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Abstract: Tracers provide users with useful information about program executions. In
this report, we propose a “tracer driver”, from a single tracer, it provides a powerful front-end
for multiple dynamic analysis tools, while limiting the overhead of the trace generation. The
tracer driver can be used both synchronously and asynchronously. The relevant execution
events are specified by flexible event patterns and a large variety of trace data can be
given either systematically or “on demand”. The proposed tracer driver has been designed
and experimented in the context of constraint logic programming, within GNU-Prolog. Its
principles are, however, independent of the traced programming language. Experimental
measures show that the flexibility and power of the described architecture are also the basis
of reasonable performances.
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Un pilote de traceur pour permettre des analyses
dynamiques concurrentes

Résumé : Les traceurs fournissent aux utilisateurs des informations utiles sur les exécu-
tions de programmes. Dans ce rapport, nous proposons un « pilote de traceur », & partir
d’un méme traceur, il fournit un puissant front-end & de multiples analyses dynamiques, tout
en limitant le sur-cott de la génération de la trace. Le pilote de traceur peut étre utilisé
a la fois de maniére synchrone et asynchrone. Les événements d’exécution pertinents sont
spécifiés par des motifs flexibles d’événements et une grande variété de données de trace peut
étre fournie soit systématiquement doit & la demande. Le pilote de traceur proposé a été
congu et expérimenté dans le contexte de la programmation logique par contraintes, dans
GNU-Prolog. Ses principes sont cependant indépendants du langage tracé. des mesures
expérimentales montrent que la flexibilité et la puissance de ’architecture décrite sont aussi
la raison de performances raisonnables.

Mots-clé : Génie logiciel, débogage, supervision d’exécutions, trace d’exécutions, visu-
alisation d’exécutions, environnement de programmation, programmation logique par con-
traintes



Tracer Driver and Concurrent Dynamic Analyses 3

1 Introduction

Dynamic program analysis consists in analyzing program executions. It is generally ac-
knowledged that dynamic analysis is complementary to static analysis, see for example the
discussion of Ball [2]. Dynamic analysis tools include, in particular, tracers, debuggers,
monitors and visualizers.

E]j Anaysis 1 (e.g. atracer)

Development of ad hoc
‘ Analysis 2 (e.g. amonitor)

instrumentation parts

I:l: Anaysisn (e.g. avisualizer)

,,,,,,,

Figure 1: The usual case: all dynamic analysis tools implement a dedicated instrumentation
part

In order to be able to analyze executions, some data must be gathered and some sort
of instrumentation mechanisms must be implemented. The state-of-the-practice, illustrated
by Fig. 1, is to re-implement the instrumentation for each new dynamic analysis tool. The
advantages are, firstly, that the instrumentation is naturally and tighly connected to the
analysis, and secondly, that it is specialized for the targeted analysis and produces relevant
information. The drawback, however, is that this implementation requires, in general, much
tedious work and discourages people to develop dynamic analysis tools.

1.1 A Tracer Driver to Efficicently Share Instrumentations

S Analysis1 (e.g. astandard tracer)

S Analysis 2 (e.g. amonitor)

trace

basic tracer
S Analysisn (e.g. avisualizer)

Figure 2: The “generate-and-dump” approach: the instrumentation part is shared but the
amount of data is huge

In this article we suggest that standard tracers can be used to give information about
executions to several dynamic analysis tools. Indeed, Harrold et al. have shown that a
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4 Langevine & Ducassé

< mm——— - requests
— = relevanttrace

Analysis 1 (e.g. astandard tracer)
Analysis 2 (e.g. amonitor)

Analysisn (e.g. avisualizer)

Figure 3: Our supervised generation approach: with a tracer driver only the relevant part
of the execution information is generated

trace spectrum, consisting of the sequence of program statements traversed as the program
executes, subsumes a number of interesting other spectra such as the set of conditional
branches or the set of paths [11]. However, the separation of the extraction part from the
analysis part cannot be done without care. Indeed, as illustrated by Fig. 2, if execution
information is systematically generated and dumped to the analysis tools, the amount of
information that flows from the tracer to the analysis modules can be huge, namely several
gigabytes for a few seconds of execution. Whether the information transit through a file, a
pipe, or even main memory, writing such an amount of information takes so much time that
the tools are not usable interactively. It is especially critical for debugging, even when it is
automated, because users need to interact in real-time with the tools.

Reiss and Renieris propose to encode and compact the trace information [17]. Their
approach is used in a context where multiple tracing sources send information to the same
analysis module. In this article, we propose another approach, more accurate when a single
source sends information to (possibly) several analysis modules. As illustrated by Fig. 3,
we have designed what we call a “tracer driver”, whose primary function is to filter the data
on the fly according to requests sent by the analysis modules. Only the necessary trace
information is actually generated. This often drastically reduces the amount of trace data,
and significantly improves the performance.

Therefore, the instrumentation module is shared among several analysis tools and there
is very little slowdown compared to the solution where each analysis has its dedicated instru-
mentation. From a single tracer, the tracer driver provides a powerful front-end for multiple
dynamic analysis tools while limiting the overhead of the trace generation. The consequence
is that specifying and implementing dynamic analysis tools is much easier, without negative
impact on the end-user.

1.2 Tracer and Analyzers Interactions

In the following, we call “analyzer” a module which is connected to a tracer. In its simplistic
form the analyzer is only the standard output or a file in which traces are written by a
primitive tracer. For standard tracing tools, the analyzer handles the interaction once the
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Tracer Driver and Concurrent Dynamic Analyses 5

execution is stopped at interesting points (called “breakpoints”). It shows some trace infor-
mation and reacts on users’ commands. More sophisticated debugging tools exhibit more
sophisticated analyzers. A trace querying mechanism with a database flavor can be plugged
to a tracer and let users investigate executions in a more thorough way. This has been
done for example for C in the Coca tool [7]. A real database can even be used if on the fly
performance is not a big issue. This has been done for a distributed system in Hy* [5]. Mon-
itoring tools can be connected to tracers in order to supervise executions and collect data.
For example, the EMMI tool, for Icon, is able to detect some programming mistakes [13]. A
number of visualization tools use traces to generate graphical views. An example is DAQV
which offers graphical clients implementing different views of high performance Fortran [10].

