Xt =R+ )02 +62e, +d, +dy, (5)

where {e,,} is a standard white noise. The process {A#} is Gaussian process with mean
E[A#] = 1.992 Mbit/s and standard deviation o5, = 70.075 Kbit/s. ({A%} is Gaussian
because A\, = 574 is large - see Appendix.)

To check the above representation, we compute the spectral density of the process {X#}
and that of the process on the right hand side of equation (5). As in the previous section,
as far the auto-correlation function is concerned, we have A% ~ A*, and then the autocor-
relation function of the process {A%} can be approximated by cax (nA), where cau (h) is the
autocorrelation function of the process {A}'}, given by

E[Y,2(Sy — h)*]
can(h) = ]E[Y—HQS];
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Y,, and S, denoting the bit rate and the duration of a p2p macro-mouse, respectively.

To compute the above auto-correlation function, we need estimate E[Y,? | S,]. The
function s — IEl[YH2 | S, = s] is illustrated in Figure 15. To simplify, we assume in the
following that E[Y,? | S,] is a constant (equal to &, = 1.0¢7). Hence, for computing the
auto-correlation function of the process {A}'}, we assume that E[Y'? | S = s] is a constant
(equal to k) and we get

E[(S, — )]

CAr (h) ~

the autocorrelation function of the process {A#} is approximated as ¢z, (£) ~ cau(£A).

let13

let12

let1l

let10

let09

let08

let07

1e+06
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 15: Graph of the function s — E[Y'2 | S].

To verify the above approximations and representation (5) for the bit rate process of p2p
mice, we compute the experimental spectral density of the process {X#} and the theoretical
density given by

2 4 22
o, +0
HTW# + HuA¢u($)a

where 1, (z) is the spectral density of the process {L}'} describing the number of active
macro-mice over time. Unfortunately, the exact spectral density v,(z) (given by equa-
tion (16) in the Appendix) is very difficult to compute numerically. Only the approximating
function given by equation (18) is displayed in Figure 16. It turns out that the approximat-
ing function and the empirical spectral density are reasonably close one to each other and
we may then conclude that representation (5) is valid.

5 Characteristics of elephants

In this section, we investigate the bit rate created by elephants. We proceed as in the
previous sections via the identification of the spectral measure associated with the bit rate
process.
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Figure 16: Spectral density of the filtered bit rate process and approximation by the function
kA, (z).

5.1 First observations

Figure 17 displays the global bit rate due to elephants on the link. The first observation we
can make is that the bit rate of elephants is larger and much smoother than the bit rate of
mice (see for instance Figure 3(a)). In fact, the bit rate of elephants is oscillating around a
mean value.

Figure 17: Bit rate created by elephants.

While it is usually assumed that elephants share the transmission capacity of a bottleneck
link according to some fairness criterion (max-min or proportional fairness), we first have to
draw attention to the fact that certain elephants are by nature with a very small bit rate.
This is typically the case of elephants composed of ACK segments generated by a terminal
retrieving data. In the case considered in this paper, since we observe downstream traffic,
ACK segments correspond to data retrieved from a host connected to one of the ADSL areas
connected to the IP backbone via the observed link.

To distinguish those elephants mainly composed of ACK segments, we have fixed a
threshold for the mean value of the length of packets comprised in an elephant. If the mean
packet length is less than 80 bytes, this certainly means that the elephant is essentially
composed of ACK segments and its bit rate is small. Those elephants, referred to as ACK
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elephants, represent a small fraction of the global bit rate of elephants (about 1 Mbit/s
against 100 Mbit/s for the global elephant bit rate).

Figure 18 represents the spectral density of the bit rate created by ACK elephants. As
a first approximation, we note that the spectral density rapidly becomes a constant and
thus it may reasonably be assumed that the bit rate created by ACK elephants is a white
noise. This assumption is all the more motivated by the fact that the contribution of ACK
elephants to the global elephant bit rate is negligible. Nevertheless, around the origin, the
spectral density is not constant and this phenomenon could be due to several reasons (non
stationarity, dependencies in the bit rate created by ACK elephants, or maybe long range
dependence).

let1l

let10

o109 AR W T INR

1e108 L L L
0

Figure 18: Spectral density of the bit rate created by elephants composed of ACK segments.

In the following, we focus our attention to ‘“regular” elephants, that is, elephants which
are not ACK elephants. When observing the dynamics of such an elephant, we note that
the transmission of packets is not regular but is interrupted for a few seconds, starts again
with a few packets before the transmission of a larger number of packets, and so on. This
phenomenon may be due to congestion (lost packets followed by slow start periods), to the
regulation of the source by the destination, etc. Hence, we are led to cut elephants into mini-
elephants and elephant mice. A mini-elephant is composed of a number of packets larger
than 20 packets and a mini-elephant is terminated when no packets of the mini-elephant
have been observed for a time period of 20 seconds. Elephant-mice are groups of packets of
an elephant, which do not belong to mini-elephants and which are composed of less than 20
packets.

