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ESTIMATION OF THE WEIBULL TAIL-COEFFICIENT WITH

LINEAR COMBINATION OF UPPER ORDER STATISTICS

LAURENT GARDES AND STÉPHANE GIRARD

Abstract. We present a new family of estimators of the Weibull tail-coefficient.

The Weibull tail-coefficient is defined as the regular variation coefficient of the

inverse failure rate function. Our estimators are based on a linear combination

of log-spacings of the upper order statistics. Their asymptotic normality is es-

tablished and illustrated for two particular cases of estimators in this family.

Their finite sample performances are presented on a simulation study.

1. Introduction

Let X1,X2, . . . ,Xn be a sequence of independent and identically distributed ran-
dom variables with cumulative distribution function F . We address the problem
of estimating the Weibull tail-coefficient θ > 0 defined when the distribution tail
satisfies

(A.1): 1−F (x) = exp(−H(x)), x ≥ x0 ≥ 0, H←(t) = inf{x, H(x) ≥ t} = tθ`(t),

where ` is a slowly varying function i.e.

`(λx)/`(x) → 1 as x → ∞ for all λ > 0.

The inverse failure rate function H← is said to be regularly varying at infinity with
index θ and this property is denoted by H← ∈ Rθ. As a comparison, Pareto type
distributions satisfy (1/(1 − F ))← ∈ Rγ , and γ > 0 is the so-called extreme value
index. We refer to [7] for more information on regular variation theory. We also
assume a second order condition on `:

(A.2): There exist ρ ≤ 0 and b(x) → 0 such that uniformly locally on λ ≥ 1

log

(

`(λx)

`(x)

)

∼ b(x)Kρ(λ), when x → ∞,

with Kρ(λ) =
∫ λ

1
uρ−1du.

It can be shown [11] that necessarily |b| ∈ Rρ. The second order parameter ρ ≤ 0
tunes the rate of convergence of `(λx)/`(x) to 1. The closer ρ is to 0, the slower
is the convergence. Condition (A.2) is the cornerstone in all proofs of asymp-
totic normality for extreme value estimators. It is used in [14, 13, 3] to prove the
asymptotic normality of estimators of the extreme value index γ.

When ` is a constant function, this problems reduce to estimating the shape
parameter of a Weibull distribution. In this context, simple and efficient methods
exist, see for instance [2], Chapter 4 for a review on this topic. Distributions with
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non-constant slowly varying functions include for instance normal, gamma and ex-
tended Weibull distributions (see Section 3 for their definitions). Such distributions
are of great use to model large claims in non-life insurance [5]. Dedicated estima-
tion methods have been proposed since the relevant information on the Weibull
tail-coefficient is only contained in the extreme upper part of the sample. A first
direction was investigated in [6] where an estimator based on the record values is
proposed. Another family of approaches [8, 4, 12] consists of using the kn upper
order statistics Xn−kn+1,n ≤ · · · ≤ Xn,n where (kn) is an intermediate sequence of
integers such that 1 ≤ kn < n. Our family of estimators is

(1) θ̂n(α) =

kn−1
∑

i=1

αi,n(log(Xn−i+1,n) − log(Xn−kn+1,n))

kn−1
∑

i=1

αi,n(log2 (n/i) − log2 (n/kn))

, αi,n = W (i/kn) + εi,n,

where we have defined log2 (t) = log(log(t)), t > 1, and εi,n, i = 1, . . . , kn − 1 is a
non-random sequence. W : [0, 1] → R is a smooth score function, verifying

(A.3): W has a continuous derivative W ′ on (0, 1),

(A.4): There exist M > 0, 0 ≤ q < 1/2 and p < 1 such that, for all x ∈ (0, 1):
|W (x)| ≤ Mx−q and W ′(x) ≤ Mx−p−q.

Let us highlight that (A.3) and (A.4) are classical assumptions when studying
linear combinations of order statistics (see for instance [17]). We refer to [9, 19] for
similar works in the context of the estimation of the extreme-value index.

