
HAL Id: inria-00070783
https://inria.hal.science/inria-00070783

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unified Texture Management for Arbitrary Meshes
Sylvain Lefebvre, Jérome Darbon, Fabrice Neyret

To cite this version:
Sylvain Lefebvre, Jérome Darbon, Fabrice Neyret. Unified Texture Management for Arbitrary Meshes.
[Research Report] RR-5210, INRIA. 2004, pp.20. �inria-00070783�

https://inria.hal.science/inria-00070783
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
52

10
--

F
R

+
E

N
G

ap por t
de r ech er ch e

Thème COG

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Unified Texture Management for Arbitrary Meshes

Sylvain Lefebvre Jérome Darbon Fabrice Neyret
EVASION/GRAVIR ENST, LRDE/EPITA EVASION/GRAVIR

http://www-evasion.imag.fr/Membres/Sylvain.Lefebvre/texprod

N° 5210

May 2004

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Unified Texture Management for Arbitrary Meshes

Sylvain Lefebvre Jérome Darbon Fabrice Neyret
EVASION/GRAVIR ENST, LRDE/EPITA EVASION/GRAVIR

http://www-evasion.imag.fr/Membres/Sylvain.Lefebvre/texprod

Thème COG — Systèmes cognitifs
Projets EVASION

Rapport de recherche n° 5210 — May 2004 —20 pages

Abstract:
Video games and simulators commonly use very detailed textures, whose cumulative size is of-

ten larger than the GPU memory. Textures may be loaded progressively, but dynamically loading
and transferring this large amount of data in GPU memory results in loading delays and poor perfor-
mance. Therefore, managing texture memory has become an important issue. While this problem
has been (partly) addressed early for the specific case of terrain rendering, there is no generic texture
management system for arbitrary meshes.

We propose such a system, implemented on today’s GPUs, which unifies classical solutions
aimed at reducing memory transfer: progressive loading, texture compression, and caching strate-
gies. For this, we introduce a new algorithm – running on GPU – to solve the major difficulty of
detecting which parts of the texture are required for rendering.

Our system is based on three components manipulating a tile pool which stores texture data in
GPU memory. First, the Texture Load Map determines at every frame the appropriate list of texture
tiles (i.e. location and MIP-map level) to render from the current viewpoint. Second, the Texture
Cache manages the tile pool. Finally, the Texture Producer loads and decodes required texture tiles
asynchronously in the tile pool. Decoding of compressed texture data is implemented on GPU to
minimize texture transfer. The Texture Producer can also generate procedural textures. Our system
is transparent to the user, and the only parameter that must be supplied at runtime is the current
viewpoint. No modifications of the mesh are required.

We demonstrate our system on large scenes displayed in real time. We show that it achieves
interactive frame rates even in low-memory low-bandwidth situations.

Key-words: real-time rendering, high-resolution textures, GPU, progressive loading

Gestion de texture unifiée pour géométrie arbitraire

Résumé : Les jeux vidéos et les simulateurs utilisent couramment des textures très détaillées, dont
la taille cumulée est souvent bien plus grande que la taille de la mémoire vidéo.

Les textures peuvent être chargées progressivement, mais charger et transférer dynamiquement
ces grandes quantités d’informations dans la mémoire vidéo entraîne des délais de chargement et
dégrade les performances. La gestion de la mémoire vidéo dédiée aux textures est donc devenue un
problème important pour les applications interactives. Ce problème a été en partie traité pour le cas
particulier du rendu de terrain. Cependant il n’existe pas de méthode pour la gestion de textures dans
le cas général.

Nous proposons un système, implémenté sur les cartes graphiques actuelles, permettant d’unifier
les approches classiques destinées à réduire le coût des transferts mémoire: chargement progressif,
compression de textures, stratégie de cache. Pour cela nous introduisons un nouvel algorithme,
exécuté par la carte graphique, pour résoudre la difficulté majeure de détecter les parties d’une
texture nécessaires pour un rendu.

Notre système est basé sur trois composants manipulant une mémoire stockant des morceaux
(rectangles) de texture. Cette mémoire est appelée “tile pool”. Le premier composant, la “Texture
Load Map”, détermine pour chaque image les morceaux de texture nécessaires (position et niveau
de détail) pour effectuer le rendu depuis le point de vue courant. Le second composant, le “Texture
Cache”, gère la mémoire de texture. Enfin, le “Texture Producer” charge et décode les morceaux
de texture de manière asynchrone dans la mémoire. La décompression des données de texture est
effectuée sur la carte graphique pour minimiser les transferts. Le “Texture Producer” peut également
générer des textures procédurales.

Notre système est transparent pour l’utilisateur, le seul paramètre nécessaire est le point de vue
courant. Aucune modification de la géométrie n’est nécessaire.

Mots-clés : rendu temps réel, textures haute résolution, GPU, chargement progressif

Unified Texture Management for Arbitrary Meshes 3

(a) (b)

(c) (d)

Figure 1: (a) in red/dark: parts of the texture atlas detected as needed for the current viewpoint. (b) The texture is loaded
as tiles in GPU memory for rendering (8MB). (c) Our loaded texture tiles mapped onto the scene (whole texture is 128MB).
Note that geometry is not modified: our system works in texture space. (d) Real-time fly over a terrain mapped with a 1GB
texture.

1 Introduction

Textures are a convenient way to add details in images without increasing the geometric complexity.
Nowadays video games and interactive applications commonly use multiple layers of highly detailed
textures on objects.

Thus, large amount of texture data needs to be loaded and transfered into the GPU memory for
rendering. This can lead to noticeable loading delays if texture data is stored on a slow mass media
storage (e.g. a hard drive or Internet server). Moreover, the size of this texture data often exceeds
the size of the physical memory available on hardware renderers. In this case texture loading must
be done dynamically in order to load the data needed for rendering the current viewpoint.