The interaction modes between the tracer and the analyzers exhibited by the previous
examples are all different and specific. For primitive tracers and simple visualization, the
tracer simply outputs trace information into a given channel. There is no synchronization
between the tracer and the analyzer. Standard tracers and trace query systems output trace
information and get user requests in a totally synchronized way. Monitors process the trace
information on the fly in a fully synchronized way. At present, all these tools are disjoint
and difficult to merge. Therefore, further mechanisms are required in order to share a tracer
among analyzers of different types.

Our tracer-driver includes such mechanisms. It enables different interaction modes be-
tween a tracer and analyzers to be integrated in one single tool. This has several advantages.
Firstly, users do not need to switch tool to achieve different aims. They use a unique tool to
trace, debug, monitor and visualize executions. Secondly, integrating all the possible usages
results in a more powerful tool than the mere juxtaposition of different tools. For example,
one can, in parallel, check for known bug patterns, and collect data for visualization. When-
ever a bug is encountered the tool can switch to a synchronized debugging session, using the
already collected visualization data. The visualization tool can also change the granularity
of the collected data depending on the current context.

1.3 Contributions

The contributions of this article are threefold. Firstly, it justifies the need for a tracer driver
in order to be able to efficiently integrate several dynamic analyses within a single tool.
In particular, it emphasizes that both synchronous and asynchronous communications are
required between the tracer and the analyzer. Secondly, it describes in breadth and in some
depth the mechanisms needed to implement such a tracer driver: 1) the patterns to specify
what trace information is needed, 2) the language of interaction between the tracer driver
and the analyzers and 3) the mechanisms to efficiently filter trace information on the fly.
Lastly, experimental measurements show that this architecture increases the trace accuracy
and speeds up trace generation and communication.

In the following, Section 2 gives an overview of the tracer driver and in particular the

interactions it enables between a tracer and an analyzer. Section 3 specifies the nature of
patterns. Section 4 lists the requests that an analyzer can send to our tracer and how they
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6 Langevine & Ducassé

are taken into account. Section 5 describes in detail our filtering mechanism and its imple-
mentation. Section 6 discusses the requirements on the tracer for the overall architecture
to be efficient. Section 7 gives experimental results and shows the efficiency of the tracer
driver mechanism. Section 8 discusses related work.

2 Overview of the tracer driver

This section presents an overview of the tracer driver architecture and, in particular, the
interactions it enables between a tracer and analyzers. The tracer and the analyzers are run
at the same time.

As already mentioned in the introduction, both synchronous and asynchronous interac-
tions are necessary between the tracer and the analyzers. On the one hand, if analyzers
need to get complements of information at some events, it is important that the execution
does not proceed until the analyzers have decided so. On the other hand, if the analyzers
only want to collect information there is no need to block the execution.

An execution trace is a sequence of observed execution events that have attributes.
The analyzers specify the events to be observed by the means of event patterns. An event
pattern is a condition on the attributes of an event (see details in Section 3). The tracer
driver manages a base of active event patterns. Each execution event is checked against
the set of active patterns. An event matches an event pattern if and only if the pattern
condition is satisfied by the attributes of this event.

An asynchronous pattern specifies that, at matching trace events, some trace data are to
be sent to analyzers without freezing the execution. A synchronous pattern specifies that, at
matching trace events, some trace data are to be sent to analyzers. The execution is frozen
until the analyzers order the execution to resume. An event handler is a procedure defined
in an analyzer, that is called when a matching event is encountered.

Fig. 4 illustrates the treatment of the two types of patterns. The execution is presented
as a sequence of elementary blocks (the execution events). An analyzer mediator gathers the
patterns requested by the analyzers and dispatches the result sent by the tracer driver (see
detailed description Section 4). At each trace event, the tracer driver is called to filter the
event. If the current event does not match any of the active specified patterns, the execution
goes on (events 4,4+ 1,4+ 2, i+ 4, i + 6). If the current event matches an active pattern,
some trace data are sent to the analyzer mediator (events i + 3, i + 5). If the matched
pattern is asynchronous the data is processed by the relevant analyzer in an asynchronous
way (event i + 3). If the pattern is synchronous the execution is frozen, waiting for a query
of the analyzer (event ¢ + 5). The analyzer processes the sent data and can ask for more
data about the state of the execution. The tracer driver can retrieve useful data about the
execution state and send them to the analyzer “on demand”. The analyzer can also request
some modifications of the active patterns: add new patterns or remove existing ones. When
no analyzer has any further request to make about the current event, the analyzer mediator
sends the resuming command to the tracer driver (go command). The tracer then resumes
the execution until the next matching event.

INRIA



Tracer Driver and Concurrent Dynamic Analyses 7

Execution Tracer Analyzer Mediator
Observed Dri
by tracer river Event patterns
Eventi _Event Filterin
Event i+1
Event i+2
Event i+3
Eventi+4| /T -
— = — Asynchronous
Event i+5
. Handler
. Trace
| and
: : SynChr data
I
! I
I
|
: : Send more data! Synchronous
| ‘ .................................
Data_ ! !
Retrieving Additional Trace Data ! '
P e -
I | Modify patterns! . hlghdlcl

Event i+6

Figure 4: Asynchronous and synchronous interactions between the tracer and the analyzer
mediator

The architecture enables the management of several active patterns. Each pattern is
identified by a label. A given execution event may match several patterns. When sending
the trace data the list of (labels of) matched patterns is added to the trace. Then, the
analyzer mediator calls a specific handler for each matched pattern and dispatches relevant
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8 Langevine & Ducassé

trace data to it. If at least one matched pattern is synchronous, the analyzer mediator waits
for every synchronous handler to finish before sending the resuming command to the tracer
driver. From the point of view of a given event handler, the activation of other handlers on
the same execution event is transparent.