In Section 2 we state the asymptotic normality of these estimators. Some exam-
ples of distributions satisfying (A.1) and (A.2) are given in Section 3. In Section 4,
we provide two examples of weights α verifying (A.3) and (A.4). The first one
leads to the estimator of θ proposed by Girard [12]. The second one gives rise to a
new estimator for Weibull tail-distributions. The behavior of these two estimators
is investigated on finite sample situations in Section 5. Finally, proofs are given in
Section 6.

2. Asymptotic normality

In this section, we state our main result on the limiting behavior of θ̂n(α). Its proof
is postponed to Section 6. In the sequel, we note ‖ε‖n,∞ = max

i=1,...,kn−1
|εi,n|. We

also define

µ(W ) =

∫ 1

0

W (x) log(1/x)dx,

σ2(W ) =

∫ 1

0

∫ 1

0

W (x)W (y)
min(x, y)(1 − max(x, y))

xy
dxdy,

σ(θ,W ) = θ
σ(W )

µ(W )
.

Theorem 1. Suppose (A.1)–(A.4) hold. Then

k1/2
n (θ̂n(α) − θ)

d→ N (0, σ2(θ,W )),
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for any sequence (kn) satisfying kn → ∞, kn/n → 0 and

(2) k1/2
n max{b(log(n/kn)), 1/ log(n/kn), ‖ε‖n,∞} → 0.

Some examples of application of this result are given in Section 4, Corollary 1 and
Corollary 2.

3. Some examples of Weibull tail-distributions

In this section, we give some examples of distributions satisfying assumptions
(A.1) and (A.2).

Gaussian distribution. N (µ, σ2), σ > 0. From [10], Table 3.4.4, we have H←(x) =
x1/2`(x) and an asymptotic expansion of the slowly varying function is given by:

`(x) = 21/2σ − σ

23/2

log x

x
+ O(1/x).

Therefore θ = 1/2, ρ = −1 and b(x) = log(x)/(4x).
Gamma distribution. Γ(α, β), α, β > 0. We use the following parameterization
of the density

f(x) =
βα

Γ(α)
xα−1 exp (−βx).

From [10], Table 3.4.4, we obtain H←(x) = x`(x) with

`(x) =
1

β
+

α − 1

β

log x

x
+ O(1/x).

We thus have θ = 1, ρ = −1 and b(x) = (1 − α) log(x)/x.
Weibull distribution. W(α, λ), α, λ > 0. The inverse failure rate function is
H←(x) = λx1/α, and then `(x) = λ for all x > 0. Therefore b(x) = 0 and we use
the usual convention ρ = −∞.
Extended Weibull distribution. EW (α, β), α ∈ (0, 1), β ∈ R. This distribution
is introduced in [15]. Its distribution tail is given by:

1 − F (x) = r(x) exp(−xα),

where r ∈ Rβ . It follows that H←(x) = x1/α`(x) and the following asymptotic
expansion holds:

`(x) = 1 +
β

α2

log x

x
+ O(1/x).

It is easily seen that θ = 1/α, ρ = −1 and b(x) = −β log(x)/(α2x). In [15], it is
remarked that this model encompasses the normal and gamma distributions.

The parameters θ and ρ as well as the auxiliary function b(x) associated to these
distributions are summarized in Table 1.

4. Some examples of estimators

First, we show in Paragraph 4.1, that our family of estimators (1) encompasses

the Hill type estimator θ̂G
n proposed in [12]. Moreover, it will appear in Corollary 1

that the asymptotic normality of θ̂G
n stated in [12], Theorem 2 is just a consequence

of our main result Theorem 1. Second, in Paragraph 4.2, we use the framework of
Section 1 and Section 2 to exhibit a new estimator of the Weibull tail-coefficient
and to establish its asymptotic normality in Corollary 2.
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4.1. Girard estimator. Girard [12] proposes the following estimator of the Weibull
tail-coefficient:

(3) θ̂G
n =

kn−1
∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n))

kn−1
∑

i=1

(log2 (n/i) − log2 (n/kn))

.

Clearly, θ̂G
n is a particular case of θ̂n(α) with αi,n = 1 for all i = 1, . . . , kn − 1.