Current graphics APIs provide a basic swap mechanism between CPU memory and GPU mem-
ory. Textures are treated as atomic resources: even if only a small part of the texture is used, it is
entirely loaded in GPU memory. Moreover only textures fitting in GPU memory are handled. This
swapping mechanism cannot be used in practice because it results in poor rendering performances.

Each rendered frame does not need all the texture data at full resolution. Indeed only the texture
data viewed from the current viewpoint needs to be accessed by the renderer. Since the screen reso-

RR n° 5210

4 S. Lefebvre, J. Darbon & F. Neyret

lution is bounded, less detailed versions of textures can be used for distant geometry. More generally
displayed texture resolution does not need to exceed screen resolution. MIP-mapping [Wil83] is a
classical solution to adapt the texture levels of detail during rendering. Therefore, texture data are
usually stored as a MIP-mapping pyramid.

To benefit from these properties progressive loading is commonly implemented: The applica-
tion starts with partial texture data at low quality and then details are (down)loaded according to the
current viewpoint. This is made under the assumption that the rendering quality can be sacrificed in
favor of a higher frame rate. The common approach [GY98, CE98, Hut98] is to subdivide the MIP-
mapping pyramid levels into regular grids, defining texture tiles that will be loaded or cleared on de-
mand.

Screen view Texture space

Figure 2: The pyramidal structure of
texture space.

Usually a priority rule also determines in which order the tiles
must be loaded. The size of the tiles is chosen such that each
tile can fit into GPU memory. This organization of texture data is
depicted in figure 2.

However many difficulties arise. Hardware renderers do not
include a mechanism to load only part of a texture in memory.
Usually to overcome this limitation the geometry is split accord-
ing to the tiling of the texture. Then the texture is considered as
a set of smaller textures mapped on different pieces of geome-
try. This may produce lot of supplementary geometry and may be
time consuming with complex animated meshes, or with meshes
handled by geometric level of details algorithm. This approach
is usually only practicable with specific geometry such as in the
case of terrain rendering. The main difficulty consists of detecting which parts of the texture pyra-
mid are needed for rendering from a given viewpoint. Indeed one needs to compute the visibility
of each texture tile – ideally by taking frustum culling and occlusion culling into account – together
with the level of detail at which it is used. Since this has to be computed at each rendered frame, an
algorithm answering to that problem must also be fast enough for real time applications. It is thus
very important to avoid per triangle geometric computations on the CPU.

Many studies have dealt with progressive loading of texture data for the specific case of land-
scapes rendering. However, these methods do not easily address the problem for arbitrary meshes.
Difficulties arise because of the way textures are mapped on the geometry: The texture can be
stretched, deformed and the parameterization can be discontinuous. Scenes used in games are often
populated with buildings, characters, and so forth. Nowadays they are using very detailed textures
and texture management has become mandatory for these scenes.

Other kind of textures, such as procedural textures [Per85], are also of great potential interest for
interactive applications. Since procedural textures are defined by functions, they do not suffer from
data transfers, but from their computational costs. Procedural textures become affordable on GPUs
– thanks to programmability – but they are still difficult to use because of filtering and speed issues.
Note that computational cost for procedural textures is equivalent to the loading cost for standard
textures: It corresponds to the delay before texture data becomes available for rendering.

INRIA

Unified Texture Management for Arbitrary Meshes 5

Progressive loading is crucial to limit loading delays. Nevertheless other methods are classically
used to limit texture data size and memory transfer, such as compression and caching strategies. A
texture management system must include these approaches in order to optimize bandwidth usage.
The contributions of this paper are the following:
- A texture management system, transparent for the user, providing progressive loading of high res-

olution texture in real-time. It supports arbitrary mappings with no modification of the geometry.
It includes a memory cache, residing in GPU memory, to benefit from temporal coherency.

- A new hierarchical algorithm to determine visible parts of a texture in real-time.
- A unified model, providing the ability to integrate a procedural texture generator or an hardware

accelerated decompresser. In particular we implemented integer JPEG 2000 and Haar decom-
pression schemes in our system.

We demonstrate our system in a wide variety of situations: character rendering, large video game
scene, landscape rendering with potential memory and bandwidth limitations.

2 Previous work

We discuss here the previous work on progressive loading of texture data. The main issues are
to determine the needed parts of the texture and to efficiently transfer/store data into the renderer
memory.

Determining needed texture parts. The Clipmaps architecture, presented by Tanner et al. [TMJ98],
relies on a center of interest – a point and a radius in texture space - provided by the user. It is used
to determine which area of the texture must be loaded. The amount of details to load decreases with
the distance from the center of interest. Unfortunately this center of interest is difficult to efficiently
set for arbitrary meshes since parameterization may be discontinuous. If two distant areas in the
texture are seen at the same time, the area of interest would include a very large superset of the
actual needed parts. This is commonly the case when a mesh is textured with an atlas [MYV93],
where the mapped image is split into several parts. MP-grids [Hut98] do not require the user to
specify a center of interest in texture space. Instead the geometry associated with each texture tile
is computed. Required texture parts are then determined by a geometrical test. Cline et al. [CE98]
determines the needed parts of the texture by a geometric computation on each polygon. Polygons
must also be split according to the tiling of texture space for rendering. Both methods involve many
geometric computations. This makes the use of geometrical level of details or animated meshes
difficult. Therefore these approaches – primarily designed for terrain rendering – cannot be easily
extended to arbitrary meshes displayed in real time. Dollner et al. [DBH00] maintains a hierarchical
texture tree associated to the hierarchical model of a terrain geometry. The needed part of the texture
are deduced from the level of details selected for the geometry. The technique strongly exploits the
correspondence between texture and geometry in the specific case of terrain rendering. Goss et al.
[GY98] proposed a hardware modification to circumvent the problem of finding the appropriate tiles
to be loaded. The number of pixels using a same tile is computed by the hardware. Tiles with the
highest counter values are loaded first. Texture is initialized with low resolution data. This approach

RR n° 5210

6 S. Lefebvre, J. Darbon & F. Neyret

handles arbitrary meshes and exactly determine texture tiles needed for rendering the current frame.
However it requires a deep modification of the texturing hardware and does not easily scale to very
large textures.