This article emphasizes more the tracer driver than the analyzer mediator. On the one
hand, the design and implementation of the tracer driver is critical with respect to response
time. Indeed it is called at each event and executions of several millions of events (see
section 7) are very common. Every overhead, even the tiniest, is therefore critical. On the
other hand, the implementation of the analyzer mediator is much less critical because it is
called only on matching events. Furthermore, its implementation is much easier.

3 Event patterns

As already mentioned, an event pattern is a condition on the attributes of events. It consists
of a first order formula combining elementary conditions on the attributes. This section
summarizes the format of the trace events, specifies the format of the event patterns and
gives examples of patterns.

3.1 Trace events

The actual format of the trace events has no influence on the tracer driver mechanisms.
The important issue is that events have attributes and that some attributes are specific to
the type of events. The trace format that we use is dedicated to constraint programming
over finite domains, but the pattern language is independent of the traced language.

This section summarizes the format. Its aim is to help the readers who would want to
understand the details of the examples in the remaining of the article.

A constraint program manipulates variables and constraints on these variables. Each
variable has a domain, a finite set of possible values. The aim of a constraint program is to
find a valuation (or the best valuation, given an objective function) of the variables such that
every constraint is satisfied. To do so, constraint solvers implement numerous algorithms
coming from various research areas, such as operation research. There are 14 possible event
types in the tracer we use. Each event has common and specific attributes. The common
attributes are: the event type, a chronological event number, the depth of the current node
in the search-tree, the solver state (domains, constraint store and propagation queue), and
the user time spent since the beginning of the execution. The specific attributes depend on
the port. They are not detailed here. Whenever they will be used in the following they will
be paraphrased.

Fig. 5 presents the beginning of a trace of a toy program in order to illustrate the events
described above. This program,
fd_element (I, [2,5,7],A), (A#=I ; A#=2), specifies that A is a finite domain variable
which is in {2,5,7} and I is the index of the value of A in this list; moreover A is either
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newVariable v1=[0-268435455]

newVariable v2=[0-268435455]

newConstraint cl fd_element([v1,[2,5,7],v2])
reduce cl v1=[1,2,3] W=[0,4-268435455]

reduce cl v2=[2,5,7] W=[0-1,3-4,6,8-268435455]
suspend cl

OO WwWN

Figure 5: A portion of trace

pattern  ::= label: when evt pattern op synchro action list
op_synchra=do | do_synchro

action_ list:= action , action_list | action

action ::= current(list_ of attributes) | call(procedure)
evt_patterm= evt_pattern or evt_pattern (1)

| evt_pattern and evt pattern (2)

| not evt_pattern (3)

| ( evt pattern ) 4)

| condition (5)
condition ::= attribute op2 wvalue | opl(atiribute) | true
op2 =< |>|=|\=]>=]|=<|in| notin

| contains | notcontains

opl ::= isNamed

Figure 6: Grammar of event patterns

equal to I or equal to 2. The second alternative is the only feasible one. The trace can be
read as follows. The first two events are related to the introduction of two variables vl and
v2, corresponding respectively to I and A. In Gnu-Prolog, variables are always created with
the maximum domain (from 0 to 228 — 1). Then the first constraint is created: £d_element
(event #3). This constraint makes two domain reductions (events #4 and #5): the domain
of the first variable (I) becomes {1,2,3} and the domain of A becomes {2,5,7}, the only
consistent values so far. After these reductions, the constraint is suspended (event #6). The
execution continues and finds the solution (A=2, I=1) through 32 other events not shown
here.

3.2 Patterns

We use patterns similar to the path rules of Bruegge and Hibbard [4]. Fig. 6 presents the
grammar of patterns. A pattern contains four parts: a label, an event pattern, a synchro-
nization operator and a list of actions. An event pattern is a composition of elementary
conditions using logical conjunction, disjunction and negation. It specifies a class of execu-
tion event. A synchronization operator tells whether the pattern is asynchronous (do) or
synchronous (do_synchro). An action specifies either to ask the tracer driver to collect
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10 Langevine & Ducassé

visu_cstr:
when port = post
do current(cstr=C and cstrRep=Rep
and varC(cstr)=VarC),
call new_cstr(C, Rep, VarC)
visu_prop:
when port = reduce and isNamed(var)
and (not cstrType=’assign’)
and delta notcontains [maxInt]
do current(cstr=C and var=V),
call spy_propag(C,V)

symbolic:
when port in [reduce,suspend]
and (cstrType = ’fd_element_var’

or cstrType = ’fd_exactly’)
do_synchro call symbolic_monitor

Figure 7: Examples of patterns for visualization and monitoring

attribute values (current(list_of attributes)), or to ask the analyzer to call a procedure
call(procedure). Note that the procedure is written in a language that the analyzer is able
to execute. This language is independent of the tracer driver. An elementary condition
concerns an attribute of the current event.

There are several kinds of attributes. Each kind has a specific set of operators to build
elementary conditions. For example, most of the common attributes are integer (chrono,
depth, node label). Classical operators can be used with those attributes: equality, dise-
quality (#), inequalities (<, <, > and >). The port attribute is the type of the current
event. It has a small set of possible values. The following operators can be used with the
port attribute: equality and disequality (= and #) and two set operators, in and notin.
Constraint solvers manipulate a lot of constraints and variables. Often, a trace analysis is
only interested in a small subset of them. Operators in and notin, applied to identifiers of
entities or name of the variables, can specify such subsets. Operators contains and not-
contains are used to express conditions on domains. This set of operators is dedicated to
the type of execution we trace. It could be extended to cope with other types of attributes.

3.3 Examples of patterns

Fig. 7 presents three patterns that can be activated in parallel. The first two patterns are
visualization oriented: the first one requests the trace of each constraint-posting with the
identifier of the constraint (a unique integer), its representation (the name of the constraint
with its parameters) and the list of the involved variables (varC). Fig. 8 gives two screenshots
of visualizations which are built using such patterns'.