Thus, we have W (x) = 1 for all x ∈ [0, 1] and εi,n = 0 for all i = 1, . . . , kn. The

asymptotic normality of θ̂G
n is then a direct consequence of Theorem 1. Remarking

that in this case σ2(W ) = 1 and µ(W ) = 1, yields the following result,

Corollary 1. Suppose (A.1) and (A.2) hold. Then,

k1/2
n (θ̂G

n − θ)
d→ N (0, θ2),

for any sequence (kn) satisfying kn → ∞, kn/n → 0 and

(4) k1/2
n max{b(log(n/kn)), 1/ log(n/kn)} → 0.

which is exactly Theorem 2 in [12].

4.2. Zipf estimator for Weibull tail-distribution. We propose a new esti-
mator of the Weibull tail-coefficient based on a quantile plot (QQ-plot) adapted
to our situation. It consists of drawing the pairs (log2 (n/i) , log (Xn−i+1,n)) for
i = 1, . . . , n − 1. The resulting graph should be approximatively linear (with slope

θ), at least for the large values of i. Thus, we introduce θ̂Z
n the least square estimator

of θ based on the kn largest observations:

(5) θ̂Z
n =

kn−1
∑

i=1

(log2 (n/i) − τn) log(Xn−i+1,n)

kn−1
∑

i=1

(log2 (n/i) − τn) log2 (n/i)

,

where

τn =
1

kn − 1

kn−1
∑

i=1

log2 (n/i) .

This estimator is similar to the Zipf estimator for the extreme value index proposed

by Kratz and Resnick [16] and Schultze and Steinebach [18]. One can prove that θ̂Z
n

belongs to family (1) with a score function W (x) = −(log(x) + 1) and thus apply

Theorem 1 to obtain the asymptotic normality of θ̂Z
n :

Corollary 2. Suppose (A.1) and (A.2) hold. Then,

k1/2
n (θ̂Z

n − θ)
d→ N (0, 2θ2),

for any sequence (kn) satisfying kn → ∞, kn/n → 0 and

(6) k1/2
n max{b(log(n/kn)), log2(kn)/ log(n/kn)} → 0.

Its proof is given in Section 6.
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5. Numerical experiments

The finite sample performance of the estimators θ̂Z
n and θ̂G

n are investigated on 5
different distributions: Γ(0.5, 1), Γ(1.5, 1), N (1.2, 1), W(2.5, 2.5) and W(0.4, 0.4).

We limit ourselves to these two estimators, since it is shown in [12] that θ̂G
n gives

better results than the other approaches [8, 4]. In each case, N = 200 samples
(Xn,i)i=1,...,N of size n = 500 were simulated. On each sample (Xn,i), the estimates

θ̂Z
n,i(kn) and θ̂G

n,i(kn) are computed for kn = 2, . . . , 250. Finally, the Hill-type plots
are built by drawing the points

(

kn,
1

N

N
∑

i=1

θ̂Z
n,i(kn)

)

and

(

kn,
1

N

N
∑

i=1

θ̂G
n,i(kn)

)

.

We also present the associated MSE (mean square error) plots obtained by plotting
the points

(

kn,
1

N

N
∑

i=1

(

θ̂Z
n,i(kn) − θ

)2
)

and

(

kn,
1

N

N
∑

i=1

(

θ̂G
n,i(kn) − θ

)2
)

.

The results are presented on figures 1–5. It appears that for both estimates the sign
of the bias is driven by function b in (A.2). It is appealing that, in all plots, the

graphs obtained with θ̂Z
n are smoother than these associated with θ̂G

n , making the
choice of kn less difficult in practice. The results obtained with the two estimators
are very similar on Weibull distributions (figure 4 and figure 5), especially in terms
of mean square error. For other Gamma and Gaussian distributions (figures 1–3),

θ̂Z
n gives better results in terms of bias and mean square error.

6. Proofs

For the sake of simplicity, in the following, we note k for kn. We first quote a
lemma providing classical results on the asymptotic behavior of exponential order
statistics (see [12], Lemma 1 for a detailed proof).

