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Abstract: The current trend in debugging and testing is to cross-check information collected during
several executions. Jones et al., for example, propose to use the instruction coverage of passing and
failing runs in order to visualize suspicious statements. This seems promising but lacks a formal
justification. In this paper, we show that the method of Jones et al. can be re-interpreted as a
data mining procedure. More particularly, the suspicion indicator they define can be rephrased in
terms of well-known metrics of the data-mining domain. These metrics characterize association
rules between data. With this formal framework we are able to explain limitations of the above
indicator. Three significant hypotheses were implicit in the original work. Namely, 1) there exists
at least one statement that can be considered as faulty ; 2) the values of the suspicion indicator for
different statements should be independent from each others; 3) executing a faulty statement leads
most of the time to a failure. We show that these hypotheses are hard to fulfill and that the link
between the indicator and the correctness of a statement is not straightforward. The underlying idea
of association rules is, nevertheless, still promising, and our conclusion emphasizes some possible
tracks for improvement.
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Fouille de données et recoupement de traces d’exécution
Une ré-interprétation de la visualisation d’information de test

de Jones, Harrold et Stasko

(Version longue)

Résumé : La tendance actuelle en débogage et test de programmes est de recouper des informa-
tions rassemblées lors de plusieurs exécutions. Jones et al., par exemple, proposent d’employer la
couverture d’instructions calculée pour des exécutions réussissant et échouant afin de visualiser des
instructions suspectes. Ceci semble prometteur mais il manque une justification formelle. Dans cet
article, nous montrons que la méthode de Jones et al. peut être réinterprétée comme un procédé de
fouille de données. Plus particulièrement, l’indicateur de suspicion qu’ils définissent peut être refor-
mulé en termes de métriques bien connues en fouille de données. Ces métriques caractérisent des
règles d’association entre les données. Avec ce cadre formel nous pouvons expliquer des limitations
de l’indicateur mentionné ci-dessus. Trois hypothèses significatives étaient implicites dans le travail
original. À savoir, 1) il existe au moins une instruction qui peut être considérée comme défectueuse ;
2) les valeurs de l’indicateur de suspicion pour différentes instructions doivent être indépendantes
les unes des autres ; 3) exécuter une instruction défectueuse conduit la plupart du temps à un échec.
Nous prouvons qu’il est difficile de satisfaire ces hypothèses et que le lien entre l’indicateur et la
correction d’une instruction n’est pas direct. L’idée fondamentale des règles d’association est, néan-
moins, prometteuse, et notre conclusion dessine quelques voies possibles d’amélioration.

Mots-clé : Génie logiciel, Test et débogage, Apprentissage, Acquisition de données
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1 Introduction

The current trend in debugging and testing is to use several executions. Executions are abstracted
by spectra [8]. For example, Renieris and Reiss induce from a set of successful spectra, a model of
correct execution that they compare to a faulty spectrum [16]. This comparison points out suspicious
parts of the faulty execution. The type of spectra they use is instruction coverage and their experi-
ments have shown that the nearest neighbor model of the faulty spectrum is the more relevant to be
compared with the faulty run. Podgurski et al. present a method to automatically group faulty spec-
tra with respect to the fault that leads to the failure [15]. This method relies on cluster analysis. They
have shown that this approach is effective to help debugging programs. Leon et al. introduce a new
approach of testing, namely observation-based testing [14]. This method is based on multivariate
visualization of an execution and its originality is that it allows users to graphically compare execu-
tions. Thus, users can isolate executions that differ from the common profile by visualizing different
graphs. This technique has been tried in different contexts, including evaluating and improving syn-
thetic tests or filtering regression test suites. Ball et al. use model-checking to generate faulty runs of
a program, in the sense that these runs violate a specified property [3]. The likely cause of the failure
is supposed to be the transitions that appear in the counter-example but not in the correct runs. The
originality with regard to usual model-checking is that many counter-examples are generated, each
one having a different cause of failure. Zeller and Hildebrandt propose to use delta-debugging to
discover causal relations in runs of programs [20]. This technique relies on experimentations, which
consist in creating runs specifically designed to confirm or refute an hypothesis. This technique has
been used in different contexts, such as isolating failure-inducing inputs of programs.