The second pattern requests the trace of all the domain reductions made by constraints
that do not come from the assignment procedure and that do not remove the maximal integer

IThe pictures are generated by Pavot a tool developed at INRTA Rocquencourt.
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Sl CLPGUI Finite Domains 3D Viewer o [H P

Geonetry Options

‘ [ Propagation Tree: Cadeine by socket. Host=localhost; Pari=36766 £ H
Options  Display Window Propagation

P —————————————————————————————————
[ propagation Tree 2 ? ? 7 B

domain size 10

o] ]

[WEGE L

[Type of node: Reject

Constraint: 1716 : assign(var(11),3);

[Total of propagation events: |65

Details of propagation:

= lfeT

Figure 8: Two trace-based views based on the first pattern of Figure 7.

value. It stores the reducing constraint and the reduced variables. Those data can be used
to compute some statistics and to visualize the impact of each constraint on its variables.
Those two patterns are asynchronous: the requested data are sufficient for the visualization
and the patterns do not have to be modified.

The last pattern is more monitoring-oriented: it freezes the execution at each domain
reduction made by a symbolic constraint such as element (on variables) or ezactly. This
pattern allows the monitoring of the filtering algorithms used for these two constraints.

4 Analyzer mediator

The analyzer mediator processes the trace: it specifies to the tracer driver what events are
needed and may execute specific actions for each class of relevant events. The mediator can
supervise several analyses at a time. Each analysis has its own purpose and uses specific
pieces of trace data. The independence of the concurrent analyses is ensured by the mediator
that centralizes the communication with the tracer driver and dispatches the trace data to
the ongoing analyses.

When tracer driver and mediator are synchronized, the requests that an analyzer can
send to the driver are of three kinds. Firstly, the analyzer can ask for additional data about
the current event. Secondly, the analyzer can modify the event patterns to be checked by
the tracer driver. These patterns are called active in the following. Thirdly, the analyzer
can notify the end of a synchronous session.

Primitive current specifies a list of event attributes to retrieve in the current execution
event. The tracer retrieves the requested pieces of data. It sends the data as a list of pairs
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12 Langevine & Ducassé

step :-
reset,
add([step:when true
dosynchro call(tracer_toplevel)]),
go.

skip_reductions :-

current(cstr = CId and port = P),

reset,

( P == awake

-> add([sr:when cstr = CId and port
in [suspend,reject,entaill
dosynchro call(tracer_toplevel)]),

; add([step:when true
dosynchro call(tracer_toplevel)])),

go.

Figure 9: Implementation of two tracing commands

(attribute,value). reset deletes all the active event patterns and their labels.  Primitive
remove deletes the active patterns whose labels are specified in the parameter.  Primitive
add inserts in the active patterns, the event patterns specified in the parameter, following the
grammar described in Figure 6.  Primitive go notifies the tracer driver that a synchronous
session is finished. The traced execution will be resumed.

Fig. 9 illustrates the use of the primitives to implement two tracing commands. Com-
mand step enables to go to the very next event. It simply resets all patterns and adds one
which will match any event and call, in a synchronous way, the tracer toplevel. Command
skip_reductions enables to skip the details of variable domain reductions when encoun-
tering the awakening of a constraint. It first checks the current port, if it is awake it asks to
go to the suspension of this constraint. There, the user will, for example, be able to check
the value of the domains after all the reductions. If the command is called on an event of
other type it simply acts as step.

5 Filtering mechanism

This section describes in detail the critical issue of the filtering mechanism. At each execution
event, it is called to test the relevance of the event with respect to the active patterns. Notice
that the execution of a program with constraints can lead to several millions of execution
events per second. Therefore, the efficiency of the event filtering is a key issue.

In the following, we first describe the algorithm of the tracer driver. Then we specify
the automata which drive the matching of events against active patterns. We discuss some
specialisation issues. We give some details about the incremental handling of patterns.
Lastly, we explain that event attributes are computed only upon demand.

INRIA
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proc tracerDriver(P : set of active patterns)
tagged « 0
for each p € P do
if match(p) then tagged + tagged U {p}
end for
T « {requested_data(p) | p € tagged}
send_trace_data(T, label(tagged))
if synchronous(tagged) # () then
notify(synchronous(tagged))
repeat
request ¢ receive_from analyzer()
execute (request)
until request = go
end if

end proc

Figure 10: Algorithm of the Tracer Driver

5.1 Tracer driver algorithm

When an execution event occurs, the tracer is called. The tracer collects some data to
maintain its own data structures and then calls the tracer driver. The algorithm of the
tracer driver is given in Fig. 10. The filtering mechanism can handle several active event
patterns. For each pattern, if the current event matches the pattern the latter is tagged as
activated. Whatever the (matching) result is, the next pattern is checked. When no more
patterns have to be checked, the tagged patterns are processed. The union of requested
pieces of data is sent as trace data with the labels of the tagged patterns. If at least one
synchronous pattern is tagged, a signal is sent to the analyzer and the tracer driver waits
for requests coming from the analyzer and processes them until the go primitive is sent by
the analyzer.