Lemma 1. Let {E1,n, . . . , En,n} be the order statistics generated by n independent

standard exponential random variables. Suppose k → ∞ and k/n → 0. Then,

(i): En−i+1,n/ log(n/i)
P→ 1, uniformly on i = 1, . . . , k, and

(ii): k1/2 (En−k+1,n − log(n/k))
d→ N (0, 1).

In order to be self-contained, we quote a lemma which is quite useful when
dealing with linear combinations of order statistics. It summarized some results on
L-statistics established in [17].

Lemma 2. Let Y1,n ≤ . . . ≤ Yn,n be order statistics associated to n independent

random variables with common distribution function F . Let J be a continuous

function defined on [0, 1]. If for some r ≥ 2, s ≥ 2, δ > 0 and M > 0,

|J(x)| < Mx1/r−1/2(1 − x)1/s−1/2, for all x ∈ (0, 1),

and,

|J ′(x)| < Mx−3/2+1/r+δ(1 − x)−3/2+1/s+δ,
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and if
∫ 1

0
x1/r(1 − x)1/sdF−1(x) < ∞, then,

n1/2

(

1

n

n
∑

i=1

J

(

i

n + 1

)

Yi,n − µ

)

d→ N (0, σ2),

where µ =
∫ 1

0
J(x)F−1(x)dx and σ2 =

∫ 1

0

∫ 1

0
J(x)J(y)(min(x, y)−xy)dF−1(x)dF−1(y).

The proofs of the following lemmas are postponed to Appendix. The next lemma

presents an expansion of θ̂n(α).

Lemma 3. Suppose k → ∞ and k/n → 0. Under (A.1) and (A.2), the following

expansions hold:

θ̂n(α)
d
=

T
(2)
n

T
(1)
n

d
=

θT
(3,0)
n + (1 + oP (1))b(En−k+1,n)T

(3,ρ)
n

T
(1)
n

,

where we have defined

T (1)
n =

1

k − 1

k−1
∑

i=1

αi,n(log2 (n/i) − log2 (n/k)),

T (2)
n =

1

k − 1

k−1
∑

i=1

αi,n(log(Xn−i+1,n) − log(Xn−k+1,n)),

T (3,ρ)
n =

1

k − 1

k−1
∑

i=1

αk−i,nKρ

(

1 +
Fi,k−1

En−k+1,n

)

, ρ ≤ 0,

and where

• En−k+1,n is the (n − k + 1)th order statistics associated to n independent

standard exponential variables.

• {F1,k−1, . . . , Fk−1,k−1} are ordered statistics independent from En−k+1,n and

generated by k − 1 independent standard exponential variables.

The following lemma provides an expansion of

τn =
1

k − 1

k−1
∑

i=1

(log2 (n/i) − log2 (n/k)),

which frequently appears in the proofs.

Lemma 4. Suppose that k → ∞ and k/n → 0 as n → ∞ then,

τn =
1

log(n/k)

(

1 − log(k)

2k
− 1

log(n/k)
+ O

(

1

k

)

+ o

(

1

log(n/k)

))

.

The next lemmas are dedicated to the study of the different terms appearing in

Lemma 3. First, we focus on the non-random term T
(1)
n .

Lemma 5. Suppose k → ∞ and k/n → 0. Under (A.1)–(A.4), the following

expansion hold:

T (1)
n =

µ(W )

log(n/k)

{

1 + O
(

log(k)kq−1
)

+ O

(

1

log (n/k)

)

+ O (‖ε‖n,∞)

}

.

Second, we focus on the random term T
(3,ρ)
n .
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Lemma 6. Suppose k → ∞ and k/n → 0. Under (A.1)–(A.4), the following

expansion hold for all ρ ≤ 0:

T (3,ρ)
n

d
=

µ(W )

En−k+1,n

{

1 +
σ(W )

µ(W )
k−1/2ξn + OP

(

1

log (n/k)

)

+ OP (‖ε‖n,∞)

}

,

where ξn
d→ N(0, 1).