Transferring and storing texture data. Cache systems are classically used to turn temporal coher-
ence to profit (i.e most tiles are still visible in the next frame and new tiles progressively appear).
Cline et al.[CE98] caches texture data in video memory by splitting the MIP-mapping pyramid of
a large texture in smaller textures (corresponding to the tiles). A caching strategy is described to
swap the small textures between main memory and GPU memory. However this organization makes
geometry splitting mandatory. Correct filtering cannot either be achieved: Different MIP-mapping
levels are stored in separate textures and the discontinuities introduced by the splitting makes linear
interpolation difficult. Tanner et al. [TMJ98] rely on a specific organization of the texture mem-
ory: It stores texture data only around the center of interest. The size of the storage area permits to
pre-cache texture data for rendering of next frames. The method proposed in [GY98] focus on the
loading latency issue. The whole texture pyramid is supposed to be fit into video memory. However,
it is not possible to store the whole texture when dealing with very large textures, a sparse storage is
mandatory.

Compression. Compression of images is a classical way to reduce data storage and transfer. Beers et
al. [BAC96] presented a method based on vector quantization to directly render compressed textures
in hardware rendering systems. Nowadays, standard GPUs includes lossy compression schemes
such as ST3C to reduce storage cost. However these schemes might suffer from visible artifacts and
the compression ratios may not be sufficient with very large texture. Usually the first purpose of
GPU implemented compression algorithms is to reduce storage. Decompression is done on the fly
during rasterization. However compressing texture data also reduce bandwidth requirement since
the texture data is sent in a compressed form. Wavelet compression schemes [Swe96, JPE00] are
particularly interesting for this purpose since they offer a hierarchical representation of the texture
details.

3 Our Texturing System

3.1 Overview

Our system proposes a unified architecture for texturing meshes with arbitrary mapping. We address
the following issues: the efficient determination of the needed parts of the texture, the minimization
of texture transfer and storage and the possibility of using complex textures like compressed textures
or procedural textures.

Figure 3 depicts the architecture of our system. Our system is updated with the new viewpoint
at the beginning of each frame. Once the update is done, the system can be used as a simple texture,
through a bind/unbind API. Our system is based on three components interacting with each others.
The Texture Load Map component indicates which texture tiles are needed for rendering the scene
from the current viewpoint. It sends this information to the Texture Cache component. Each time

INRIA

U
ni

fie
d

Te
xt

ur
e

M
an

ag
em

en
tf

or
A

rb
it

ra
ry

M
es

he
s

7

Texture Load Map

Indirection Grids

Texture Producer

Procedural

Tile Pool

JPEG
2000

fetch (u,v)

texel color

GPU

Texture Cache

User side geometry,
mapping,
viewpoint

request request

needed tiles load tiles
New view position

Rasterizer

Shader

file A ...file B

Draw

update

render

Video MemoryStandard Pipeline

Figure 3: Block diagram of our architecture. The Texture Load Map component sends information about needed texture tiles. The Texture Cache handles
storage of texture data. The Texture Producer asynchronously produces texture data for the tiles becoming visible. It reads data from mass storages and decodes
it directly into GPU memory. GPU part is outlined in blue.

R
R

n°
52

10

8 S. Lefebvre, J. Darbon & F. Neyret

a tile is needed the Texture Cache checks whether this tile is available in the cache memory (i.e.
the Tile Pool). If not it allocates a new slot for the tile and sends a requestto the Texture Producer
component. The latter generates tile data directly into the Tile Pool. It can be implemented as a
texture loader, texture decompresser or a procedural texture generator. Loading is asynchronously
performed by the Texture Producer, according to a user–defined bandwidth constraint.

Our architecture is well integrated in the standard pipeline: The application simply sends view-
point and geometry updates to the Texture Load Map component. The memory containing texture
data – i.e Tile Pool – can be used at any time to render a frame since it is stored in GPU memory.
The Texture Cache guarantees that stored data are coherent. Missing tiles are not drawn and low
resolution version of the texture is used to fill in the gaps.

The main advantage and true novelty of our system is to avoid geometric computations other than
rendering – which is performed efficiently by the GPU. Thanks to our new algorithm to implement
the Texture Load Map and to the use of indirection textures to store the texture cache, the CPU never
has to work directly on the geometry, nor to modify it for rendering.

Our system also speeds up the generation of textures requiring computations, like compressed
textures or procedural textures. Usually these types of textures are decoded on the fly during render-
ing, resulting in poor performance since computation takes place for every rendered pixel, at each
frame. Thanks to the Texture Producer component our system enables such textures to be directly
cached in GPU memory, thus taking advantage of temporal coherency. Once the data stored in the
cache, rendering requires a simple lookup in the Tile Pool. This also decreases bandwidth require-
ment, since in the case of compressed textures, only compressed data is sent into the GPU memory.
With procedural textures no data, apart from the texture procedure, is sent through the bus since the
texture is entirely computed by the GPU. Note that the cache must only contain enough information
to render one frame, which means that, ideally, it can be no larger than the frame buffer (since we are
storing squared tiles and not single pixels, the minimum size of the cache is larger but of the same
order of magnitude). Therefore storing uncompressed data in the cache does not result in very high
memory requirements, while enabling rendering speed-up.