Jones, Harrold and Stasko propose to cross-check the instruction coverage of passing and failing
runs in order to visualize suspicious statements [12]. This seems promising but the suspicion indi-
cator is intriguing. It looks reasonable, but it is not one of the well-known indicators that have been
defined in the data mining domain. This asked for an evaluation of the properties of the suspicion
indicator. In this paper, we show that the method of Jones et al. can be re-interpreted as a data mining
procedure. More particularly, the indicator they define, called ����� in the following, is actually a
variant of metrics that are well known in data mining. These metrics characterize association rules
between data.

The first contribution of this article is to analyze the ����� indicator in terms of well-known data
mining indicators for association rules. We show how classical indicators can be used in place of
����� . The advantage is that the validity of these indicators is better studied than that of the �����
indicator [1, 4, 7, 9].

With the formal data mining framework we are then able to explain limitations of the �����
indicator. Indeed, the second contribution of this article is to uncover three significant hypotheses
that were implicit in the original work.

1. There exists at least one statement that can be considered as faulty and an error has its origin
in a single faulty statement.

2. ����� indicators for different statements are independent from each other. I.e., statements
independently belong to fail traces.
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4 Denmat, Ducassé & Ridoux

3. Executing a faulty statement leads most of the time to a failure.

These hypotheses are hard to fulfill. The first one excludes bugs where not a single statement is
incorrect on its own. The second one is almost certainly false in complex programs; errors may
depend on interactions between modules, or the error is in the control flow. The Independence of
indicators is impossible to achieve as many instructions of a given program depend from each other
because of control dependencies and data dependencies. Instruction dependences are, indeed, the
basis of program dependence analysis [10] and slicing [19, 18], a wide area of research. Due to the
third hypothesis, faults in statements that are always executed will never be localized. E.g., faulty
statements in an initialization phase are always executed, causing or not causing failures in different
runs.

The last contribution is to sketch how the full-fledged formalism of association rules can alleviate
the above hypotheses. Therefore, the idea of association rules is still interesting, and our conclusion
emphasizes some possible avenues worth exploring.

In the following, Section 2 first describes the work of Jones et al. Section 3 re-interprets the
����� indicator as a data mining procedure metrics. Section 4 discusses in detail three hypotheses
which explain several limitations of the approach. Section 5 summarizes the contributions of the
current article and emphasizes some possible avenues worth exploring.

2 Test Information Visualization

Jones et al. suggest to use the information collected during the executions of different tests of a
program to help a programmer locate errors [12]. During the execution of a particular test, it is
possible to know which statements have been executed. The intuitive idea of the technique is that if
the execution of a particular statement leads most of the time to a failure, and seldom to a success,
then it should be considered suspect. To inform the user of the suspicion of a statement, Jones et al.
color the statements of a program. Roughly speaking, if a statement is colored in red, then it must
be inspected. On the contrary, if a statement is colored in green, then it can be considered as correct.

Equation 1 defines the color of a statement. It is a function of an indicator, called ����� in the
following. ����� is defined by Equation 2 as a function of ��������� and ��	������ , respectively defined
by Equations 3 and 4.


���
���� ������� ������� ����������������� ������� �!����� � (1)

�����"�����#� ���������
��������� � ��	������ (2)

�$��������� nb of passed tests executing i
number of passed tests

(3)

�$	�������� nb of failed tests executing i
number of failed tests

(4)

If a statement � is executed by many of the passed tests and few of the failed tests, then ���������%�
tends towards 1 and the color is almost green. On the opposite, if a statement � is executed by many

INRIA



Data Mining and Cross-checking of Execution Traces 5

Statements Test cases��������� x 3 1 5 3 5 2	
y 3 2 5 2 3 1��

����������������� z 5 3 5 1 4 3

1 ����� ������� ��������� ! ! ! ! ! !
2 �#"$��� ! ! ! ! ! !
3 ��%&���(')�*� ! ! ! ! ! !
4 ��%����+',�&� ! ! ! !
5 �-")��� !
6 ��.0/�� ��%&���+')�*� ! ! !
7 �-")��� ! !
8 ��.0/�� ! !
9 ��%����+1,�&� ! !
10 �-")��� !
11 ��.0/�� ��%&���(1)��� !
12 �-")�2�
13 3&� ��

�4���2� �����*��� ! ! ! ! ! !