We are now in position to prove Theorem 1 and Corollary 2.
Proof of Theorem 1. From Lemma 3, we have

k1/2(θ̂n(α) − θ)
d
= θk1/2

(

T
(3,0)
n

T
(1)
n

− 1

)

+ k1/2b(En−k+1,n)
T

(3,ρ)
n

T
(1)
n

(1 + oP (1))

=: T (4,1)
n + T (4,2)

n .

Lemma 5 and Lemma 6 yield for all ρ ≤ 0:

T
(3,ρ)
n

T
(1)
n

d
=

log(n/k)

En−k+1,n

{

1 +
σ(W )

µ(W )
k−1/2ξn

+ OP

(

1

log (n/k)

)

+ OP (‖ε‖n,∞) + O
(

kq−1log(k)
)

}

.

Lemma 1(ii) entails that

log(n/k)

En−k+1,n

d
= 1 + OP

(

k−1/2

log(n/k)

)

.

Consequently, we have

(7)
T

(3,ρ)
n

T
(1)
n

d
= 1+

σ(W )

µ(W )
k−1/2ξn+OP

(

1

log (n/k)

)

+OP (‖ε‖n,∞)+O
(

kq−1log(k)
)

,

and thus

T (4,1)
n

d
= θ

σ(W )

µ(W )
ξn + OP

(

k1/2

log (n/k)

)

+ OP

(

k1/2‖ε‖n,∞

)

+ O
(

kq−1/2log(k)
)

d→ N(0, σ2(θ,W )),

with (2) and since q < 1/2. Equation (7) also implies that

T (4,2)
n

d
= k1/2b(En−k+1,n)(1 + oP (1))

d
= k1/2b(log(n/k))(1 + oP (1))
P→ 0.

with (2) and after remarking that b(En−k+1,n)/b(log(n/k)) converges to 1 in proba-
bility, since En−k+1,n/ log(n/k) converges to 1 in probability (see Lemma 1(i)) and
|b| ∈ Rρ. The result is proved.
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Proof of Corollary 2. First remark that (5) can be rewritten as

θ̂Z
n =

kn−1
∑

i=1

αZ
i,n(log(Xn−i+1,n) − log(Xn−k+1,n))

kn−1
∑

i=1

αZ
i,n(log2 (n/i) − log2 (n/k))

,

where

αZ
i,n = log(n/kn) (log2 (n/i) − τn)

= log(n/k)

(

log

(

1 +
log(k/i)

log(n/k)

)

− τn

)

= log(k/i) + O

(

log2(k)

log(n/k)

)

− log(n/k)τn,

= log(k/i) − 1 + O

(

log2(k)

log(n/k)

)

+ O

(

log(k)

k

)

,

uniformly on i = 1, . . . , k with Lemma 4. Therefore, we have αZ
i,n = W (i/k) +

εi,n with W (x) = −(log(x) + 1) and εi,n = O(log2(k)/ log(n/k)) + O(log(k)/k),
uniformly on i = 1, . . . , k. Then, it is easy to check that W satisfies conditions
(A.3) and (A.4) and that condition (2) reduces to condition (6). We conclude the
proof by remarking that

µ(W ) =

∫ 1

0

log(x)(log(x) + 1)dx = 1

and

σ2(W ) =

∫ 1

0

∫ 1

0

(log(x) + 1)(log(y) + 1)
min(x, y)(1 − max(x, y))

xy
dxdy = 2.
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Appendix: proof of lemmas

In the sequel, we note J(x) = W (1 − x) for x ∈ (0, 1).

Proof of Lemma 3. Let us consider

T (2)
n =:

1

k − 1

k−1
∑

i=1

αi,n(log(Xn−i+1,n) − log(Xn−k+1,n)),

and let E1,n, . . . , En,n be ordered statistics generated by n independent standard
exponential random variables. Under (A.1), we have

T (2)
n

d
=

1

k − 1

k−1
∑

i=1

αi,n(log H←(En−i+1,n) − log H←(En−k+1,n))

d
= θ

1

k − 1

k−1
∑

i=1

αi,n log

(

En−i+1,n

En−k+1,n

)

+
1

k − 1

k−1
∑

i=1

αi,n log

(

`(En−i+1,n)

`(En−k+1,n)

)

.

