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1 Introduction

Over the past few years, a huge research effort has been devoted to the study of Internet
topology. The absence of hierarchical structure, the lack of agreement between wide area
network operators, local operators (e.g., metropolitan area networks), and service providers
has led to a highly disordered expansion of the Internet. When considering the global
topology of the Internet, different lines of investigations can be followed in order to describe
the underlying structure of the network. One popular approach consists of using the theory
of complex networks and random graph models (e.g. Erdds and Rényi, small worlds, etc.),
see Albert and Barabési [1] and Newman and Watts [2]. This line of investigation has all
the more been supported by the fact that it has empirically been observed that the degree
of routers obeys a power law distribution as reported in the celebrated paper by Faloutsos
et al. [3]. This approach consists of representing the Internet by means of a random graph
satisfying some local properties observed by measurements. It is nevertheless worth noting
that a model based on incomplete data may lead to erroneous interpretation of the reality,
as argued in Radoslavov et al. [4], Dall’Astra et al [5].

Many projects have been initiated in order to discover the global topology of the Internet
(by CAIDA, AT&T, etc.). Most of them rely on the use of the traceroute capability offered
by routers. By using traceroute, one can discover the routers along the path between a
source and a destination. Even though traceroute may yield unreliable data, since paths
may change within the network and all routers do not respond to a traceroute request, it
gives an indication on the global structure of the network (see for instance [6]). In particular,
it allows the embedding of the Internet graph into a non Euclidean multi-dimensional space
in order to evaluate the distance between two hosts Shavitt and Tankel [7] and Lakhina et
al. [8].

The inference of network topology is highly relevant for studying and possibly anticipat-
ing the propagation of attacks through the whole of the Internet (worms, DDoS, etc.). The
magnitude of an attack greatly depends on how the network is structured and it is of prime
importance to be able to locate the weak points of the network in order to implement tools
to block the propagation of attacks.

In all the above cited studies, the network appears as black box whose structure is
inferred by injecting probes and by reconstructing the global topology by different methods
(tomography). The situation is however quite different for an network operator, who is able
to know the topology of his own AS. By listening the routing messages exchanged between
the different routers, it is possible to reconstruct the physical as well as the routing graph
of the network (IGP information). Listening BGP routing messages can in addition be
used to know, to some extent, what happens outside a network operator’s AS. IGP routing
information also gives the state of the different links within the network. The instability of
links is an important factor to account for when inferring the topology of an AS since the
up or down states of interfaces or links impacts the routing graph and then the information
obtained by a traceroute procedure.

In addition, for inferring the topology of the Internet, it is important to take into account
the different components of the network. Indeed, the global Internet is composed of customer
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premises networks (LANs, home networks), access networks (GigaBit Ethernet or ATM
networks possibly enhanced with level 3 functions), collect networks (including PoPs) and
transit networks. The last ones, owned by tiers one operators, are composed of very high
speed links (e.g., OC 12 or OC 48 links) connecting different collect networks, which are
most of the time concentration networks in charge of collecting and distributing data among
different users. Furthermore, at a macroscopic level, users connected to a collect network
are geographically close one to each other (for instance in a same country). The topology of
a collect network is, in first approximation, a tree, with possibly cross links at intermediate
levels. Note that the existence of collect network naturally provides the global Internet with
a small world structure. Collect networks are dense networks connected one to each other
via high speed links between high capacity routers.

In this paper, we focus on the topology discovery of collect networks. While transit
networks are composed of a relatively small number of routers, the structure of collect
networks is much more intricate and involves a large number of routers in a rather small
geographical area. The topology of such a network is not exactly a tree but this model can
be used as a first approximation. Indeed, when inferring the topology of a network, we have
to take into account different factors, in particular the instability of links, the possibility
that some routers do not respond to traceroute requests, etc. Thus, we are led to make some
worst case assumptions on the behavior of the network. Assuming a tree structure amounts
to supposing that the cross links at intermediate levels cannot be seen by a traceroute
exploration. Thus, any traceroute message has to go up to the root in order to discover the
links along the path between a source and a destination located in areas connected to the
Internet by two different sons of the root node.

We consider a non-homogeneous tree network in which the degree of a node may depend
upon the depth and place different traceroute capable hosts randomly on the leaves of the
tree. We suppose that these hosts exchange traceroute messages and we compute the number
of links discovered by the traceroute procedure. We specifically show that the number of
links discovered rapidly increases for moderate values of the number of hosts but slowly
increases when the number of hosts becomes large. This indicates that the discovery of the
complete topology of a network requires a massive deployment of hosts exchanging traceroute
messages.