5
Pass/Fail status P P P P P F

Figure 1: Visualization of Test information

of the failed tests and few of the passed tests, then �����"����� tends towards 0 and the color is almost
red.

Thus, this definition looks reasonable. Moreover, its general form is familiar: a ratio of a measure
of events of interest on a measure of all events. However, the denominator seems odd; it sums up
two values expressed in two different units, namely, number of passed tests and number of failed
tests.

Figure 1, copied from [12], shows how program mid is colored after the execution of six test
cases (dark gray corresponds to red whereas light gray and white correspond to green). On this
figure, a bullet represents the fact that a statement is executed by the corresponding test case. The
last line of the table indicates the status of the different tests: passed (P) or failed (F). This program
contains an error: the statement on line 7 should be 6 �87 instead of 6 �:9 . This statement is
executed by one out of the five passed test cases and the failed test case. The approach works well
on this example and colors the faulty statement in red.

To evaluate their technique of fault localization, Jones et al. used a C program named space.
It consists of 9564 lines among which 6218 are executable. They used a test pool of 13585 test
cases covering every node and edge of the control-flow graph at least thirty times. Using this pool,
they made 1000 test sets randomly sized. Then, they used 20 mutants and they computed the �����
indicator for each of the 1000 test sets. In a first experimentation, the mutants had just one faulty
statement and in a second experimentation they had from 2 to 5 faults. They colored the program
and evaluated the results using two criteria:

; The number of times that a faulty statement is colored in a red or reddish color

; The number of times that a non-faulty statement is colored in a red or reddish color

Two observations were made:

RR n˚5661



6 Denmat, Ducassé & Ridoux

; In the one-fault experimentation, 90 % of the faulty statements were colored in red. With
many faults, at least one of the faulty statements was systematically colored in red.

; Nearly 10 % of the non-faulty statements were colored in red.

2.1 Informal Discussion

Even if the previous result is encouraging, 10 % of the faulty statements were not colored in red.
There are what is called “false negatives”; i.e., statements that should be presented as suspicious,
and are not presented at all. Furthermore, 10 % of the non-faulty statements colored in red means
that more than 600 statements were false positives; i.e., statements that should not be presented as
suspicious, but are presented as such.

We made experiments on small programs of the Siemens test suite [11] which confirmed that in
most cases a statement can have a bad ����� value and be correct and that a faulty statement can
have a value of ����� that makes it be considered as non faulty. Hence, the approach produces both
false negatives and false positives.

Let us consider again the program of Figure 1. If the faulty statement was not the only statement
of a basic block, all the statements of its block would have had the same ����� , whether there were
faulty or not. Hence all statements of that block but the faulty one would be false positives. In
the example, the faulty statement is in an innermost block. If it was not the case, for example if
statement 3 was faulty, the ����� of the blocks depending of this statement would be close to 0.
Therefore their color would be closer to red than to green, whether there were faulty or not. This
again would produce false positives.

3 Mining execution traces

The indicator computed by Jones et al. automatically extracts information from a large amount of
data. In this section, we re-interpret the ����� approach as a data mining procedure. This gives a
framework to formally identify circumstances which induce false positives and false negatives.

3.1 Association Rules

A family of data mining procedures consists of mining large amounts of data to find association rules
hidden in this information. Agrawal et al. point out the interest of association rules when analyzing
a supermarket sales [1]. Starting from the customers’ tickets, they were able to discover rules such
as “if a customer buys fish and lemon then he will probably also buy rice”. Such rules can be used
when the data can be turned into a large set of objects, each object being described by a set of items.
These objects are also named transactions. Table 1 is an example of the kind of information that is
provided to the algorithm of Agrawal et al. It is sufficient to know whether an item is present or not,
this algorithm does not take into account how many times an item appears on a transaction.