Define xn = En−k+1,n and λi,n = En−i+1,n/En−k+1,n. It is clear, in view of

Lemma 1(i) that xn
P→ ∞ and λi,n

P→ 1. Thus, (A.2) yields that uniformly in
i = 1, . . . , k − 1:

T (2)
n

d
= θ

1

k − 1

k−1
∑

i=1

αi,n log

(

En−i+1,n

En−k+1,n

)

+ (1 + op(1))b(En−k+1,n)
1

k − 1

k−1
∑

i=1

αi,nKρ

(

En−i+1,n

En−k+1,n

)

.

The Rényi representation of the Exp(1) ordered statistics ([1], p. 72) yields

(8)

{

En−i+1,n

En−k+1,n

}

i=1,...,k−1

d
=

{

1 +
Fk−i,k−1

En−k+1,n

}

i=1,...,k−1

,

where {F1,k−1, . . . , Fk−1,k−1} are ordered statistics independent from En−k+1,n and
generated by k − 1 independent standard exponential variables {F1, . . . , Fk−1}.
Therefore,

T (2)
n

d
= θ

1

k − 1

k−1
∑

i=1

αi,n log

(

1 +
Fk−i,k−1

En−k+1,n

)

+ (1 + op(1))b(En−k+1,n)
1

k − 1

k−1
∑

i=1

αi,nKρ

(

1 +
Fk−i,k−1

En−k+1,n

)

.

Changing i to k − i in the above formula and remarking that K0(x) = log(x)
conclude the proof.
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Proof of Lemma 4. We have

τn =
1

k − 1

k−1
∑

i=1

log

(

1 +
log(k/i)

log(n/k)

)

=
1

log(n/k)

1

k − 1

k−1
∑

i=1

log(k/i) − 1

2 log2(n/k)

1

k − 1

k−1
∑

i=1

log2(k/i)

+
1

k − 1

k−1
∑

i=1

(

log

(

1 +
log(k/i)

log(n/k)

)

− log(k/i)

log(n/k)
+

log2(k/i)

2 log2(n/k)

)

=: − 1

log(n/k)
τ (1)
n − 1

2 log2(n/k)
τ (2)
n + τ (3)

n .

The inequality 0 ≤ log(1 + x) − x + x2/2 ≤ x3/3, x ≥ 0 yields:

(9) |τ (3)
n | ≤ 1

3 log3(n/k)

1

k − 1

k−1
∑

i=1

log3(i/k) = O

(

1

log3(n/k)

)

,

since

1

k − 1

k−1
∑

i=1

log3(k/i) → −
∫ 1

0

log3(x)dx = 6,

as k → ∞. Similar calculation yields

(10) τ (2)
n = 2 + o(1).

Furthermore, remark that

τ (1)
n =

1

k − 1
log

(

k
∏

i=1

i

k

)

=
1

k − 1
log

(

k!

kk

)

.

Using Stirling’s formula:

k! =

(

k

e

)k √
2πk(1 + o(1)),

leads to

(11) τ (1)
n =

1

k − 1

(

1

2
log(2πk) − k + o(1)

)

= −1 +
log(k)

2k
+ O(1/k).

Collecting (9), (10) and (11) concludes the proof.

Proof of Lemma 5. Since αi,n = W (i/k) + εi,n, we have

T (1)
n =

1

k − 1

k−1
∑

i=1

W (i/k) log

(

1 +
log(k/i)

log(n/k)

)

+
1

k − 1

k−1
∑

i=1

εi,n log

(

1 +
log(k/i)

log(n/k)

)

=: T (1,1)
n + T (1,2)

n .
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The first term can be expanded as

T (1,1)
n =

1

log(n/k)

1

k − 1

k−1
∑

i=1

W (i/k) log(k/i)

+
1

k − 1

k−1
∑

i=1

W (i/k)

{

log

(

1 +
log(k/i)

log(n/k)

)

− log(k/i)

log(n/k)

}

=:
T

(1,1,1)
n

log(n/k)
+ T (1,1,2)

n .