The organization of this paper is as follows: In Section [ the main variables and the
topologies of trees are introduced. SectionBlgives an explicit expression for the mean number
of nodes discovered by a traceroute procedure used by a set of stations. A connection is
established with classical coupon collector problems. In order to have some insight into the
impact of the topology of networks, Section Hl deals with asymptotic results, when the size
of the network tends to infinity, for the formulas obtained in Section Bl In particular the
rate of growth of the number of discovered routers is analyzed in great detail. In Section B,
we investigate the degree of a node, which is discovered by the traceroute procedure. The
results obtained in the previous sections are compared in Section [l against some experiments
on real data from the Scan-+Lucent map obtained from traceroutes collected by the Internet
Mapping project at Lucent Bell Laboratories. Concluding remarks are presented in Section [

INRIA



Stochastic Model for Topology 5

2 Notation and definitions

2.1 Assumptions and notation

Throughout this paper, we assume that the graph of the network is a partially homogeneous
tree with height n > 2. For 1 < j < n, a node of the jth level has d; sons. The total number
of nodes at level j is denoted by I; and IV is the total number of routers in the network. We
clearly have

Jj—1 n
h=1 j>115=]]d and N=)1,
k=1 j=1

For p > 1, the set S of traceroute capable hosts is composed of p elements, taken at
random on the last (nth) level of the tree; the nodes of this last level are referred to as the
leaves of the tree network. Several traceroute capable hosts may be attached to a single leaf.
In practice, when considering an ADSL collect network, the leaves of the tree network are
the access routers to the IP backbone network. We assume that there is no restriction on
the number of hosts, which can be attached to a router.

The traceroute capable hosts are terminals of customers, who performed traceroute pro-
cedures. In the following, each of these users knows the IP addresses of the others in order
to perform a traceroute. This implicitly assumes that there exists a server which knows
the IP address of each user willing to perform a traceroute; this server is required since IP
addresses for ADSL customers are dynamic.

Note it is also possible that any hosts may send traceroute messages to hosts it does not
know explicitly but by guessing the IP address. This may however generate a large number
of test packets and very unreliable information. This why we assume the existence of a
server in charge of collecting the IP addresses of hosts performing traceroute.

With the above assumptions, any pair of hosts in S exchanges packets to determine the
nodes between them. The routers discovered can embedded into a minimal subtree of the
total graph, referred to as the spanning tree of the discovered routers. Its height is denoted
by H(N,p). Clearly, for j < n, one has H(N,p) < n — j when none of the routers at level j
has been discovered.

One denotes by D(N, p) the total number of nodes between level 1 and level n discovered
by the traceroute procedure.

2.2 A dynamical picture for the placement of hosts

The random placement of the traceroute capable hosts at the leaves of the tree network can
be seen as a dynamical stochastic process as follows: initially the p points are at the root
of the tree, then they are thrown randomly on the d; sons; at the next step the subset of
points at level 2 are thrown randomly among the ds sons, and so on ... until they reach the
leaves of the tree.

With this description, when the points are at level j, let (X1;,...,X;,;) denotes the
vector describing the number of points at each of the I; nodes at level j. This vector
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Routers

Stations

p points

Figure 1: Partially Homogeneous Tree with di=d2=2, ds=4, d4=6

has a multinomial distribution with parameter p and (1/l;,...,1/l;). This means that for
(n1,...,m,) € NY such that ny + - +ny, =p,

p! 1
B (X X5) = (0, oom)) = P
Loy, VI

In the following sections, we study the properties of the random variable D(N,p) de-
scribing the number of nodes discovered by the traceroute procedure, in particular its mean
value as well as its asymptotic behavior when the height n of the tree tends to infinity while
the ratio of the number of stations p to the total number of routers N in the network is of
the order of some fixed A > 0.

2.3 The shape of the network

The above tree model offers some flexibility with regard to the structure of the network, in
particular via the choice of the number of sons of a node at level j, denoted by d;. Ideally,
this number should be a random variable and the tree would describe a the dynamics of a
Galton-Watson branching process. In this paper, we restrict the analysis to the case when
d; is deterministic.

In spite of the above restriction, one may consider different tree structures for the graph
of the network. We shall specifically analyze the different cases defined as follows.

Definition 1. For a tree with height n,
1. A regular tree (REG, tree) with degree d is such that d; =d >2,Vje {1,...,n—1}.

INRIA
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2. Power law tree with index o > 0, 1 < j < n,

— with increasing growth rate (PLIL, trees) if

dj =[],
— with decreasing growth rate (PLD,, trees) if
dj = |(n—j5)],

with |y|, the integer part of y € R.

As it will be seen in the following, even by restricting to the case of deterministic trees, the
impact of the topology is crucial in the speed at which nodes of the network are discovered.