5.2 Bit rate of mini-elephants

Let {X™¢} denote the bit rate process created by mini-elephants, where X™¢ is the number
of bits due to mini-elephant over the interval (nA, (n+1)A] divided by A. In a first step, we
compute the fluid bit rate associated with mini-elephants, which is equal to the number of
bytes contained in a mini-elephant divided by its duration. This gives rise to the continuous
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time fluid bit rate process {A**}. Moreover, we compute the fluid bit rate process {A7¢}
over the time intervals (nA, (n 4+ 1)A] for n = 0,1,2,... as in equation (2).

We then calculate the mean and the variance of the difference between the fluid bit
rate process {A7¢} and the actual bit rate process { X/¢}; these two quantities are equal to
dme = 18 Kbit/s and 0., = 3 Mbit/s, respectively. On the basis of these two values, we then
use a Kalman filter to eliminate the white noise due to discrete packet arrivals and altering
the actual bit rate process {X¢}; this gives rise to the filtered bit rate process {X™¢}.
The comparison between the filtered bit rate process {X™¢} and the fluid bit rate process
{Ame} is illustrated in Figure 19. Tt turns out that these two processes are reasonably close
one to each other (the maximum relative error is about 1%).

1.02e+08

T T
Filtered bit rate
Fluid i i

1.015¢+08 !

1.01e-08

1.005e+-08

le+08

995607 |-/ [\VN

9.90+-07 i

9.85e+-07
1000 1005 1010 1015 1020

Figure 19: Fluid bit rate vs. filtered bit rate of mini-elephants.

The distribution of the size of mini-elephants (expressed in bits) is illustrated in Figure 20.
It turns out that the distribution of the mini-elephant size B can be well approximated by
a Pareto distribution as
P{B >z} ~a/(c+x)°

with a = 6.447e12, b = 2.14 and ¢ = 1.66¢6; the theoretical mean a/((b — 1)c®~!) and the
experimental mean are equal. This Pareto property is in line with previous measurements
from IP backbone links [7].

T T T
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Figure 20: Distribution of the size of mini-elephants (in bits).
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Figure 21: Probability distribution function of the number of active mini-elephants at an
arbitrary instant and that seen by an arriving mini-elephant.

Moreover, the distributions of the number of active mini-elephants seen at an arbitrary
instant and that seen by an arriving mini-elephant are given in Figure 21. It turns that
these two distributions are very close one to each other and one may reasonably assumed
that the mini-elephant arrival process is Poisson, with intensity A\, = 26.4 s~ 1.

Contrary to mice studied in the previous sections, mini-elephants, which are themselves
included in elephants, are sufficiently large to be in congestion avoidance regime and one
may then expect that mini-elephants share the bandwidth of the network according to the
TCP control loop. But, we have to draw attention to the fact that the observed link carry
a large number of elephants, which may be bottlenecked somewhere else in the network,
in particular in the access network. Therefore, using an M/G /oo model as in the previous
section may not be so far from the reality. To check this assumption, we compute the
spectral density of the bit rate process and we compare it with the theoretical one obtained
by using an M /G /oo model.

By using the same arguments as in the previous sections, we have A™¢ ~ AR, We
then approximate AKX as \/KmeLnA for some kpe > 0, where L™ is the number of mini-
elephants active at time t. As a consequence, the spectral density ¥ xme of the bit rate
process {X*¢} should be related to the spectral density = of the process {L75} as

2

Yxme (@) ~ T2+ Rinethime (2); ©)

experimental data show that k,,. = 5.6€9.

Furthermore, it turns out that the duration of mini-elephants can be well approximated
by a two-parameter Weibullian distribution with the scale parameter n,,. = 0.466 and skew
parameter B, = 126.88, as shown in Figure 22. Now, by using the M/G/oo assumption,
we can approximate ¥rme by ¥, given by equation (15) for the parameters A, Bme and
Nime- We then come up with the approximation

Pxme(T)A) ~ 02,/ (27T) + Kme Ame(T). (7
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This approximation is illustrated in Figure 23, where we have considered the filtered
bit rate; this amounts to removing the term o2,,/(27) in equation (7). Numerical evidence
shows that the spectral densities are in good agreement and hence, the M/G /oo model
can be used to described the superposition of mini-elephants. This is certainly due to the
fact that the observed link is actually not overloaded or that mini-elephants are constrained
somewhere else in the network.
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Figure 22: Cdf of the duration of mini-elephants.
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Figure 23: Comparison between the spectral density of the filtered bit rate process {X,}
and Kme ApTe.