Let us define H(x) = W (x) log(1/x), x ∈ (0, 1). Then, the Riemann sum T
(1,1,1)
n

can be compared to µ(W ) by:

|T (1,1,1)
n − µ(W )| ≤

k−1
∑

i=1

∫ (i+1)/k

i/k

|H(i/k) − H(x)|dx +

∫ 1/k

0

|H(x)|dx + O(1/k)

=
1

2k2

k−1
∑

i=1

sup
i/k≤x≤(i+1)/k

|H ′(x)| +
∫ 1/k

0

|H(x)|dx + O(1/k)

=: T (1,1,1,1)
n + T (1,1,1,2)

n + O(1/k).

Assumption (A.4) implies that there exists M ′ > 0 such that |H ′(x)| ≤ M ′x−q−1

for all x ∈ (0, 1] and thus,

T (1,1,1,1)
n ≤ M ′

2k2

k−1
∑

i=1

(

i

k

)−q−1

≤ M ′

2k

(

∫ 1

1/k

t−q−1dt + kq

)

=

{

O
(

kq−1
)

if q 6= 0,
O (log(k)/k) if q = 0.

(12)

Assumption (A.4) also yields |H(x)| ≤ Mx−q log(1/x) for all x ∈ (0, 1] and thus,

|T (1,1,1,2)
n | ≤ M

∫ 1/k

0

x−q log(1/x)dx

= O
(

kq−1 log(k)
)

.(13)

Collecting (12) and (13) implies that

(14) T (1,1,1)
n = µ(W ) + O(kq−1 log(k)).

Besides, the well-known inequality | log(1 + x) − x| ≤ x2/2, x > 0 and (A.4) lead
to

|T (1,1,2)
n | ≤ 1

k − 1

k−1
∑

i=1

|W (i/k)|
∣

∣

∣

∣

log

(

1 +
log(k/i)

log(n/k)

)

− log(k/i)

log(n/k)

∣

∣

∣

∣

≤ M

2 log2(n/k)

1

k − 1

k−1
∑

i=1

(i/k)−q log2(k/i)

= O

(

1

log2(n/k)

)

,(15)
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since

1

k − 1

k−1
∑

i=1

(i/k)−q log2(k/i) →
∫ 1

0

x−q log2(1/x)dx < +∞,

when k → ∞. Finally, T
(1,2)
n is bounded by

|T (1,2)
n | ≤ ‖ε‖n,∞

1

k − 1

k−1
∑

i=1

log

(

1 +
log(k/i)

log(n/k)

)

= ‖ε‖n,∞τn

= O

( ‖ε‖n,∞

log(n/k)

)

,(16)

by Lemma 4. Collecting (14), (15) and (16) gives the result.

Proof of Lemma 6. Since αk−i,n = J(i/k) + εk−i,n, we have,

T (3,ρ)
n =

1

k − 1

k−1
∑

i=1

J(i/k)Kρ

(

1 +
Fi,k−1

En−k+1,n

)

+
1

k − 1

k−1
∑

i=1

εk−i,nKρ

(

1 +
Fi,k−1

En−k+1,n

)

=: T (3,ρ,1)
n + T (3,ρ,2)

n .

The first term can be expanded as

T (3,ρ,1)
n =

1

En−k+1,n

1

k − 1

k−1
∑

i=1

J(i/k)Fi,k−1

+
1

k − 1

k−1
∑

i=1

J(i/k)

{

Kρ

(

1 +
Fi,k−1

En−k+1,n

)

− Fi,k−1

En−k+1,n

}

=:
T

(3,ρ,1,1)
n

En−k+1,n
+ T (3,ρ,1,2)

n .