The tree structure with nodes having a degree growing as a power law is motivated
by measurements of the Internet. Various studies have already shown that the underlying
graphs of the Internet and of the web exhibit the power law property for the degree of nodes.
See Faloutsos et al. [3].

3 Average number of discovered nodes

3.1 Distribution of the number of nodes discovered by two stations

In a first step, we examine the case of two stations placed at random at the leaves of the tree
network and performing a traceroute procedure. We specifically compute the distribution of
the number of nodes which are discovered by the two stations. The stations are randomly
attached to the leaves of the tree, which are numbered from 1 to I,. Station 1 sends
traceroute packets to the other station. The number of routers discovered with this procedure
is denoted by D. From the root of the tree, one denotes by H the maximal level such that
the two stations under consideration are contained in the same subtree (see Figure B).

Level H()

Level n
1 J

Figure 2: Routers discovered by two stations.

When the two stations are contained in a subtree, the root of this subtree is located at
level H. It is obvious that P(H > 1) = 1. We have H > 2 if and only if the two stations are
contained in the same subtree issued from one of the d; sons of the root. The probability
that the two stations are in such a subtree is equal to 1/d?. Since there are d; possibilities,
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we have P(H > 2) = 1/d;. More generally, we have H > k if the two stations are contained
in a subtree issued from one of the node at level k. Simple arguments show that we then
have

1 1
P(H = k) Iy dy..dp_1
Since we deal with a tree, the number of routers discovered by the two stations can take
the values 2k + 1 for k = 0,...,n — 1 and we clearly have by definition D = 2(n — H) + 1.
By combining the different above arguments, we easily come up with the following result.

Proposition 1. The number of routers discovered by two stations placed at random at the
leaves at the tree network has the probability distribution

1

k=0,..n—1 P(D<2%k+1)= .
1---Qp-1—k

From the above result, we can easily deduce the following formula for the mean value of
D.

Corollary 1. The mean value of the random variable D is given by

n—1

E(D):2n+1—22; (1)
k=1

dy...dg

For a regular tree, we have d; = d > 1 for all j and simple computations show that the
mean number of routers discovered by two stations exchanging traceroute messages is given
by
d+1 2
d—1 (d—1)dn—1t
When n is large, we have E(D) ~ 2n. In addition, under the same condition, the variance
of the random variable D satisfies

E(D) =2n+

d+1
d—1

The above simple computations show that when 7 is large, the mean length of the path
(in terms of discovered routers) is closed to the longest path through the network, equal to
2n — 1. Hence, even if the ratio of the number of discovered routers to the total number of
routers in the network is small:

Var(D) ~ 4n

E(D) 2n(d-1)
N T a
two stations placed at random can derive a fair estimate of the diameter of the network via
a traceroute procedure.

The same property is satisfied for power law trees since

> 1
27<oo.
Sdy .. dy,

INRIA
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3.2 Mean number of discovered nodes with p hosts

While in the previous section, we have investigated what we can learn from a traceroute
procedure in a tree network by using only two hosts, we consider the case when there are p
traceroute capable hosts placed at random at the leaves of the tree network. We assume that
p stations are exchanging traceroute messages and we are interested in the total number of
routers discovered by means of traceroute. We specifically have the following result.

Proposition 2. The average number D(N,p) of routers discovered with p stations is given
by

1
p—1°
lj

- (2)
Jj=2
Proof. For 1 < j <n,anode A at the jth level has not been discovered if either

— with the dynamic picture, when the points are at level j, none of them is at node A.
The probability of this event is given by

(1)

— at level j < n, all the p points are at node A and all of them chose the same subtree

below A. See Figure Bl
/<>\ p points

p points A i /
N IAAAARAR

Figure 3: The Two Situations where Node A is not Discovered

Since there are d; such trees, the probability of this event is given by

RR n° 5424
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The average number of nodes discovered is thus given by

= 1\* 1
L [1 - (1 - f) - djlp—l{jm}]
j=1 J J+1

and Equation (@) follows. O

When p is large, it is not difficult to see that the second term on the right hand side of
Equation (@) is negligible (since [; > 27~1). It is moreover convenient to write the first term

as
= 1
> P <mp < l—> (3)
j:1 7

where m, = inf(U;,1 < i < p) and (U;) are independent random variables uniformly dis-
tributed on [0,1]. This expression is in fact an equivalent of E(D(N,p)) when p is large.
Under this condition, the variable pm,, converges in distribution to the random variable X,
which is an exponentially distributed random variable with parameter 1:

2\ P
P(pm, > z) = (1 - —) ~e "
p

when p tends to infinity. Concerning the spanning tree of discovered routers, we have the
following result.