5.3 Bit rate of elephant mice

In this section, we deal with elephant mice. Such a mouse is a group of packets of an
elephant, which do belong to a sustained transmission phase of the elephant. To describe
the bit rate process {X£™}, we proceed as for other mice. The distribution of the duration
of elephant mice can be approximated by a two parameter Weibullian distribution with
scale parameter 7., = 16.94 and skew parameter (., = 0.76. Moreover, by computing the
distributions of active elephant mice at an arbitrary instant and at arrival instant, we can
show that the elephant mouse occurrence process can be assumed to be Poisson.
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By using the same technique as for mice and in particular a Kalman filter with mean
derm, = 45 Kbit/s and variance o.,, = 180 Kbit/s, we can approximate the spectral density
of the bit rate process created by elephant mice as

PYxem(T/A) = Uzm/(%") + Kem Athem (2), (8)

with Kem = 6€8, Term = 180 Kbit /s and 1en, () given by equation (15) with Ae, = 23.35s71,
Nem = 16.94 and B = 0.76. This approximation is illustrated in Figure 24, where the spectral
density of the filtered elephant mice bit rate process and the approximation KemAtem ()
are displayed. For elephant mice, we have taken a sampling period A = 500 ms in order to
obtain a sufficient amount of data generated by mice elephant over each sampling interval.
The above approximation, even though not very accurate, is reasonable.

le+11 T
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1e+09 K
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Figure 24: Spectral density of the filtered elephant mice bit rate process and the approxi-
mation kAu(x).

5.4 Synthesis of the global bit rate

From the previous sections, we come up with the following representation of the bit rate
process { X2} of elephants:

Xg = A" + X0 + AS™ + 06y + de, (9)
where

e {X2°k} is the bit rate process of ACK elephants, that we can assume in a first ap-
proximation to be of the form dgcr, + gcren, where {e,} is a standard white noise,
Oack = 71.6 kbit/s and dy.;, = 1 Mbit/s,

o {A7¢} is the fluid bit rate of mini-elephants, which is Gaussian with mean 99.65 Mbit /s
and spectral density &meAtme(Ax),

e {A2™} is the Gaussian process associated with the fluid bit rate of elephant mice, with
mean 963.6 Kbit/s and spectral density KemAtem (Ax),
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e {e,} is a standard white noise and
Te =\ 0% + Ornes

e d. is a constant equal to dey, + dpme = 63 Kbit/s.

More generally, when we consider the global bit rate {X,}, we can approximate {X,}
as the superposition of several Gaussian processes and a white noise; each of these Gaussian
processes describe one component of global traffic: p2p mice, non p2p mice, elephant mice
and mini-elephants. We specifically have

X, = 1~\n + oen,

where {¢,,} is standard white noise, {A,,} is a Gaussian process with mean about 108 Mbit /s
and with spectral density Ay (Azx), with

w(x) = "mem(m) + ”H’lpﬂ(x)
+ KEmeWme (37) + Hem¢em(m) (10)

and

— 2 72 2 72 2 2 2
o= \/0m+am+ou+au+ome+oem+aack ~ Ome-

It is worth noting that while mini-elephants offer the prevalent part of traffic, no term
in the sum on the r.h.s. of equation (10) is dominant. In particular, K., ¥, and Kmpe¥me are
comparable, especially around the origin. Hence, when computing the global spectral density
of the global bit rate {X,}, adequate filtering should be performed in order to recover the
relevant traffic characteristics (for instance the arrival intensities of mice and elephants as
well as the mean bit rate experienced by elephants). This point will be addressed in further
studies.

6 Conclusion

We have analyzed in this paper TCP traffic delivered by an IP backbone network to several
ADSL areas. One salient feature of the observed traffic traces is in that a significant part
of global traffic is due to p2p applications, which exhibit some remarkable properties, in
particular with regard to the number of mice, which are permanently exchanged between
the different members of a peer-to-peer network.

It is possible to decompose traffic into several components on the basis of the mice/elephants
dichotomy. By analyzing each component separately and by adopting an adequate level of
aggregation, it is possible to describe each component by means of a Gaussian process per-
turbed by a white noise. In the description of each component, it is quite remarkable that
the duration of flows can be well approximated by a two parameter Weibullian distribution,
even in the case of mini-elephants in spite of the fact that their volume of information follows
a Pareto distribution.
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A Proofs of technical results

A.1 Calculation of autocorrelation functions

Let t,, be the nth point of a Poisson process with intensity A. Consider a sequence {(Y,, S,)}
of i.i.d couples of random variables taking values in R, x Ry ; note that Y,, and 5,, may be
correlated. Let {A;} be the process defined by

[o.0]
Ay = Z Yo, <t<tn+5.}

n=0

Note that A; = N(f;) where N is a Poisson process with intensity Adu ® P(y,g)(dy,ds),
with Py g)(dy,ds) denoting the joint probability density function of the couple (Y1, S1),
and where f is defined by
ft(u7 Y, 5) = y][At (’U,, 5)
with
Ay ={(u,s):u<t, u+s>t}

Then, the following lemma is an elementary result on Poisson processes.