Now, (A.3) and (A.4) imply that the linear combination of exponential order

statistics T
(3,ρ,1,1)
n satisfies the conditions of Lemma 2 and thus is asymptotically

Gaussian. More precisely, we have

(17) T (3,ρ,1,1)
n

d
= µ(W ) + σ(W )k−1/2ξn,

where ξn
d→ N(0, 1),

µ(W ) =

∫ 1

0

W (x) log(1/x)dx and

σ2(W ) =

∫ 1

0

∫ 1

0

W (x)W (y)
min(x, y)(1 − max(x, y))

xy
dxdy.

The upper bound on T
(3,ρ,1,2)
n is obtained by remarking that for all x ≥ 0,

|Kρ(1 + x) − x| ≤ 1 − ρ

2
x2.
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It follows that

T (3,ρ,1,2)
n ≤ 1

k − 1

k−1
∑

i=1

|J(i/k)|
∣

∣

∣

∣

Kρ

(

1 +
Fi,k−1

En−k+1,n

)

− Fi,k−1

En−k+1,n

∣

∣

∣

∣

≤ 1 − ρ

2

1

E2
n−k+1,n

1

k − 1

k−1
∑

i=1

|J(i/k)|F 2
i,k−1.

Now, when k → ∞,

1

k − 1

k−1
∑

i=1

|J(i/k)|F 2
i,k−1 = OP (1) and

En−k+1,n

log (n/k)

P→ 1,

by Lemma 1(i) and Lemma 2. Thus

(18) T (3,ρ,1,2)
n =

1

En−k+1,n
OP

(

1

log (n/k)

)

,

and then collecting (17) and (18),

(19) T (3,ρ,1)
n =

1

En−k+1,n

(

µ(W ) + σ(W )k−1/2ξn + OP

(

1

log (n/k)

))

.

Similarly, T
(3,ρ,2)
n is bounded by

|T (3,ρ,2)
n | ≤ ‖ε‖n,∞

1

k − 1

k−1
∑

i=1

Kρ

(

1 +
Fi,k−1

En−k+1,n

)

≤ ‖ε‖n,∞
1

k − 1

k−1
∑

i=1

Fi,k−1

En−k+1,n

d
=

‖ε‖n,∞

En−k+1,n

1

k − 1

k−1
∑

i=1

Fi

=
1

En−k+1,n
OP (‖ε‖n,∞) ,(20)

by the law of large numbers. Collecting (19) and (20) gives the result.
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θ b(x) ρ

N (µ, σ2) 1/2
1

4

log x

x
−1

Γ(β, α 6= 1) 1 (1 − α)
log x

x
−1

W(α, λ) 1/α 0 −∞

EW (α, β 6= 0) 1/α − β

α2

log x

x
−1

Table 1. Parameters θ, ρ and the function b(x) associated to some
usual distributions
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(b) Mean square error as a function of kn.

Figure 1. Comparison of estimates θ̂Z
n (solid line) and θ̂G

n (dashed
line) for the Γ(0.5, 1) distribution. In (a), the straight line is the
true value of θ.



ESTIMATION OF THE WEIBULL TAIL-COEFFICIENT 17

0 50 100 150 200 250

0.
80

0.
85

0.
90

0.
95

1.
00

k

m
ea

n

0 50 100 150 200 250

0.
80

0.
85

0.
90

0.
95

1.
00

k

m
ea

n

(a) Mean as a function of kn

0 50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

k

M
S

E

0 50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

k

M
S

E
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Figure 2. Comparison of estimates θ̂Z
n (solid line) and θ̂G

n (dashed
line) for the Γ(1.5, 1) distribution. In (a), the straight line is the
true value of θ.
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Figure 3. Comparison of estimates θ̂Z
n (solid line) and θ̂G

n (dashed
line) for the N (1.2, 1) distribution. In (a), the straight line is the
true value of θ.
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Figure 4. Comparison of estimates θ̂Z
n (solid line) and θ̂G

n (dashed
line) for the W(2.5, 2.5) distribution. In (a), the straight line is the
true value of θ.
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Figure 5. Comparison of estimates θ̂Z
n (solid line) and θ̂G

n (dashed
line) for the W(0.4, 0.4) distribution. In (a), the straight line is the
true value of θ.