While our texturing system can handle the whole texture pyramid, GPUs are most efficient with
textures of reasonable size not requiring progressive loading. Therefore, we usually use our system
only to handle the latest levels of a large texture pyramid. The first levels are stored as a standard
texture in the GPU. Our system becomes active only if the higher levels of the texture are used.

The three components of our system are detailed in the following sections.

4 Texture Load Map

4.1 Overview

The Texture Load Map (TLM) component computes which part of the texture is needed for the
current view-point. The TLM component computes a map of the texture space containing visi-
bility information for each tile. We store this map as a pyramid of 2D maps. One 2D map is
computed for each level of the texture space pyramid. We refer to these 2D maps as TLM lev-
els. Figure 5 shows the TLM levels for a simple case. For each texture tile, a TLM level con-

INRIA

Unified Texture Management for Arbitrary Meshes 9

tains a minimum and maximum levels of detail (LOD) value. These LOD values correspond to the
minimum and maximum level of our system at which pixels within the tile are using the texture.

B

level 0

level k

Our system

Standard
texture

k levels

Figure 4: Our system han-
dles the latest levels of the
texture pyramid.

A LOD value always lies in the interval [0,k] where k is the number of
levels handled by our system (see Figure 4). If a tile’s level falls within the
maximum and minimum LOD values, then the tile is needed for rendering.
The TLM also stores a priority value for each tile.

The children tiles of a tile T are the four tiles corresponding to the
same texture area in the next (more detailed) level of the pyramid. T is
then referred to as the parent tile. We shall refer to the first texture level
handled by our system as the first handled level.

We propose a GPU-based algorithm to compute a TLM which per-
forms on arbitrary meshes – possibly animated – with any parameteriza-
tion. It is based on a hierarchical approach and produces a conservative
estimation of visible texture parts. This algorithm is easy to implement and performs in real-time.
First we describe how to compute a given TLM level. Then we describe our algorithm for computing
a whole TLM.

A0

A1

B0

B1

C0
C1

A0

B1

A1

C0

C1

B0

Screen space TLM level 0 TLM level 1Texture space

Figure 5: The Texture Load Map component computes the set of visible texture tiles, marked in green/gray in the TLM
levels.

4.2 Computing a TLM level

The key idea of our algorithm is to render the geometry into texture space. This is done by rendering
the geometry using 2D texture coordinates of the vertices instead of their world coordinates. The
rendering resolution is chosen such that one rendered pixel corresponds to one tile of a TLM level.
One rendering computes one TLM level. When a pixel is rasterized in the TLM level at coordinates
(i, j), it implies that the triangle being rasterized is textured using some part of the texture covered
by the tile at (i, j). This is illustrated by Figure 6. Note that it does not imply that the tile is actually
needed, this will depend on the selected level of detail. During rasterization of the TLM level,
we also have access to screen coordinates and world coordinates interpolated from triangle vertices
(screen space coordinates are computed in a vertex program).

Frustum culling and back face culling. Frustum culling is performed by culling triangles in texture
space according to the current viewpoint. This is achieved with the clipping registers available on
recent nVIDIA GPUs. Only the geometry within the camera view frustum is rendered in the TLM
level. This is depicted on figure 7.

RR n° 5210

10 S. Lefebvre, J. Darbon & F. Neyret

Figure 6: Left: Textured triangle rendered in screen space. Right: Same triangle rendered in TLM level of resolution 4×4.
Texture coordinate of vertices are used for rendering. Rasterized pixels each correspnd to one tile. Rasterized tiles are marked
by a letter.

Backface culling requires a special treatment: GPUs automatically handle back–facing triangles,
but only by taking into account vertex position in rendering space. In our case – since we are render-
ing in texture space – the vertices positions are not their screen space position but their texture space
coordinates: Automatic back face culling according to the screen space cannot be performed. Our
approach is to use the far clipping plane to achieve back face culling. Recall we are rendering in a 2D
texture space: The near and far clipping plane were not taking into account until now. We compute
the z coordinate of the vertices during rendering in the TLM level as hpos.z = dot(nrm,vv)− 1.0
where hpos.z is the z coordinate of the resulting vertex (as computed in the TLM vertex program),
nrm the normal associated to the vertex, and vv the normalized view vector. The far plane is posi-
tionned at z = −1. Vertices are thus culled if dot(nrm,vv) < 0.0 which corresponds to the operation
required by backface culling. Note that if per-vertex normals are used, the triangle will be split at
the iso-value dot(nrm,vv) = 0.0.

The same geometry is used for rendering both the TLM and the camera view. Since the same
clipping is performed for both renderings, the geometrical cost of a TLM level is equivalent to the
geometrical cost of rendering from the current viewpoint. Moreover, only the pixels corresponding
to triangles within the camera view frustum are produced, which reduces per-fragment computations
in the TLM level.

C0

C1

B1

B0

A1

A0A0

A1

B0

B1

C1
C0

A1

C0

A0

Texture space geometry Clipping enabledScreen space

Figure 7: Texture space triangles are clipped with respect to the current viewpoint.

Conservative result. In order to produce a conservative result, our algorithm must use a rasterizer
such that any pixel containing a piece of geometry is rasterized. We will refer to such a rasterizer as
a conservative rasterizer. Indeed without this property small isolated triangles – in texture space –
could be missed. As a consequence some parts of the texture would not be loaded when required.

INRIA

Unified Texture Management for Arbitrary Meshes 11

We emulate a conservative rasterizer by enabling antialiased polygons or by rendering the model
in antialiased wire-frame mode on top of the polygons. The rasterizer then produces all fragments
containing geometry [Ope03].