INRIA



Data Mining and Cross-checking of Execution Traces 7

Transaction Items

A ��� ��������6 � 
	��

B ��� ������� 
�� 6 ��� � � � 
�� ��
 ����� ��

C ��
 ����� � ��� ����� 

D � 6 ����� ��
 ����� ��

E ��� ������� 
�� 6 ��� � � � 
 ��

F � 
�� 6 ��� ��6 � 
�� �&6 ������


Table 1: Example of data for the mining of association rules

The output of the algorithm is a set of association rules showing possible links between items. A
rule is represented by a formula ����� , where ����� and ��� � with �"!#� �%$ , � being the set
of all items.

3.2 Support and Confidence of Association Rules

In order to characterize such rules, metrics can be used. Two common metrics are the support and
the confidence of a rule. They are defined as follows [1]. & denotes the set of transactions.

; Support of a rule :

�('*) �+�,���$� � card �-� �/. & 01�324��� ��
 �
card �+&��

Remember that & is a set of transactions, and that transactions are sets of items; hence, & is a
set of set of items, and � , � and � are sets of items.

The �('*) metrics represents the proportion of the transactions described by all items from
�"2#� with respect to the whole set of transactions. It can be seen as the frequency where the
rule is observed. This metrics is important to distinguish the rules corresponding to exceptions
from the rules reflecting a trend in the data set. The support is also defined for a set of items:

�('*) �5�$� � card ��� �6. & 07��� ��
 �
card �5& �

This is a particular case of the previous definition where the left-hand side set of items is
empty.

; Confidence of a rule :


���� � �5�7�8�$� � card �-� �/. & 07�329��� ��
 �
card �-� �6. & 07�:� ��
 �

The confidence represents the proportion of the transactions where items from �;2%�
appear together with respect to the set of transactions where the items from � appear

RR n˚5661



8 Denmat, Ducassé & Ridoux

together. If the items from � are present almost each time items from � are, then
card ��� �6. & 01�329��� ��
 ��� card ��� �6. & 01��� ��
 � and the confidence is close to 1.
Reciprocally, if the items from � are often present without those from � , then the confidence
tends towards 0. The confidence measures the validity of � � � as a rule; the lesser the
exceptions to the rule, the greater its validity.

If we consider a set & of transactions, there is a very large number of association rules: the rules
involving two items, three items, . . . , � items, where � is the maximum number of items in a transac-
tion from & . Consequently, it is often unrealistic to observe all the existing association rules in a set
of transactions. To face this problem, the algorithm A priori, introduced by Agrawal and Srikant [2],
asks the user to specify two thresholds, one for the support and the other for the confidence. These
thresholds correspond to the minimum values of metrics for which the user considers that the rules
are valid. The algorithm is able to compute all the rules that satisfy these thresholds. We do not detail
the exact behavior of the algorithm but the key idea is that the sets of items having a support greater
than the minimum threshold are computed, starting from sets of 2 elements until convergence. The
confidence of the rules extracted from these different sets are computed and only the rules with a
confidence greater than the threshold are selected.

3.3 Relevance of Support and Confidence

An important problem of the algorithm A priori is that the extracted rules are not necessarily the
most interesting. Indeed, the two metrics sup and conf are not totally appropriate to evaluate the
relevance of association rules. This is because validity, i.e., a constraint on exceptions to rules, does
not mean relevance, i.e., a gain in information. For instance, assume the university restaurant serves
fried potatoes every day. One can say “every time I am ill, there have been fried potatoes the day
before” with confidence 1. However, this is clearly not relevant as a rule. Now assume the restaurant
serves fried potatoes every two days. If the above statement has a confidence greater than 0.5, then
it may be relevant.