Lemma 1 If N is a Poisson process with intensity u, then for all measurable functions f

and g
E(e™*N) = exp (— /(1 - e—sf)du)

and

cov(N(f),N(9)) =/fgdu-

The expression of the Laplace transform of A'(f) given by this lemma is well-known (see
[12] for example) and the expression of the covariance is derived by the same method. Using
this lemma, we have the following result.

Proposition 1 The Laplace transform of the random variable Ay is given by
E (e *) = exp (-AE((1 —e *¥)(t A 9)))
and in the stationary regime, the Laplace transform of Ao, is given by
E (e *4>) = exp (=AE((1 — e *Y)S))

Moreover, we have
COV(At,At+h) = A]E(Y2 (t A (S — h)+))
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Proof. By definition, A; = N(f;). Thus, by Lemma 1 and using the expression of the
intensity p of NV, the Laplace transform E[exp(—sA¢)] is given by

exp (— / (1= e ") _yefo, oy Adu @ Py, ) (dy, ds)) :

Fubini’s formula and the elementary fact that for two real numbers a and b, (a—b)* = a—aAb
gives the expression of E (e~*At) . Tt converges to exp(—AE(S(1 — e~*¢))) by Monotone
convergence Theorem as t tends to infinity. Then, by Lemma 1,

cov(Ag, Apyp) = /ftft+hdﬁ-
But

fefirn = ¥ 1ana,,n (4, 8)

where A; N Aipn = {(u, s),u < t,u+s >t+ h}. We conclude as for the Laplace transform.
This ends the proof. a

Corollary 1 We have the following convergence results: when t — oo,

E(Ay) = ME(Y(tAS)) - E(Ax) = AE(Y'S), (11)

var(A) = AE(Y?(t A S)) — var(As) = AE(Y2S), (12)
and

COV(At, At+h) . E( (Yz(t A (S - h)+)))
var(A;)  E(Y2(tAS))

A.2 Heavy traffic results

We study the behavior of the process {A;} when time is rescaled by a factor n. In other
words, the arrival process has a rate nA. Define the mean function m(t) as

m(t) = AE(Y (¢t A S)).

Then, we have the following result, which is due, in a more general case, to Borovkov [3]
and Iglehart [10].
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Theorem 1 Under the assumption E(Y2S) < oo, the process {A}} defined by

AP —nm(t)

Jn

converges in distribution to the Gaussian process {At} characterized by the covariance func-
tion

in
A} =

Yt t+h) =AE(Y?(t A (S —h)T)).

It is worth noting that the centered Gaussian process {A;} has the same autocorrelation
function as the process the original process {A;}. This is this last property, which is used
in this paper in order to identify the limiting process {A:}.

B Computation of the spectral density ¥

Let 1 be the spectral density of the process {L;} describing the number of customers in an
M/G /o queue in the stationary regime, where the intensity of the input Poisson process
is denoted by A and where service times are Weibullian with scale parameter n and skew
parameter 3. From the previous section, we know that the autocovariance function of the
process {L;} is given for h € R by

B
cov(Lg, Lyyn) = %F (%a (%) ) )

where I'(a, 1) = f;o u® le~%du. The spectral density 1) is then defined as

/0; €% g () = %r (% ('-’;')ﬁ> . (14)

Proposition 2 The spectral density ¥ (x) is given by

M? = (=1)"T(nB +1) 7r
for B € (0,1] and
I N P
o) = 25> o (252 (16)

for B> 1.
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Proof. Taking derivatives in the definition (14) of 1, we have

/ ize"®ah(z)dz = —sgn(h)he (I/m)°

— Qo

where sgn(h) is the sign of h. This entails that by Fourier inverse transform formula

™

w(z) = / ” sin(hz)e=/* g, (17)
0

It turns out that the above Fourier inverse function is known in the literature to belong to
the class of general singular integral of Weierstrass [8]. Modulo a few adaptations, it is easy
to derive equations (15) and (16). O
Note that when 8 < 1 and z — oo, it is readily checked from equation (15) that
¥(x) ~ A/(wx?) . This result also holds when 3 > 1; as shown by the following result.

Proposition 3 Under the assumption 3 > 1, when © — 00,

¥(z) ~ N (7z?). (18)

Proof. Let us consider the integral
. 2\
J(x) =/ eieze=(5)" dz.
0

From equation (17), we have, for real z, z¢(x) = A (J ()= J (:1:)) /2iw. Via an integration
by part, we can easily show that J(z) ~ i/z when £ — oo and equation (18) follows. O
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