Information from triangles using a same texture tile have to be combined to compute the max-
imum and minimum LOD values. This occurs when different triangles use a same texture tile. To
combine these information we render the TLM level with a max blending mode. The fragment pro-
gram computing the LOD value v ∈ [0,1] of a triangle outputs both v and 1.0− v, thus allowing for
computation of the maximum and minimum LOD values over multiple triangles.

Texture coordinates range. Texture coordinates outside the [0,1]2 texture range (floors, wall-
papers) can be handled by keeping only fractional coordinates of pixels rasterized in texture space.
Note that today’s GPUs do not support such operations. Therefore our current implementation does
not handle texture wrapping.

Computing the required levels of detail. During rasterization of triangles in the TLM level, we
need to compute which level of our system is used to texture the triangles in screen space. This
information will be encoded in each pixel – i.e. tile – of the TLM level. It corresponds to the
LOD value at which the triangle being rasterized is using the tile. Recall that LOD values of all
the triangles using a same texture tile are combined to compute the minimum and maximum LOD
values (see above, Conservative result).

The level used to texture can be deduced by computing how many screen pixels lies between
two neighboring tiles of the TLM space: This is given by the derivatives of the screen space coordi-
nates with respect to the texture coordinate system. The finite differences operators (ddx and ddy
instructions of nVIDIA hardware) can compute these derivatives during rendering of the TLM level.
However this suffers from precision issues, which results in wrong texture tile selection.

We propose another approach based on the standard MIP-mapping algorithm implemented in
GPUs. We create a 2D MIP-mapped texture – referred to as the LOD texture – with a resolution of
2k−1

× 2k−1 pixels where k is the number of texture levels handled by our system.

0

0

0

0

0

0

0

00

0

0

0

1

11

2

Figure 8: The LOD tex-
ture for k = 3 levels han-
dled by our system.

The LOD texture has k MIP-mapping levels. Each MIP-mapping level of the
LOD texture has a color corresponding to the index of the level of our system
to be selected: Every pixels of level i have a color R = G = B = i (the LOD
texture is actually a luminance texture, storing only one value per pixel).
This is depicted Figure 8. During the rendering in texture space we retrieve
the color of the pixels from the LOD texture. The LOD texture is accessed
with the screen space coordinates interpolated from triangle vertices. Since
the LOD texture is filtered by the GPU, the resulting color corresponds to
the MIP-mapping level selected by the texture unit. This color is the index
of the level of our system that is used for rendering (the LOD value).

The GPU selects the MIP-mapping level according to the LOD texture
resolution and the resolution of the TLM level in which rendering occurs.
However we need to compute the required MIP-mapping level for the texture
handled by our system. We thus shift the MIP-mapping level selection of the LOD texture. Let M2

RR n° 5210

12 S. Lefebvre, J. Darbon & F. Neyret

be the resolution of the TLM level, B2 the resolution of the first texture level handled by our system
(see Figure 4); L2 the resolution of the LOD texture. Let l ∈ [0,1] be the coordinate used to access the
LOD texture, x ∈ [0,1] be the texture space coordinates and s ∈ [0,1] the screen space coordinates.
During rendering in the TLM level, the LOD texture is seen at full resolution if dl

dx = M
L . We would

like this to correspond to the selection of the first level of the texture handled by our system. The
first handled level must be selected for ds

dx = B
S . In other words dl

ds = S
B ×

M
L . Therefore the screen

space coordinate s must be scaled by S
B ×

M
L before accessing the LOD texture (recall each level of

the LOD texture has a uniform color - the color is only given by the selected MIP-mapping level).
Figure 9 illustrates level selection with the LOD texture.

M

L

l

x

B

S

s

x

×
S

B

M

L

Figure 9: Left, top: The line on the triangle is four pixel long on the screen. Bottom: The line is textured using two pixels
of the first level handled by our system. In this case ds

dx = 4 B
S and the third level (index 2) handled by our system must be

selected to render at full resolution. Right, bottom: Rasterization of the same line in the TLM level of resolution M. Top: The
line is textured with the LOD texture. The screen coordinates are multiplied by S

B ×
M
L before accessing the LOD texture.

The GPU uses the last MIP-mapping level of the LOD texture, containing the index 2 (dl
dx = 4 M

L). This selects the third level
handled by our system, which is the expected result.

The drawback of this approach is that the LOD texture has a resolution of 2k−1
× 2k−1, which

may waste some texture memory if many texture levels are handled by our system. This limitation
could be overcome if the GPU could give access to MIP-mapping level computation done in texture
units.

Occlusion culling. Our algorithm, as presented above, offers a conservative estimation of the op-
timal set of tiles needed for rendering. This estimation is already quite good since a tile is marked
as needed if and only if at least one front facing triangle using the tile is within the camera view
frustum.

However occlusion culling is not taken into account. In complex scenes a large part of textured
area can be hidden by occlusion. This is, for example, the case in urban environment scenes. It is
therefore very important for our texturing system to be able to handle occlusion culling. To avoid
complex geometrical computation we rely on the shadow buffer algorithm [Wil78]. We check with a
lookup in a low resolution depth map rendered from the current viewpoint whether the point in world
space coordinate associated with a pixel rasterized in the TLM level is occluded. Unfortunately this
cannot ensure a conservative result due to aliasing of the depth test and to the fact that the tested
point actually corresponds to a whole area of the triangle being rasterized. If this point is considered

INRIA

Unified Texture Management for Arbitrary Meshes 13

occluded, the part of the triangle textured by the tile is entirely considered as occluded, which may
be wrong. For applications where rendering quality can be sacrificed for higher frame rates, this
approach is suitable. If a conservative result is mandatory, this approach can nevertheless be used to
load non occluded tiles with a higher priority.