More formally, let us interpret the conf metrics with a probabilistic approach, as presented by
Hipp et al. [9]. We call 7 and 9 the events corresponding to the fact that a transaction contains
respectively the items of � and � . ��� 7���9 � denotes the probability of 7 and 9 . Consequently:


���� � �+�,��� �#� card ��� �6. & 0�� 24��� ��
 �
card ��� �6. & 0���� ��
 �

� card ��� �6. & 0�� 24��� ��
 �
card �5& � � card �5& �

card ��� �6. & 0���� ��
 �
� ��� 7���9 �

��� 7 � (5)

If two events � and 
 are independent, ��� � ��
 � � ��� � ��� ����
�� . Hence, if events 7 and 9 are
independent Equation 5 becomes :


���� � �+�,����� � ����9 � (6)

INRIA



Data Mining and Cross-checking of Execution Traces 9

Trans. Items

1
���������
	�����
��
	��������
	��������
	��������
	��������
	����������
	����

2
���������
	�����
��
	��������
	��������
	��������
	����������
	����

3
���������
	�����
��
	��������
	��������
	��������
	������! ��
	����������
	����

4
���������
	�����
��
	��������
	��������
	��������
	����������
	����������
	����

5
���������
	�����
��
	��������
	��������
	��������
	����������
	����

6
���������
	�����
��
	��������
	��������
	��������
	��������
	����������
	�"��

Table 2: Transformation of the data on the figure 1 to use association rules

Equation 6 shows that if ��� 9 � is high, i.e., the items of � appears in a lot of transactions, then
 ��� � �+�,����� is high, even if � and � are independent.

3.4 The Lift Metrics

To face this problem, another metrics has been introduced: the lift of a rule [4]. It measures the
increase of the probability to have the items of � knowing that we have those of � , with respect to
the probability to have the items of � .


 ��� � �+�7� �$� �

���� � �5�7��� �
�('�) �5���

If 
 ��� � �+� � � �$#&% , the probability to have the items of � knowing that we have those of � is
greater than the probability to have the items of � . There is an attraction between the fact to have
the items of � and the fact to have the items of � . On the contrary, if 
 �-� � �5�7�8�$�(')% , there is a
repulsion between these two facts. If 
 ��� � �5��� �$� �*% , then � and � are formally independent.
In this case, the confidence has no signification.

Note that if � is set, 
 ��� � �5�1� ��� and 
���� � �5�7��� � only differ by the constant factor +,�-/.�02143 .

3.5 57698 trace cross-checking: a data mining problem

In this subsection, we show the links between association rules and the ����� indicator presented in
Section 2.

The data used by Jones et al. are the executed statements and the verdict of a set of test cases. We
can turn these data into the form shown on Table 1. Each test case is a transaction. It is associated
with the set of statements that were executed and the verdict of the test. This is illustrated by Table 2
for the example of Figure 1. On this table, we note � ����� the fact that the statement � is executed
during a test case and we note 	 and � the verdict of a test case, respectively 	;: �=< and �;: � � .

From this table we can extract association rules among the different attributes of a test case.
Particularly, we can look for rules like � � ����� � 	 � 1, that means looking for single statements that

1Strictly speaking, such a rule should be noted >�?A@�>CB�DFEHGI?AJKE!D . In order to simplify notations, in the following, rules
involving singletons will be noted without parentheses.

RR n˚5661



10 Denmat, Ducassé & Ridoux

often make the program crash if they are executed. This is exactly the kind of statements that Jones
et al. want to locate.

Note that the number of rules � � ����� � 	 � is small, it is the number of statements in the tested
program. Thus, one does not have to use the A priori algorithm to restrict the search. However,
having only singleton in left-hand parts of association rules prevents from observing the impact of
several distant but non-independent statements on test verdicts (see discussions in the following).

Note also that, in the data mining general case, both � and � are variables of the problem of
finding relevant association rules. In Jones et al. bug finding problem, � is a constant, i.e., 	 for
	;: �=< , and the problem is to find relevant � ’s. In this case, 
 ��� � �+��� 	 � and 
���� � �+�:� 	 � are
related by the constant factor +,�-/.�0�� 3 . In particular, if 	;: � < verdicts are rare, 
 ��� � �+�1� 	 � is much
greater than 
���� � �+�,� 	 � . Finally, note that �('*) ��	 � can be 0, but in this case 
���� � �5�7� 	 � and
 ��� � �+�1� 	 � are also equal to 0.