Corollary 2. For 0 < j < n and p > 1, the distribution of the height of the spanning tree

of discovered routers is given by

L1

and the proportion of nodes of level j discovered is given by

1\? 1
(1 8) g1
J J+1

Proof. The second identity is clear from the above proof. To prove the first one, it is sufficient
to remark that, in order to have no node of level j discovered, then all the points must be
in some subtree whose root is at the (j + 1)th level. O

INRIA
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3.3 A Coupon Collector Analogy
3.3.1 The case of symmetric networks

Let D;(N,p) denote the number of routers at level j which have been discovered when there
are p traceroute capable hosts. The random variable D;(N,p) is equal to the number of
different nodes seen when p nodes are independently drawn among [; nodes. This random
variable can be written as

l
dist.

J
D;(N,p) = Tfic{Ar, Ao, Ay} (4)
=1

where (A;) are i.i.d. uniformly distributed random variables on {1,...,l,_1}. This is pre-
cisely the classical coupon collector variable. (See Comtet [9] for a general presentation of
the coupon collector problem.)

Indeed, assume that we have [; different types of coupons, which are drawn independently
and uniformly. The random variable D; (N, p) represents the total number of different types
of coupons after p trials. From the coupon collector’s problem, it is known that

;! p:l
B(D,(N.p) =1;) = {271} 6)
where i
n 7 (_l)kffénfl
{ K }_Z(k_z)!(z—1)! ©)

=1
is a Stirling number of the second kind. These numbers satisfy the recursion

n | _ | n-1 Tk n—1
Ef | k-1 k
and their generating function, for fixed k, is given by

k

i{ k }xn: (1_x)(1_;x)...(1_kx)'

n=0

(See Wilf [10] for details).

The quantity P(D;(N, p) = ;) is the probability that with p traceroute capable hosts, all
the nodes at level j are discovered. Conversely, one may consider the problem of determining
the number of traceroute hosts one needs to discover all the nodes at level j. Let v; denote
this random variable.

From the coupon collector problem, the probability P(v; = p) is given by Formula (&).
The mean value of the random variable v; is given by

l l; l;

Bly)=1+—F 4+ 9 . .. .43
) =1 g+ g 3
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and its standard deviation by

l; l; l;
—(1 J J oo L7
(+lj—1+lj—2+ +2+J) (7)

It is worth noting that, as /;becomes large,

E(v) =1, <1oglj+”y—|—0 (%)) (8)

where y is the Euler constant. In addition, we have the Chernoff bound like formula

lim P(v; > llog(lj) +al)) =1—e ¢ "
lj—00
The above limit gives the deviation of the random variable v; with respect to its mean value
when [; — oo.
From the above results on the coupon collector problem, we observe that for discovering
the [; routers at level j, we approximately need [; log [; traceroute capable hosts. In addition,
for discovering the half of the nodes, we have

E(#hosts needed for discovering [;/2 nodes)
=1l;log2 + O(1).

This indicates that in order to discover all the nodes at level j, we need a number of traceroute
capable hosts, which is much larger than the number of nodes. Take for instance a constant
degree d, then the number of nodes in the network is N = (d" — 1)/(d — 1) and I, = d"~'.
We then have I, = ((d — 1)N + 1)/d and all the nodes in the network are discovered if all
the nodes at level n are discovered. This requires a number v, of hosts such that

;logN

when N is large. The number of hosts required to discover all the nodes in the network is
hence much greater than the number of nodes in the whole network.

As a consequence, a complete topology discovery requires a massive deployment of hosts
exchanging traceroute messages. This will be further illustrated in the next section when
considering all the nodes in the network.

3.3.2 The case of asymmetric networks

So far, we have assumed that the network is completely symmetric. In reality, however,
this is rarely the case. In fact, collect networks are highly asymmetrical. For instance, the

INRIA
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number of users in a city (dense area) is much larger than the number of users on the country
side (sparse area). Hence, when considering the discovery of concentration routers, located
at intermediate levels, say, level j < n, the probability that a user belongs to a dense area
is larger than the probability the user is in a sparse area.

Keeping in mind the analogy with the coupon collector’s problem, we now assume that
the probability of drawing a coupon of type r is denoted by p,. Without loss of generality,
we assume that p; <ps <... < p,.

If traceroute capable hosts are placed at random at the leaves of the network, the number
of hosts needed to discover all the routers at level j is such that as I; — oo,

lj
10g]P>(p1Vj — bj S Z) ~ — Zexp (—%(2 + bJ)) y
1

where b; is chosen so that

as l; — oo. (See Klaassen [IT] for details.)

The above result shows that the growth rate of v; is determined by the less dense area
since v; ~ bj/p1 when l; — oco. This indicates that the discovery of routers connecting
sparse area is quite expensive if hosts are placed at random. It follows that the discovery
of an asymmetrical network with sparse areas requires a coordination between traceroute
capable hosts. Those hosts cannot be drawn at random but their placement should take
into account the density of the areas connected by collect routers.