4.3 Computing a whole TLM

The algorithm for computing a whole TLM benefits from the following properties:

- A map of the TLM can be deduced from any map of higher resolution: The minimum (resp.
maximum) LOD value of a tile can be computed as the minimum (resp. maximum) over the LOD
values of its children tiles. The result remains conservative by construction.

- Only a small area of the TLM map of higher levels of detail is used from a given viewpoint: The
screen resolution limits the amount of texture visible at once. However the active area is not
always continuous. For instance if a texture atlas is used, non-neighboring parts of the texture
can be simultaneously seen from a given viewpoint (e.g the texture of the eyes of a character can
be stored far from the texture of its face). Thanks to conservative properties, the active area of
TLM levels of higher levels is always included in the active areas of TLM levels of lower levels.

From these two properties we propose the following algorithm:

Set active area to the whole texture space
Render TLM level (lowest level)
Compute the active area
Limit rendering to the active area
for (i=lowest level+1; i<=hightest level; i+=n)
Render TLM map (i+n)
Compute the active area
Limit rendering to the active area
for (j=i+n-1; j>=i; j--)

Compute TLM map (j) from TLM map (j+1)

This algorithm involves a rendering every n levels. The rendering is restricted on the active area
estimated from previous levels. Therefore, it involves less geometric and fragment processing than
computing explicitly all TLM levels. The value of n controls the tradeoff between precision and
performance (for our applications we set n to the number of levels). Each rendered TLM map has
to be retrieved from video memory for the texture loading process. This transfer is slow (GPUs
architecture are not designed for these read backs). However, thanks to our algorithm we only
retrieve the active parts of the TLM levels.

4.4 Generating tile requests

Tile requests are generated from the TLM. Since the TLM contains information for all the tiles of
the texture pyramid, it can be computationally extensive to parse it entirely. Once again, we take
profit from the hierarchical structure of the TLM.

Each TLM level contains the maximum and minimum LOD value for a tile. A tile is needed if
the tile level is between the minimum and maximum LOD values stored in the TLM for the tile. If a

RR n° 5210

14 S. Lefebvre, J. Darbon & F. Neyret

tile at a given level is not needed, it implies that none of its children tiles are needed. Indeed a tile is
not needed if the maximum LOD value for the tile is below the actual tile level in the pyramid. None
of the children tiles can have greater LOD value, since they share the same pixels of the texture.
Note than since tiles are actually MIP-mapped in the Tile Pool (see section 5), a tile does not need
to be flagged as needed if its children tiles are themselves needed. This can be checked easily by
examining the LOD values of the children tiles.

We first entirely parse the least detailed level and compute the list of needed tiles for this level.
To parse the second level, we only examine children tiles of needed tiles of the first level. The
resulting list of needed tiles is then used to parse the third level. We recursively apply this process.
The output is the set of tiles needed for the current frame.

Requests are generated by comparing the set of tiles for the current frame with the set of tiles for
the previous frame. Requests are generated for tiles that were not needed at the previous frame and
are now needed. Tiles that are no longer needed are flagged in the Texture Cache – these tiles will
be the first to be erased if memory lacks.

5 Texture Cache

The purpose of the Texture Cache component is to handle storage of needed tiles for the current
rendering and to implement a least recently used (LRU) cache of tile data. Since we need fast
rendering, the cache memory must be in video memory.

We extend the method of [KE02] to implement a sparse storage of the MIP-mapping pyramid.
Cached tiles are packed into a texture referred to as Tile Pool. Each level of the pyramid is covered
by an indirection grid. Each cell of the indirection grid covers exactly one tile, and contains a pointer
to a tile in the Tile Pool. This is illustrated on figure 3. Once the Texture Cache receives a tile request
for a non-cached tile, it performs the following operations: reserve a slot for the tile in the Tile Pool,
set the tile pointer of the indirection grid to null (i.e missing tile), send a request to the Texture
Producer. As soon as the texture data is generated, the Texture Producer send an acknowledge and
the pointer in the indirection grid is updated. In order to minimize transfer, indirection grid updates
are sent once in GPU memory at the beginning of each frame. Only a rectangular area containing
the updates is transfered.

Memory thrashing. In some cases the cache may not be large enough to store all the data selected
for the current frame. When this occurs, the Texture Cache first discards the tiles with the lowest
priority in the current frame (see section 6). Missing tiles are rendered with a low resolution version
of the texture.

Rendering the cached data. The texture data stored in the Tile Pool is rendered by the GPU. To
achieve high quality rendering, MIP-Mapping must be performed. We store not only a tile but its
whole MIP-mapping pyramid. This increases memory usage of the cache memory by 33%. Note
that parent tiles are not loaded if their four children tiles are also loaded to avoid storing multiple
times the same information. Computation of this MIP-mapping pyramid is performed either by
the GPU or by the Texture Producer component for procedural textures. As explained in [LN03],

INRIA

Unified Texture Management for Arbitrary Meshes 15

correct filtering of indirection textures cannot be automatically handled at tiles boundaries and must
be explicitly programmed. Note that this task could be greatly simplified by a native hardware
support of tile based textures.

6 Texture producer

The purpose of the Texture Produce is to generate the needed texture tiles that are not already in the
Tile Pool. It receives render requests from the Texture Cache. These requests are added to a priority
queue and processed asynchronously according to a user define bandwidth limitation.

The CPU part of the Texture Producer – implemented as a loading thread – is in charge of
retrieving data from slow mass media storage. Data needed to generate texture tiles are uploaded
from CPU memory to GPU memory as textures. The Texture Producer then renders tile data directly
into the Tile Pool. This is performed in hardware using a render to texture operation with a viewport
covering the destination tile. A quad is rendered, using a special fragment program in charge of
decoding texture data. The input of this fragment program are the coordinates of the tile within the
texture pyramid, its resolution and the data loaded from mass media storage for the tile (stored as
textures).