In a classical data mining problem, the relevance of these rules would be evaluated by computing
the 
���� � and 
 ��� � metrics. Instead of that, Jones et al. use the ����� indicator presented in Section 2.
The question that arises now is: how is this indicator adapted to evaluate the relevance of association
rules? To answer this question, we first transform the ����� expression into a formula depending on
 ��� � .

To simplify the formulae, we note
� � + � � � � � ���

�
the cardinal of the set of transactions that contain

the set of items � � + � � � � � ��� 
 . With this notation, the metrics for the � � ����� � 	 � association rules that
will be used in the following are:

�('�) ��	 � �
� 	 �


 � ��� �+& �

���� � � � ����� � 	 � �

� � ����� � 	 �

� � ����� �

 �-� � � � ����� � 	 � �


 ��� � � � ����� � 	 �
�('�) ��	 �

The ����� indicator actually characterizes the “innocence” of a statement. We therefore rather
consider its complementary

JHS’ �9% � JHS,

that characterizes the suspicion that we have in a statement.

JHS’ ���%�#� % � �$�������
��������� � ��	����%�

� ��	������
��������� � ��	������

Let us recall that ��������� , respectively �$	������ , is the number of passed, respectively failed, test
cases that executed � divided by the total number of passed, respectively failed, test cases. With the

INRIA



Data Mining and Cross-checking of Execution Traces 11

above notations, they become:

���������#�
�
e ����� � � �

� � �

��	������#�
�
e ����� � 	 �

� 	 �

Consequently,

JHS’ �����#�

�
e ����� � 	 �

� 	 �

�
e ����� � � �
� � � � �

e ����� � 	 �
� 	 �

�

�
e ����� � 	 �

� 	 � � card �+&��
�
e ����� �

�
e ����� � � �

� � � � card �+& �
�
e ����� �

�
�
e ����� � 	 �

� 	 � � card �5& �
�
e ����� �

With the definitions of confidence, support and lift:

JHS’ �����#�
conf � e ����� � 	 �

sup ��	 �
conf � e ����� � � �

sup ��� �
� conf � e ���%� � 	 �

sup ��	 �
We therefore have

JHS’ ����� � lift � e ����� � 	 �
lift � e ����� � � � � lift � e ���%� � 	 � (7)

In order to analyze this indicator, we introduce two parameters, ��� and
�

, defined as follows:

��� �
�
e ����� � 	 �

�
e ����� � � �

� �
� 	 �

� � �

�
is the ratio of the number of 	;: � < tests on the number of �;: � � tests, and ��� is the ratio

of the number of 	;: �=< tests that execute statement � , on the number of �;: � � tests that execute
statement � . It is important to note that there is no a priori correlation between these two parameters.
In fact, the very goal of ����� bug finding is to study their correlation. A suspicious statement is a
statement that increases the probability of observing a failure when it is executed.

Note that
�

and � � live in range � ����� . However, the 
 ��� � �+�,� 	 � metrics indicates that the
association rules are more relevant if 	;: �=< is rare (i.e., �('*) ��	 � is small). Hence, it is better if

�
stays rather small. Note that if

�
is equal to 0, then � � is also equal to 0.
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With these two parameters, 
���� � and 
 �-� � can be reformulated as follows.


 ��� � � e ����� � 	 ���
�
e ���%� � 	 �

�
e ���%� �

�
�
e ����� � 	 �

�
e ���%� � 	 � � �

e ���%� � � �

We therefore have


���� � � e ���%� � 	 �#�
� �
��� � %

In the same way,

���� � � e ����� � � � �

�
e ���%� � � �

�
e ����� � 	 � � �

e ����� � � � � %
� � � %


 ��� � � e ����� � 	 �#�

���� � � e ����� � 	 �
�('�) ��	 �

�
�
e ����� � 	 �

�
e ����� � �


 � ��� �+& �
� 	 �

�
�
e ����� � 	 �

�
e ����� � 	 � � �

e ����� � � � �
� 	 � � � � �

� 	 �

We therefore have


 ��� � � e ���%�/� 	 �#�
� �
� � � % �

� � %� (8)

In the same way:

 ��� � � e ����� � � � �

� � %
� � � % (9)