5.2 Pattern automata

The matching of an event against a pattern is driven by an automaton where each state is la-
beled by an elementary condition with two possible transitions: true or false. The automaton
has two final states, true and false. If the true state is reached, the event is said to match
the pattern. Each automaton results of the compilation of an event pattern. This compila-
tion is specified by the attributed grammar of Fig. 11. The final automaton of the expression
is a composition of sub-automata that express sub-expressions. The attributes of the gram-
mar are entry (the entry point of the automaton, or of a sub-automaton), i fTrue (transition
if true) and if False (transition if false). entry is synthesized, i fTrue and ifFalse are in-
herited. true and false are the two final states. This grammar is inspired by the grammar
to evaluate boolean expressions in imperative languages. It minimizes the number of condi-
tions to check [20]. At elementary conditions, new node(C, E.I fTrue, E.I f False) creates
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14 Langevine & Ducassé

(0) E— F (8) E = not E;

E.entry + E'.entry E.entry + Ej.entry
E'.ifTrue «+ true E1.ifTrue «+ E.ifFalse
E'.if False « false E,.ifFalse + E.ifTrue
(1) E— E or E; (4) E—> (E1)

E.entry < Ei.entry E.entry + Ei.entry
Eq.ifTrue + E.ifTrue Er.ifTrue + E.ifTrue
Es.ifFalse <+ Es.entry Ei.ifFalse + E.ifFalse
Es.ifTrue «+ E.ifTrue (5) E—C

Es.ifFalse + E.ifFalse E.entry «

(2) E— E; and E; new_node(C, E.I fTrue,
E.entry < E;.entry E.IfFalse)

Er.ifTrue « Es.entry
E,.ifFalse < E.ifFalse
Es.ifTrue + E.ifTrue
Es.ifFalse + E.ifFalse

Figure 11: Attributed grammar to generate pattern automata

a node where the condition will be checked. If it is true its i fTrue continuation will be con-
nected to the i fTrue continuation of the previous node, otherwise its i f False continuation
will be connected to the i f False continuation of the previous node. Examples of automata
are given in section 5.4.

5.3 Specialization thanks to the port

As seen in Section 3, the port is a special attribute since it denotes the type of the execution
event being traced. A port corresponds to specific parts of the solver code where a call to a
function of the tracer has been hooked. For example, in Codeine, there are 4 hooks for the
reduce port, embedded into 4 specific functions that make domain reduction in 4 different
ways. Furthermore, specific attributes depend on the port. As a consequence, the port
is central in the pattern specification. For most of them, a condition on the port will be
explicit. When an event occurs, it is useless to call the tracer driver if no pattern is relevant
for the port of this event. Therefore, for each port, a flag is hard coded in the related code
hooks in order to indicate whether the port is concerned by at least one pattern. This simple
mechanism avoids useless calls to the tracer driver.

5.4 Examples of pattern automata

Fig. 12 shows the internal representation of 5 patterns including the ones presented in
Section 3.3. The 14 ports are represented on the left-hand side. The irrelevant ports are in
italic. The relevant ports are linked to their corresponding patterns. Only two automata
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Figure 12: Internal representation of 5 simultaneous patterns

are necessary since three patterns check the port only. A set of actions is assigned to each
automaton. This set is attached to “synchronous” or “asynchronous” and the label of the
pattern.

5.5 Incremental Pattern Management

Since each active pattern is a specific automaton (or a list of specific automata when split),
the add primitive has just to compile the new n patterns into m automata (m > n), linked
them with their respective ports and store the labels with the lists of resulting automata.
The remove primitive has just to delete the automata associated to the specified labels and
to erase the dead links. After each operation, the port-filtering flags are updated so as to
take into account the new state of the active patterns.

6 Prototype Implementation

In this Section, we briefly present the prototype implementation. In particular, in order
for the overall architecture to be efficient, it is essential that the tracer is lazy. Trace
information must not be computed if it is not explicitly required by a pattern. Indeed, an
execution has many events and events potentially have many attributes. Most of them are
not straightforwardly available, they have to be computed from the execution state or from
the debugging data of the tracer. Systematically computing all the attributes at all the
execution events would be terribly ineffective.

Fortunately, not all the attributes need to be computed at each event. According to the
active patterns, only a subset of the attributes is needed: firstly, the attributes necessary
to check the relevance of the current event with respect to the patterns, and secondly, the
attributes requested by the patterns in case of matching. Therefore, the tracer must not
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16 Langevine & Ducassé

compute any trace attribute while none is needed. When a specific attribute is needed, it
is computed and its value is stored until the end of the checking of the current event. If an
attribute is used in several conditions, it is computed only once.

The tracer implemented in the current prototype, Codeine, strictly follows this guide line.
Some core tracer mechanisms are needed to handle the debugging information (see [15] for
more details). As shown in Sec. 7, the overhead induced by these mechanisms is marginal,
even though constraint solvers do manipulate large and complex data.

Currently, Codeine is implemented in 6800 lines of C including comments. The tracer
driver, including the communication mechanisms, is 1700 lines of C. The codeine tracer
including the tracer driver is available under GNU Public Licence. The set of debugging
and visualization tools called Pavot has been developed by Arnaud Guillaume and Ludovic
Langevine. Both systems are available on line?.

7 Experimental Results

This section assesses the performances of the tracer driver and its effects on the cost of the
trace generation and communication. It shows several things. The overhead of the core
tracer mechanisms is small, therefore the core tracer can be permanently activated. The
tracer driver overhead is acceptable. There is no overhead for parallel search of patterns. The
tracer driver overhead is predictable for given patterns. The tracer driver approach that we
propose is more efficient than sending over a default trace, even to construct sophisticated
graphical views. Answering queries is orders of magnitude more efficient than displaying
traces. There is no need to a priori restrict the trace information. The performance of our
tool is comparable to the state-of-the-practice while being more powerful and more generic.

7.1 Methodology of the Experiments

When tracing a program, some time is spent in the program execution (Tprog), some time
is spent in the core mechanisms of the tracer (Aypgcer), Some time is spent in the tracer
driver (Agriver), some time is spent generating the requested trace and sending it to the
analysis process (Agcom), some time is spent in the analyses (Aqn,). Hence, if we call T' the
execution time of a traced and analysed program, we approximatively have:

T~ Tprog + AtTaceT + Adri’ver + Agcom + Aana-

The mediator is a simple switch. The time taken by its execution is negligible compared
to the time taken by the simplest analysis, namely the display of trace information. Trace
analysis takes a time which vary considerably according to the nature of the analysis. The
focus of this article is not to discuss which analyses can be achieved in reasonable time but
to show that a flexible analysis environment can be offered at a low overhead. Therefore, in
the following measurements A,,, = 0.