To quantitatively illustrate the above phenomenon, assume that the population attached
to routers is proportional to o’ for some o > 1. In this case, we have p, = p;a”~! and
1/p1 = (ol —1)/(a — 1). We can take b; = 1 so that v; ~ ol /(a — 1) when [; — 0.
We hence see that the number of hosts needed to discover routers collecting sparse areas is
explosive.

3.3.3 The versatility of the coupon collector analogy

So far, we have considered tree networks. However, the coupon collector analogy still pertains
for more complex topologies as long as the network presents a hierarchical structure. Indeed,
if the network is organized in layers (or levels) and if a node at a given level connects a
certain population of users, we easily see that we can still use the coupon collector analogy
for computing the number of hosts needed to discover the nodes at a given level. Moreover,
in view of the preceding section, we see that the populations attached to the different routers
can be asymmetric. The application of this observation to more complex network topologies
will be addressed in further studies.

RR n° 5424
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4 Asymptotic results

To understand more closely the basic properties of topology discovery by means of traceroute,
it is assumed in this section that the ratio of the number p of traceroute capable hosts to the
total number N of routers in the network is fixed and equal to a constant A and we suppose
that N goes to infinity. We are specifically interested in the behavior of E(D(N, p))/N when
N tends to infinity. This quantity gives information about the ratio of the number of routers
discovered to the total number of nodes in the network.

4.1 Regular trees

In a first step, we investigate the case when the degree of nodes is constant, equal to d > 2.

Proposition 3. For a regular tree with degree d > 2, when N — +oo and p/N — ),

E(D(N, p))

N ~ TrEG, (M)

00 i
def <X d — 1 Ad/
_Z = (1—exp(—d_1 . (9)
j=1
Proof. Using that N ~ d"/(d— 1) and the equivalent @) as N goes to infinity, one gets that

~E(D(N, p))

ngi-1 p\dd_le
~ (d—1) Zl o P (pmp < 71
J:

and then,

1 "1 A
NE(D(N,p))N(d—l);$P<X§ (d—l)d>

where X is an exponentially distributed random variable with unit mean, since as mentioned
in Section [}, the random variable pm,, converges in distribution to X. O

We now take benefit the closed form of the ratio of discovered nodes given by equation ([{)
in order to illustrate the speed of the exploration process. For this purpose, we study the
dependence of the number of discovered nodes on the ratio A ~ p/N when N is large while
A is small. It describes in some sense the initial speed of the exploration process through
the network. Indeed, the analysis gives the ratio of discovered nodes with a small number
of traceroute capable hosts.

INRIA
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Proposition 4. For a regular tree with degree d > 2, when X\ tends to O the asymptotic
proportion of discovered nodes satisfies the following equivalence

Trec,(A) ~ —Alogy(A). (10)

Proof. As it can easily be seen, the asymptotic behavior of Equation ([I) when A tends
to 0 is quite delicate since the series is divergent. The technique used to get an expansion
relies on a convenient rewriting of the equation together with the use of Fubini’s Theorem
for non-negative functions. (See Robert [12] for a general description of the method.)

We have
fi 1—exp|— aca
L i P\l7aq

+o0 +0 1 B

Jj=1

where we have used Fubini’s theorem to exchange the sum and the integral signs. This
entails that

Jioi 1—ex —)\dj 4 /\ae*“du
& P\7Ta=1)) " a-1),

J=1
1 oo 1 w
T /Aa i@ (1)

with a =d/(d —1).

The first term on the right hand side of Equation ([l vanishes when X tends to 0. For
the second term, we note that with regard to the asymptotic behavior for A\ close to 0, the
integration interval [Aa, oo] can be replaced by any interval [Aa,b] with b > Aa. To simplify,
we take b = a so that

+oo 1 B -
/a dloga(u(d—1)/N)] © du < A\(1—e™9),

since for u > a,
[logg(u(d —1)/A)] = —logg A.
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It follows that the function Treg,(\) defined by Equation (@) has the following equivalent
in the neighborhood of 0

a de~ U
T o [ gloatuta—ny AT
w0~ "

1 —au
_ A / glogqu/np € =1
d -1 A u

/A q{logg u}
+/ du], (12)
1 u

with |y] is the integer part of y € R and {y} = y — |y] its fractional part.

The asymptotic behavior of the function Trrg,()\) when A tends to 0 is determined by
the second term on the right hand side of Equation ([[). Hence, as A ~ 0, we have the
equivalence

du.