The standard Texture Producer simply copies the uploaded texture tiles into the Tile Pool. A
more complex Texture Producer – like a texture decompresser – would decode the data during ren-
dering into the Tile Pool. The transfer of decoded texture data is thus only done within GPU memory,
which minimizes transfer between CPU and GPU memory.

To illustrate the flexibility of our system we implemented two wavelet based decompresser: sim-
ple Haar wavelets and lossless JPEG 2000 integer wavelets. Wavelet decompressers are especially
well suited for progressive loading: Only details need to be loaded to increase resolution of the
data already in cache, thus reducing loading and bandwidth requirements. Details can also be sent in
most relevant first order very easily. Implementing these decompressers on a GPU, while technically
challenging, is rather straight forward. We rather focus on the core of our texturing architecture and
will not give implementation details about these texture producers.

Prioritized loading . Visualization of large textures during progressive loading can suffer from a
lack of data. Using a priority rule alleviates this problem by loading the most relevant parts of the
texture first. The TLM component computes a priority based on visual criteria during the rendering
of a TLM level: distance from screen center, and distance from the viewpoint. The Texture Producer
component proposes a data criteria based on a user defined priority value in texture space, or on
wavelet detail coefficients. Final priority for a tile is computed as a weighted sum of both criteria.
Tile requests are sorted with respect to their priority value before being processed by the Texture
Producer.

RR n° 5210

16
S.

L
ef

eb
vr

e,
J.

D
ar

bo
n

&
F.

N
ey

re
t

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500 600

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200
 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

optimal TLM
our TLM
over−estimation

optimal TLM
our TLM
over−estimation
pixel error

100 x FPS
tile production KB/s
number of empty tiles
number of needed tiles

Figure 10: From left to right: Character model, Gas Station scene and Puget Sound terrain. From top to bottom: measure of TLM quality, measure of TLM
quality with occlusion, TLM efficiency and overall system performance. The fly–overs are shown in the accompanying video.

IN
R

IA

Unified Texture Management for Arbitrary Meshes 17

7 Results

We have tested our system in various situations: landscape rendering, character meshes and archi-
tectural scenes. We describe below how our system can be used in these cases.

In all the examples presented, we let the GPU cope with the low resolution levels of the MIP-map
pyramid (typically, below 10242 pixels). Our system handles the more detailed levels of the texture.
Benchmarks are done on three models (landscape, character, architectural scene) with a fixed camera
path. Measurements are done on a Pentium 3GHz with a nVIDIA GeForce FX 5950.

Landscape. Since our system handles arbitrary meshes, it performs well on large textured land-
scapes. We use data of the Puget Sound terrain (courtesy of USGS and The University of Washing-
ton). The texture resolution is 16384×16384 RGB pixels (1GB with MIP-mapping pyramid). The
four last levels of the texture pyramid are handled by our system. Tile resolution is 64×64.

Characters. Characters are our first example of arbitrary meshes. Characters are classically textured
using an atlas, often created by artists. Our TLM algorithm performs well in this case. It is interesting
to note that our system never loads the unused part of the texture atlas. Nevertheless optimizing the
atlas is important to reduce storage on mass media and optimize resolution usage in the texture. Our
system is of course compatible with any re-parameterization scheme done in preprocessing since
it performs on arbitrary mapping. The texture used is 2048× 2048 RGB. The two last levels are
handled by our system. Tile resolution is 32×32.

Architectural scene. This type of scene is usually composed of many textures applied on many
objects. To handle this case in our system, we create a unique texture for the scene: We pack all
textures into one big texture and we update the texture coordinates of each object. Note that this
packing do not need to be efficient: thanks to our TLM algorithm empty spaces will never be loaded.
The update of the texture coordinate of each object can be made transparent to the user through a
binding API making use of the texture matrix. We demonstrate this on the nVIDIA Gas Station
demo (models and textures courtesy of NVIDIA Corporation). The scene consists of about 26,000
triangles and the amount of textured data is 128 MB. The three last levels of the texture are handled
by our system. Tile resolution is 32×32.

7.1 Texture Load Map

Performance. The TLM performs fast enough for real time applications. We measure both frame
rate and tile requests generation, with only TLM computation active. This includes read back of
TLM data. For the character, average TLM frame rate is 135 FPS and CPU cost of tile requests
ranges from 0.02 ms to 0.6 ms. For the Gas Station scene, average TLM frame rate is 36 FPS and
CPU cost ranges from 2.7 ms to 6.0 ms. For the Puget Sound terrain, average TLM frame rate is 90
FPS and CPU cost is below 1 ms.

Quality of estimation. We estimate the quality of our TLM algorithm by comparing the selected

RR n° 5210

18 S. Lefebvre, J. Darbon & F. Neyret

set of tiles with the optimal set of tiles. The optimal set of tile is computed by rendering the current
frame with a fragment program displaying texture coordinates in the frame buffer. We then read
back the frame buffer, parse the texture coordinate, and compute the optimal set of tiles. This is a
very slow process due to the costly read back (whole frame buffer) and the parsing of screen pixels.

Figure 11: Close view of the Gas Station scene and the Puget Sound terrain. First image is the current view point, second
image shows a different viewpoint of the same data. In both cases, occlusion culling avoids loading texture data hidden by
close geometry.