2They can be retrieved at http://contraintes.inria.fr/“langevin/codeine/ and
http://contraintes.inria.fr/~arnaud/pavot /.
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Program evts  Trace Tprog e Ry, Dev.
(108) Size (ms) (ns) for Ty,

(Gb) in %

bridge 0.2 0.1 4 72 121 <04
queens(256) 0.8 1.5 173 210 114 <0.2
magic(100) 3.2 1.4 215 66 1.03 <02
square(24) 4.2 20.8 372 88 1.05 <0.6
golombF 15.5 3.4 7,201 464 1.01 <0.4
golomb 38.4 7.9 1,721 45 1.00 <0.5
golfer(5,4,4)  61.0  >30 3255 53 105 <0.7
propag 280.0  >30 3,813 14 128 <1.0

queens(14) 3945  >30 17,060 43 1.08 <04
Table 1: Benchmark Programs and tracer overhead

7.2 Experimental setting

The experiments have been run on a PC, with a 2.4 GHz Pentium 1v, 512 Kb of cache, 1 GB
of RAM, running under the GNU/Linux 2.4.18 operating system. The last stable release
(1.2.16) of GNU-Prolog has been used. The tracer is an instrumentation of the source code
of this very same version and has been compiled in the same conditions by gcc-2.95.4. The
execution times have been measured with the GNU-Prolog profiling facility whose accuracy
is 1 ms. The measured executions consist of a batch of executions such that each measured
time is at least 20 seconds. The measured time is the sum of system and user times. Each
experimental time given below is the average time of a series of ten measurements. In each
series, the maximal relative deviation was smaller than 1%.

7.3 Benchmark programs

The 9 benchmark programs® are listed in Table 1, sorted by increasing number of trace

events. Magic(100), square(4), golomb(8) and golfer(5,4,4) are part of CSPLib, a benchmark
library for constraints by Gent and Walsh [9]. The golomb(8) program is executed with two
strategies which exhibit very different response times. Those four programs have been chosen
for their significant execution time and for the variety of constraints they involve. Four other
programs have been added to cover more specific aspects of the solver mechanisms: Pascal
Van Hentenryck’s bridge problem (version of [6]); two instances of the n-queens problem;
and “propag”, the proof of infeasibility of 1 < z,y < 70000000z <y Ay < .

The benchmark programs have executions large enough for the measurements to be
meaningful. They range from 200,000 events to about 400 millions events. Furthermore,
they represent a wide range of CLP(FD) programs.

The third column gives the size of the traces of the benchmarked programs for the
default trace model. All executions but the smallest one exhibit more than a gigabyte, for
executions sometimes less than a second. It is therefore not conceivable to systematically

3Their source code is available at http://contraintes.inria.fr/ “langevin/codeine/benchmarks
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generate such an amount of information. As a matter of fact measuring these size took us
hours and, in the last three cases, exhausted our patience! Note that the size of the trace
is not strictly proportional to the number of events because the attributes collected at each
type of events are different. For example, for domain reductions, several attributes about
variables, contraints and domains are collected while other types of events simply collect the
name of the corresponding contraint.

The fourth column gives T},,4, the execution time in ms of the program simply run by
GNU-Prolog. The fifth column shows the average time of execution per event ¢ = Nﬁ’.”’;‘it..
It is between 14 ns and 464 ns per event. For most of the suite € is around 50ns. The
three remarkable exceptions are propag (¢ = 14 ns), queens(256) (¢ = 210 ns) and golombF
(e = 464 ns). The low ¢ is due to the efficiency of the propagation stage for the constraints
involved in this computation. The large s are due to a lower proportion of “fine-grained”
events.

7.4 Tracer overhead

Table 1 also gives the results of the measurements of the overhead of the core tracer mech-
anisms. The measure of

Ttracer = Tprog + Acore_tracer

is the execution time of the program run by the tracer without any pattern activated. The
tracer maintains its own data for all events. However, no attribute is calculated and no trace
is generated. The sixth column gives the ratio

Tt'race'r‘
TP”'"Q

Rtr(aceT) =

The seventh column gives the maximum deviation for Ty, and Tiracer-
Core tracer mechanisms can be permanently activated For all the measured exe-
cutions Ryrqcer 18 less than 30% in the worst case, and less than 5% for five traced programs.
The results for Rirqcer are very positive, they mean that the core mechanisms of the
tracer can be systematically activated. Users will hardly notice the overhead. Therefore,
while developping programs, users can directly work in “traced” mode, they do not need to

switch from untraced to traced environments. This is a great confort. As soon as they will
need to trace they can immediately get information.

7.5 Tracer driver overhead

The measure of

Tdriver = Tproy + Acore_trace + Adriver
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la. when port=post and isNamed(cname)
do current(port,chrono,cident).
2a. when port=reduce and
(isNamed(vname) and isNamed(cname))
do current(port,chrono,cident).
3a. when chrono=0 do current(chrono).
4a. when depth=50000 or (chrono>=1 and node=9999999)
do current(chrono,depth).
5a: patterns la, 2a, 3a and 4a activated in parallel.

Figure 13: Patterns used to measure the tracer driver overhead

is the execution time of the program run by the tracer with the filtering procedure activated
for generic patterns. Only the attributes necessary for the requested patterns are calculated
at relevent events. In order for Ay, to be zero, the patterns are designed such that no
event matches them. One run is done per pattern. The patterns are listed in Figure 13.
Pattern 1a is checked on few events and on one costly attribute only. Pattern 2a is checked
on numerous events and on two costly attributes. Pattern 3a is checked on all events and
on one cheap attribute. Pattern 4a is checked on all events and systematically on three
attributes.

Tracer driver overhead is acceptable Figure 14 gives the results of the measurements
of the overhead of the tracer driver for all the benchmark programs and for five patterns.
The figure draws

R . —_ Tdriver
driver — 7 ’
prog

compared to the average time per event (g) for the 5 patterns.

For all but one program, Rg.iyer is negligible for the very simple patterns and less than
3.5 for pattern 5a which is the combination of 4 patterns. For programs with a large €, even
searching for pattern 5a is negligible. In the worst case, an overhead of 8 is still acceptable.