A /X qflogg u}
TreG,(A) ~ == 1/1

If X=1/(xd™) with fixed 1 < x < d and m € N, then as A — 0

1/ qtlogq u} 1/ dllogq u}
/ ‘ du ~ / ’ du
1 x

U

u u
2dkt!

m—1
d{logq u}
= / du
5—0 zdk u

m—1 d
dlloga(@w)}
-y / T
k=0 71 w

d j{log,(zu)}
= —logd()\x)/ — du.
1

u

The last integral can be expressed as follows, recall that A = 1/(zd™) with x € [1,d],

d log,(zu

glloga(aw)}

/;du
1 u

d/x d{log (zu)} d d{lOg (zu)}
= / a du + / CE— du
1 Uu d/x u

d/z Jloga(zu) d  Jlogg(zu)—1
- / AR P / AR
1 u d/x u

Equivalence () is therefore established. O
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From equivalence ([0, it is worth noting that the ratio Treg,(A\)/A is not constant but
is equal to —log,(A). Thus, when the number p of traceroute capable hosts is small when
compared to the number N of nodes in a tree network, the number of nodes discovered is
more than linear in the ratio A = p/N. This indicates that the speed of the exploration
process is quite fast when the number of hosts is small. This encouraging observation is
however to be counterbalanced by the fact that, by Equation (), the speed of the exploration
process is nevertheless decreasing exponentially fast with respect to A. In addition, the speed
depends on the degree of nodes via log,; A. This indicates that the greater the degree of nodes,
the smaller is the speed of the learning process.

The above remarks show that we rapidly learn about the topology of a tree network with
a small initial number of hosts but the speed of learning decreases as the number of hosts
increases.

4.2 Power law trees
4.2.1 Power Law trees with increasing degree

For power law trees with increasing degree, we have the following result.

Proposition 5. For a power law tree with increasing degree, the proportion of discovered
nodes is such that
2T )
im ————=
N —+4o00,
p/N—X

= TPLIQ ()\) déf’ 1—e M (13)

Proof. For power trees with increasing degree, we have [, 11 ~ (n!)®. It is then quite easy
to see that N ~ [, and if p ~ | AN, then

D(N,p) Ny I
—_\ _J <\ \= .
N ; lnIP’ pmy < )\lj

When n — 400, all the terms of the series vanish except the last one with index n. One
consequently obtains, by recalling that pm, converges in distribution to an exponentially
distributed random variable with parameter 1 when p — +o0,

and the result follows. O

Equation ([I3) is not really informative since it does not depend on the growth parameter
«. This is not the case for regular trees, see Equation (@) which gives the growth rate of the
number of discovered routers with respect to d (via the log, term). An asymptotic analysis
of this equation will give further insight in this case.
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4.2.2 Power Law trees with decreasing degree

We can state the analogue of Proposition [l for power law trees with decreasing degree. We
specifically have:

Proposition 6. For a PLD, tree, when N — +0c0 and p/N — A, then

w — Tprp, (N)
with .
Tprp, () = Z m (1 — e—AH(a)(j!)a) (14)
j=1
and b
@) =2 G

j=1

Proof. For a PLD,, tree, we have for large n, [; ~ ((n — 1)!/(n — j))*

N =1
e~ 2 G~ A

j=1

If Equivalence (@) is used again, one gets that, when N goes to infinity, the ratio D(N, p)/N
is equivalent to

> i e < M) (= 3))").
and Equation () follows. 0

4.3 The growth rate of the exploration process

As before, the behavior of Tpr1, (A) and Tprp, (A) when A is small is investigated. From
Equation ([[3), one directly concludes that Tprp, (A) ~ A when X gets small.
For a PLD,, tree, we have the following result.

Proposition 7. For a PLD, tree, when ) tends to 0 the asymptotic proportion of discovered
nodes satisfies the following equivalence

Alog(1/X)
T ~—_— 1
Po.(A) aloglog(1/)) (15)
Proof. Equation () gives
lTPLD (A) = Ji:.o - (1 - 6_(j!)a;\) ;
X 2= (jhen
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where A\ = AH (a). If h is the function defined by
1—e7"
h(z) = —
(1) =~
Equation ([[4) shows that the quantity Tprp_ (X)/A is given by
+oo —+o0
> / 15 e <y P () . (16)
j=1"0

Let us introduce the classical Euler’s Gamma function I" defined by

+oo
I(z) = / u* e du
0

on (0,+00) (recall that I'(n + 1) = n! when n € N). The function I is a bijection from

[2,00) — [1,00); its inverse is denoted by I'"1.
By Fubini’s Theorem, Equation ([[f) can be rewritten as

400 +00

/x i; l{j +1< rl/—: (@)1/&) }h’(u) du
:A {F_l ((%) ) - 1J W () du.