Figure 10 summarizes the results, with and without occlusion culling enabled (first and second
rows). The two first curves show the percentage of the whole texture data selected by the optimal
TLM and by our TLM algorithm. The over-estimation is given in percentage of tiles wrongly se-
lected as needed by the TLM algorithm, within the set of selected tiles. The error is the percentage
of pixels not textured correctly in the final image. This only occurs with occlusion culling since
the result is no longer conservative. The estimation of our TLM algorithm closely follows the opti-
mum. Over–estimation increases in occluded scenes (Gas Station scene and Puget Sound Terrain).
Notice how over–estimation decreases at the end of the Puget Sound terrain fly-over: thanks to the
altitude there is almost no occlusion culling, and the TLM is almost equal to the optimum. The
TLM algorithm with occlusion culling reduces over–estimation. In the character fly-over, the peak
in over-estimation (around frame 230) is removed by occlusion culling: it corresponds to the time at
which the arm of the character is hidden by its head.

7.2 Rendering under memory constraint

Under memory constraint, our system concentrates resolution around the user “look–at”. This is
done thanks to the tile loading priority (see section 6). Figure 12 shows a view of the nVIDIA Gas
Station obtained under strong memory constraint (constraint is 11MB, texture data is 128MB).

7.3 Performance of the whole system

Figure 10 (third row) shows the performance of our system for the three test scenes. In the three
cases, our system manages to keep a real-time frame rate. Note how tile rendering influences perfor-
mance. The number of empty tiles is kept very low, which ensures good rendering quality since the
TLM is conservative.

INRIA

Unified Texture Management for Arbitrary Meshes 19

Figure 12: Two viewpoints rendered with 11 MB. Left picture is obtained with our system, right picture is obtained with a
resized version of the texture. Details are preserved by our system.

7.4 Latency, bottleneck and limitations

The TLM algorithm performs on the GPU, which implies that its result must be uploaded in CPU
memory for processing. In practice the latency introduced by this operation is difficult to measure.
However it does not result in poor performances, as demonstrated by the TLM performance.

The current bottleneck of our system mainly concerns rendering. First, we need to use a special
shader to render with correct filtering. This shader involves only simple operations but is quite long,
thus increasing rendering cost. This could be solved by an hardware support of tile based textures.
Second, we need to render each level separately, one on top of the other (only active levels are
rendered). This implies to render the geometry multiple times. This limitation will be overcome in
near future by using dynamic branching in a fragment program accessing the texture levels.

The maximal size of the texture that can be handled by our implementation is currently limited.
Our Texture Cache implementation requires one indirection grid by TLM level. The size of the
indirection grid of one level is the size of the texture at this level divided by the size of the texture
tiles. For very large textures the indirection grid can still be too large to be stored in video memory.
In practice this occurs when resolution of an indirection grid is greater than 40962. Assuming tiles
of 642 size, this gives a maximal texture resolution of 2621442. For larger resolutions, a solution to
this problem would be to implement hierarchical indirection grids.

8 Conclusion

We have presented a new system for texturing arbitrary meshes with high resolution textures in
interactive applications. Our algorithm to efficiently compute visible parts of a texture allows to
save bandwidth and storage by considerably reducing the amount of data that needs to be transfered.
Despite its GPU-based design, the component-based architecture allows for flexibility. Thanks to
the concept of Texture Producer, different texture types are made available in hardware, including
compressed textures and procedural textures. It is a significant step towards virtualized memory for
GPUs.

RR n° 5210

20 S. Lefebvre, J. Darbon & F. Neyret

References

[BAC96] BEERS A. C., AGRAWALA M., CHADDHA N.: Rendering from compressed textures. In
SIGGRAPH 1996 (1996), pp. 373–378.

[CE98] CLINE D., EGBERT P. K.: Interactive display of very large textures. In Vis’98 (1998),
pp. 343–350.

[DBH00] DOLLNER J., BAUMMAN K., HINRICHS K.: Texturing techniques for terrain visualiza-
tion. In Vis’2000 (2000), pp. 227–234.

[GY98] GOSS M. E., YUASA K.: Texture tile visibility determination for dynamic texture loading.
In Graphics Hardware ’98 (1998).

[Hut98] HUTTNER T.: High resolution textures. In VisSym ’98 (1998).

[JPE00] JPEG: Iso/iec jtc 1/sc 29/wg jpeg 2000 part 1 final committee draft version 1.0. 1.29.15444,
2000.

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Graphics Hardware ’02 (2002).

[LN03] LEFEBVRE S., NEYRET F.: Pattern based procedural textures. In I3D 2003 (2003),
pp. 203–212.

[MYV93] MAILLOT J., YAHIA H., VERROUST A.: Interactive texture mapping. In SIGGRAPH
93 (1993), pp. 27–34.

[Ope03] OPENGL SGI: The OpenGL Graphics System: A Specification (version 1.5). Mark Segal
and Kurt Akeley. Sillicon Graphics, Inc., 2003, ch. 3 - Rasterization.

[Per85] PERLIN K.: An image synthesizer. In SIGGRAPH’85 (July 1985), vol. 19(3), pp. 287–296.

[Swe96] SWELDENS W.: The lifting scheme: A custom-design construction of biorthogonal
wavelets. Appl. Comput. Harmon. Anal. 3, 2 (1996), 186–200.

[TMJ98] TANNER C. C., MIGDAL C. J., JONES M. T.: The clipmap: A virtual mipmap. In
SIGGRAPH 1998 (1998), pp. 151–158.

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. In SIGGRAPH 78 (1978),
pp. 270–274.

[Wil83] WILLIAMS L.: Pyramidal parametrics. In SIGGRAPH’83 (1983), pp. 1–11.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Previous work
	Our Texturing System
	Overview

	Texture Load Map
	Overview
	Computing a TLM level
	Computing a whole TLM
	Generating tile requests

	Texture Cache
	Texture producer
	Results
	Texture Load Map
	Rendering under memory constraint
	Performance of the whole system
	Latency, bottleneck and limitations

	Conclusion