No overhead for parallel search of patterns When n patterns are checked in parallel
they already save
(n — D) Tpqcer compared to the search in sequence which requires to executes n times the
program instead of one time. Figure 14 further shows that

Ala + A2 + A3a + Ada > A(1|2|3|4)a.

driver driver driver driver driver

As a matter of fact, the curve YR = R; + Ry + R3 + R4 — 3, that adds the overheads of the
four separated patterns, is above the curve of Rg;‘fiver. This means that not only is there
no overhead in the filtering mechanism induced by the parallel search, but there is even a

minor gain.
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Figure 14: Cost of the tracer driver mechanisms compared to &

Tracer driver overhead is predictable The measured points of Figure 14 can be in-
terpolated with curves of the form

Ririver = a+ b/E

Figure 15 recalls the curve for pattern 5a and gives the number of events. It shows that
there is no correlation between the size of the trace and the tracer driver overhead.

Those results mean that the tracer and tracer driver overheads per event can be ap-
proximated to constants depending on the patterns and independant of the traced program.
Indeed, let us assume that that Acpre trace = NOcore trace and Agriver = NOgriver Where
N is the number of events of an execution, d.ore ¢race and Ogriver are the average time
per event taken respectively by the core tracer mechanism and the tracer driver, for all the
programs. We have also already assumed that

Tdriver = Tprag + Acore_i&race + Adrivera
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Figure 15: Cost of the tracer driver mechanisms compared to the number of events

and we have

Tariver —
Ririver = m, and Tprog = Ne

therefore

TprogtAcore tracetAdriver
Tprog

Rdm'ver =

N(bcore tracedddriver)
Rdriver ~1+ ~ Ne

core tracetOdriver

8
Rdm’ver ~1 +

g

The measured Rgiyer for pattern 5a is
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1b. cstr: when port=post do current(chrono,cident,cinternal).
tree: when port in [failure,backTo, choicePoint,solution] do current(chrono,node,port).
2b. newvar: when port=newVariable do current(chrono, vident, vname).
dom: when port mn [choice Point,backTo,solution] do curren-
t(chrono,node,port,named_ vars,full _dom).
3b. propagl: when port=reduce do current(chrono).
4b. propag2: when port=awake do current(chrono).

Figure 16: Event patterns used to assess the trace generation and the communication over-
head

For pattern 5a, the average time per event taken by the core tracer mechanism and the
tracer driver (dcore trace + Oariver) can therefore be approximated to 98.58ns.

The Rgyiver overhead could thus be made predictable. For a given program, it is easy to
automatically measure €, the average time of execution per event. For a library of patterns
Ocore trace + Odriver Can be computed for each pattern. We have shown above that the
overhead of the search in parallel of different patterns can be over approximated by the
sum of all the overheads. Our environment could therefore provide estimation mechanisms.
When & would be too small compared to d¢ore  trace + Odriver the user would be warned that
the overhead may become large. B

7.6 Communication overhead

The measure of
Tgcom = Tcore_tracer + Adriver + Agcom

is the execution time of the program run by the tracer. A new set of patterns are used
so that some events match the patterns, the requested attributes of the matched events
are generated and sent to a degenerated version of the mediator: a C-program that simply
reads the trace data on its standard input. Due to lack of space we only show the result of
program golomb(8) which has a median number of events and has a median ¢.

The patterns are listed in Figure 16. Pattern 1b, composed of two basic patterns, allows
a “bare” search tree to be constructed, as shown by most debugging tools. Pattern 2b (two
basic patterns) allows the display of 3D views of variable updates as shown in Figure 8.
Pattern 3b and pattern 4b provide two different execution details to decorate search trees.
Depending on the tool settings, three different visual clues can be displayed. One is shown
in Figure 8.

Table 2 gives the results for the above patterns and some of their combinations. All
combinations correspond to existing tools. For example, combining 1b with 3b or/and 4b
allows a Christmas tree as shown in Figure 8 to be constructed with two different param-
eterizations. The 2"d column gives the number of events which match the pattern. The
3'4 column gives the size of the resulting XML trace as it is sent to the tool. The 4" col-
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Program: golomb(8) & = 45ns Tprog=1.73s
Patterns Traced Trace | Elapsed | R4y | Rgcom
evts size time
(10%) | (M bytes) (s)
1b 0.36 21 4.50 1.03 2.6
2b 0.13 111 16.17 | 1.02 9.35
3b 5.04 141 33.57 1.14 19.40
4b 14.58 394 89.40 1.32 51.68
(112)b 0.36 124 17.47 | 1.04 10.09
(113)b 5.40 162 36.08 | 1.15 20.85
(1]4)b 14.94 415 92.71 | 1.33 | 53.59
(1/3/4)b 19.97 556 | 12272 | 1.44 | 70.93
(1]2]3]4)b 19.97 660 136.80 | 1.44 79.07
def. trace 38.36 7,910 393.08 1.96 | 227.21

Table 2: Cost of the trace generation and communication

umn gives the elapsed time?. The 5% column gives the ratio Rgyiyer, recomputed for each

pattern. The 6" column gives the ratio Rycom = 7.
prog

Filtered trace is more efficient and more accurate than default trace The last
line gives results for the default trace. The default trace contains twice as many events as the
trace generated by pattern (1|2|3|4)b, but it contains more attributes than requested by
the pattern; As a result, its size is ten times larger because and its Rgyc,m overhead is three
times larger. At the same time, it does not contain all the attributes. In that particular
case, some relevant attributes are missing in the default trace while there are present in the
trace generated by pattern (1|2|3|4)b. The attributs not sent by the default trace can be
reconstructed by the analysis module, but this requires further computation and memory
resources.

As a consequence, the tracer driver approach that we propose is more efficient than
sending over a default trace, even to construct sophisticated graphical views. The accuracy
and the lower volume of the trace ease its post-processing by the debugging tools.