(17)

Stirling’s Formula for the Gamma function gives that T'(z) ~ 2%~ 1/2¢~*/21x for a large

x. Therefore, if y = I'(z), one gets the relation
logy ~ zlog x.
If we write © = ¢(y) log y, then

1
logz

~ ¢(y)

hence ¢(y) — 0 as y — +oo. Therefore, one gets

1~ ¢(y)log d(y) + ¢(y) loglogy,

as y gets large, so ¢(y) loglogy ~ 1. Thus, the inverse function satisfies the equivalence

-1 - log(y)
P )~ fogliog(w))

when y tends to infinity.
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Since
1—(14+z)e®

2

h'(z) =

it is easy to see that the integral () is diverging when X\ tends to 0. Moreover, it is

equivalent to
+00 u 1/
/ r! (r) — 1| A/ (u) du,
bY A

for an arbitrary a > 1, since the remaining part of the integral converges as A — 0. By
choosing a sufficiently large so that, for € > 0,

)

l-e< L (z) <1+ >
—e< < e, x>a,
log(x)/log(log(x))
it is sufficient to study the expansion of the quantity
I = / log(u/N/a_pr) au. (18)
Xa  log (log(u//\)/a)

Let us introduce
P(\) = log (5\*1) /1og log (5\*1)

The integral ([I8) can be rewritten as

o1 [T log(u) +log(A™?)
=g [,

(0%

R (u) du,

where
D(u) = —log(a) + log(log(A™"))
+ log (1 + log(u)/ log(}ﬁl)) .

Since log(u)h’(u) is integrable on R, trite inequalities and Lebesgue’s Theorem show that
I(N\)/¢(N) converges to
+oo
/ R (u)du=1
0

as A — 0 and the proposition follows. O

4.4 Discussion
4.4.1 The asymptotic profile of tree structures

In order to give an intuitive explanation for the initial growth of the exploration process
seen in the above section, we first introduce the concept of the profile of a tree.
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Definition 2. The asymptotic profile of a tree is given by the sequence (py) defined by

n—1 L n—1 L
. j=n—k ' . j=n—k

pr = limsup =L~ = limsup =2 nil
mte N anid oyl

For k > 1, the quantity pj is the proportion of nodes of the tree in the last k levels.
In the following, the notation pi(X) shall be used, where X is one of the classes of trees:
REG,, PLI, and PLD,. The following proposition is quite straightforward to prove.

Proposition 8. For k > 1,

pk(REGd) =1 dik,
p(PLD) =3 L /3 L
T2 Gy ) &G

pr(PLI,) = 1yp—1y,

The initial growth rate of the exploration process of the three tree topologies proved in
Section B3 is recalled, when the proportion X of stations involved in the exploration process
is small. We specifically have

Trea,(A) ~ Alog(1/X),
Mog(1/X)
Tero(N) ~ S Tog (/)"
Tpri(A) ~ A

when A tends to 0.

For the PLI,, tree, most of the N nodes are at the bottom of the network: p; = 1 and
pr = 01if k£ # 1. So a traceroute procedure initiated by a host discovers essentially the router
the hosts is attached to. This explains the low speed of the initial phase of the exploration.
See the section on the coupon collector analogy.

On the contrary, see Proposition § for regular trees and PLD, trees, a non-negligible
proportion of nodes are in the upper levels of the network. Since a traceroute procedure
discovers several routers in these layers, it speeds up the rate of the discovery process. Note
that for the proportion of nodes above the k last levels is of the order of 1/d* for REG, trees
and 1/((k + 1)) for PLD,, trees, which explains that the exploration process is initially
slightly faster for regular trees.

4.4.2 Growth rate for large A

Formula (@) shows that the growth rate of the exploration process decreases exponentially
fast with respect to A for any tree architecture. Figure Hl displays the proportion of nodes
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discovered as a function of the ratio A\. It clearly appears from this figure that the total
discovery of the network requires a large number of hosts. The structure, which requires the
smallest number of hosts, is the regular tree while the plower law increasing structure is the
most demanding.

Figure 4: Proportion of discovered nodes by using p = | AN | stations for REG,, PLD, and
PLI, trees with d =2 and o = 2.

5 Degree of discovered nodes

In this section, we investigate the degree of a random node in the network seen by the
exploration process with p traceroute capable hosts. That degree is denoted by the random
variable L. Before giving the distribution, let us introduce some additional notation: for
a>land 0 <k <a, (a)p =ala—1)...(a—k+1), (a)o =1 and (a); =0 for k > a.
Moreover, let b(p, n,1;) be the Bernoulli probabilities defined by

o= () (1) (-2

Proposition 9. The degree L of a node discovered by the exploration by means of traceroute
is giwen by: for k> 1,

J

P(L =k) = NJ((; D X
-1 J J

m=k

A TR TR
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where { 7]? } is the Stirling number of the second kind defined by Equation @) and ¢; is

the probability of not seing a node at level j, given by

1\* d;
J j+1

Proof. Let us pick up a node at random. This node belongs to level j with probability
l;/N. Such a node is not discovered if no traceroute hosts are attached to his node or if
all the hosts fall into the same subtree attached to this node. The probability J; given by
equation (ZI) then readily follows.