Answering queries is more efficient than displaying traces R,c.n, is always much
larger that Rgriper, from 2.6 to 79.07 in our exemple. Therefore, queries using patterns
that drastically filter the trace have significantly better response time than queries that first
display the trace before analysing it.

When debugging, programmers often know what they want to check. In that case they
are able to specify queries that demand a simple answer. In such a case our approach is
significantly better than sending trace information to an analyzer.

4Here system and user time are not sufficient because two processes are at stake. Tprog has been re-
measured in the same conditions.
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No need to a priori restrict the trace information Many tracers restrict a priori
the trace information in order to reduce the volume of trace sent to an analyzer. This
restrict the possibilities of the possible dynamic analysis without preventing the big size
and time overhead as shown above with the default trace which does not contain important
information while being huge.

With our approach, trace information which is not requested does not cost much, there-
fore our trace model can afford to be much very rich. This enlarges the possibility of adding
new dynamic anayses.

Performance are comparable to the state-of-the-practice Rgcon varies from 2.6 to
79.07. To give a comparison the Mercury tracer of Somogyi and Henderson [18] is regularly
used by Mercury developers. For executions of size equivalent to those of our measurements,
the Mercury tracer overhead has been measured from 2 to 15, with an average of 7 [12].
Hence the ratios for patterns 1b, 2b and 1|2b are quite similar to the state-of-the-practice
debuggers. The other patterns show an overhead that can discourage interactive usage.
However, these patterns are more thought of for monitoring than debugging when the in-
teraction does not have to be done in real time. Note, furthermore, that for the measured
programs, the absolute response time is still on the range of two minutes for the worst case.
When debugging, this is still acceptable.

Our approach allows therefore to have the tracer present but idle by default. When
a problem is encountered, simple queries can be set to localize roughly the source of the
problem. Then, more costly patterns can be activated on smaller parts of the program. This
is pretty much like what experienced programmers do. The difference with our approach is
that they do not have to change tools, neither to reset the parameterizations of the debugger.

8 Related Work

Kraut [4] implements a finite state machine to find sequences of execution events that satisfy
some patterns, called path rules. Several patterns are allowed and they can be enabled or
disabled during the execution, using a labeling policy. Specified actions are triggered when a
rule is satisfied but they are limited to some debugger primitives, such as a message display
or a counter increasing. The main interest of this tool is to abstract the trace and to allow
the easy development of monitors. The trace analysis is necessarily synchronous and does
not benefit from the power of a complete programming language.

Reiss and Renieris [17] have an approach similar to ours. They also structure their
dynamic analyses into three different modules: 1) extraction of trace, 2) compaction and
filtering and 3) visualization. They provide a number of interesting compaction functions
which should be integrated in a further version of our system. They, however, first dump
the whole trace information in files before any filtering is processed. With our tracer driver
filtering is done on the fly, and section 7 has shown that this is much more efficient than
first storing in files.
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Coca [8] and Opium [8] provide a trace query mechanism, respectively for C and Prolog.
This mechanism is synchronous and does not allow concurrent analysis. It can be easily
emulated with our tracer driver and an analyzer mediator written in Prolog.

Hy™ [5] writes the trace into a real relational database to query it with SQL. This is
even slower than writing the trace simply into a file. However, when on the fly performance
is not an issue, for example for post mortem analysis, this is a very powerful and elegant
solution.

Dalek [16] is a powerful extension of gdb. It allows user to associate sequences of exe-
cution events to specific synchronous handlers written in a dedicated imperative language.
This language includes primitives to retrieve additional trace-data and to synchronize the
execution. The management of handlers is not incremental. A key feature of Dalek, es-
pecially useful in an imperative language, is the explicit “queue of events” that stores the
achieved execution events. The user can explicitly remove events from this queue and add
higher-level events. This approach requires an expensive storage of a part of the trace but
enables both monitoring, debugging and profiling of programs.

In EBBA [3], expected program behaviors are modeled as relationships between execution
events. Those models are then compared to the actual behavior during execution. EBBA
tries to recognize relevant sequences of events and to check some constraints about such
sequences. A kind of automaton is built to find instantiation of the models. The events
are first generated by the tracer before being filtered according to the automata. Our
approach allows to filter the execution event directly inside the tracer, this is more efficient.
Nevertheless, EBBA recognizes sequences of events whereas we filter one event at time. Our
approach could be used upstream of the sequence recognition. The incrementality of the
event patterns could be used to adapt the relevant events to the states of the automata.

UFO [1] offers a more powerful language to specify patterns and monitors than EBBA.
The patterns can involve several events, not necessarily consecutive. In our framework, the
monitors have to be implemented in the analyzer with a general programming language. A
further extension should allow at least to implement monitors in the trace driver to improve
efficiency. UFO, however, does not allow the same flexibility as our tracer driver, and is
heavier to use for interactive debugging.

So far, our framework applies only to a single execution and does not easily scale to
compare numerous executions as is done in “batch mode” by Harrolds et al. [14]. It seems,
however, possible to extend our framework so that two executions can be run in parallel
with two tracer drivers. This would allow to implement the debugging analyses of Zeller et
al [21] and Abramson et al. [19] which compare two executions at a given moment.

9 Conclusion

In this paper we have presented a tracer driver which allows both synchronous and asyn-
chronous trace analysis in the same execution, fitting all the needs of the classical usages of
a tracer into a single tool. We have defined an expressive language of event patterns where
relevant events are described by first order formula involving most of the data the tracer can
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access. Specific primitives enable the retrieval of large pieces of data “on demand” and the
adaptation of the event patterns to the evolving needs of the trace analyzer. Therefore, the
produced trace is accurate: trace generation, trace communication and trace post-processing
are speeded up. The tracer driver provides a powerful front-end for complex debugging tools
based on trace data.

Acknowledgment The authors thank Pierre Deransart and their OADymPPaC partners for
fruitful discussions, as well as Guillaume Arnaud for his careful beta-testing of Codeine.
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