For a discovered node at level j, let M denote the number of hosts in the subtree asso-
ciated to this node. The probability P(M = m) is given by the Bernoulli probabilities [I9).
Assuming M = m, the degree seen via traceroute is equal to the number of sons of the
node considered associated to the traceroute hosts. Since the degree of a node at level j is
d;, this number, denoted by L;, is exactly equal to the number of nonempty cells when m
objects are distributed into d; different cells. The distribution of this number is given by

(see Riordan [13, p. 100])
P(szk):@{?}. (22)

By deconditioning, Equation (£0) follows. O
The mean value of the degree L of a discovered node is given by the following result.

Corollary 3. The mean value of the random variable L is given by

n (1) _
ljdjl (1 dili) i

D -
=1 N 1—(1—%) — i

. P
J i

E(L) = (23)

<

Proof. The mean value of the random variable L; with the distribution defined by Equa-

tion (22) is given by
1 m
sty (i (- 1))
d;
By deconditioning, Equation ([23) follows. O

In the case of a regular graph with constant degree d, we have when n — co and p = AN,

11—
7=0

When A tends to 0, we have E(L) ~ 1. This means that at the beginning of the exploration
process, the nodes seen in a regular tree network are seen only once.
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6 Experimental results

Several experiments were conducted on a set of real graphs. We used the Scan+Lucent map
which is a merge of a map from the Internet Mapping project at Lucent Bell Laboratories
on November 1999 and a map obtained from the Mercator software. The Scan+Lucent map
contains 284804 routers, the degree of the nodes ranges from 1 (150397 stations) to 1978 (1
station) with an average of 3.02 and a variance of 8.624. Figure [l gives an indication of how
far the distribution of the degree is from a power law distribution.

0.1 j
Al '
0 0.01 E
=) ; a
& i
0.001 |

0.0001 o L

1 10 100

Figure 5: The function x — P(Deg > z) on a logarithmic scale of Scan+Lucent graphs

By using the edges of this graph, several spanning trees have been constructed recursively.
Root nodes are chosen either at random or are the nodes with the highest degree, the other
levels are defined recursively in the following way:

e Bounded degree: if a node is in the tree, only d of its sons are chosen in the next level.
e Unbounded: all its sons are taken in the next level.

With this method, one does not, of course, recover the complete graph. But, as noted in the
introduction, this gives an upper bounded on the real discovery process if these spanning
trees are used instead of the “real” graph. It must be mentioned that, in our experiment,
only a small fraction of edges connects nodes belonging to different subtrees of the top level.
The edges which are discarded connect essentially nodes of different layers within the top
subtrees.

Figure @ shows, as expected, a steady growth at the origin when the degree is bounded to
2 or 4. When the degree is not bounded, the initial growth suggests a PLI tree architecture.

It must be noted that these experiments are incomplete since the size of the data sets
available is not sufficiently large to investigate with a reasonable accuracy the parameters
of the power law features of these architectures.
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Figure 6: The ratio of discovered nodes for the spanning trees for Scan+Lucent graphs

7 Conclusion

We have investigated in this paper the topology discovery of a collect network, represented
by means of a tree network, when using ideal traceroute procedures. We have obtained, for
different network structures, closed formulas for the mean number of discovered nodes and
for the speed of the exploration process when the height of the tree tends to infinity while
the ratio of the number of traceroute capable hosts to the number of nodes in the network
remains constant. We have in particular introduced a connection with the coupon collector
problem, which seems to appear as a generic tool in the problem of topology discovery.
From the analysis carried out in this paper, we can make the following points:

e the rate of the exploration process is quite large with a small number of hosts but
rapidly decreases when the number of hosts increases,

e the exhaustive exploration of a network requires a massive deployment of traceroute
capable hosts,

e sparse areas significantly slow down the exploration process unless a coordination exists
between the different hosts,

e the degree of nodes is not easy to determine when the number of hosts is small.

It follows that it seems very difficult to explore the topology of a network by means of
traceroute procedures. The computations carried out in this paper for a simple network
structure (namely a tree) show that the output of such procedures are quite unreliable. Of
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course, the validity of these results will be investigated in further studies for more complex
network structures (e.g., random tree networks and complex networks & la Barabasi).
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