Using Equations 7, 8 and 9, the �����
�

indicator can then be reformulated as:

JHS’ �������
���
��� � % �

� � %� �
� � � %� � %

% � � �
��� � % �

� � %� �
� � � %� � %

�
� �
�

% �
� �
�

We therefore have

JHS’ ���%�#�
���

� � � � (10)

The interesting thing with this reformulation is that
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 ��� � � e ���%� � 	 � �9% if and only if
� � ��� .

and

 ��� � � e ���%� � 	 �7# % if and only if

� ' ��� .
It means that there is an attraction between e ����� and 	 if the density of tests that fail is smaller than
the density of tests that execute statement � and fail.

Remember that 1 is the boundary between attraction and repulsion. A value of 
 ��� � � e ����� � 	 �
that is greater than 1 indicates an attraction between failed tests and tests that execute e ����� . A value
smaller than 1 indicates repulsion. However, Equation 10 shows that �����������$� % ��� if and only
if
� � � � . The consequence is that �����"����� changes from greenish to reddish at the same time

as 
 ��� � � e ����� � 	 � changes from repulsion to attraction. Thus, the ����� indicator measures the
attraction between executing a given line and failing, but it does so in a different unit than 
 ��� � .

We have seen that, when � is set, 
 ��� � �+�7����� and 
���� � �5�7��� � differ by +,�-�.�0C1 3 , which is a
constant factor for a given set of test cases. This shows that for the bug finding application, both 
 �-� �
and 
���� � can be used in place of ����� provided that 
���� � is compared with �('*) ��	 � . The change
from greenish to reddish is made when 
���� � �5�7� 	 � becomes greater than �('*) ��	 � .

Figure 2 presents the curves corresponding to 
���� � � e ���%�/� 	 � , 
 ��� � � e ���%� � 	 � , and �����
� ���%� as

functions of ��� for the three values of
�

: 0.2 (i.e., few failures), 1 and 5 (i.e., many failures). In each
plot, the point where the 
 ��� � curve crosses line 1 marks the boundary between the repulsion area, on
its left side, and the attraction area, on its right side. The values of � � that make a statement suspicious
belong to the attraction area. E.g., the third plot belongs entirely in the repulsion area, hence none
of the presented � � ’s indicates suspicion. Of course for larger � � ’s the lift would eventually be
larger than 1. The other plots show a more or less narrow band on the left where the set of tests is
inconclusive.

In conclusion, the specific indicator is not necessary for the bug tracking problem; the classical
indicators work well. An apparent advantage of ����� is that it belongs to � � %�� , but this is also the
case with 
���� � . The second advantage of ����� is that it specifies a priori a boundary value between
repulsion and attraction, though confidence does not in the general case. However, the analysis of
the definition of 
 ��� � shows that the boundary value for 
 ��� � is � '�) ��	 � ; this value is also known a
priori since it is a constant for a given set of test cases, though it is not the same for all bug tracking
experiences.

Guillaume introduces a variant of 
���� � that integrates a 
 ��� � component [7]. It belongs to � � %(%�� ,
and value 0 is a boundary value that plays exactly the same role as value 1 for 
 ��� � and value % ��� for
����� . The definition is as follows:

if 
���� � �5�7� ����� � '�) ���$�
then 
���� � � �+�,����� �


 � ��� �5& � � � �329� � � � � � � � � �
� � � ��� 
 � ��� �+&�� � � � � � (11)

else 
���� � � �+�,����� �

 � ��� �5& � � � �329� � � � � � � � � �

� � � � � � � (12)

Definition 11 represents attraction, whereas Definition 12 represents repulsion.

RR n˚5661



14 Denmat, Ducassé & Ridoux

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

K = 0.2

lift

confJHS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5

K = 1

lift

JHS = conf

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

K = 5

lift

conf

JHS

Figure 2: The different metrics for different values of
�
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...
if (...)
{// BLOCK 1

...
r = 0;
...

}
else
{// BLOCK 2

...
} // fix : r = 1;
r = 1; // fix : }
...

Figure 3: Faulty Program with no faulty statement

The advantage of 
 �-� � and 
 ��� � �

is that they will work well in every variant of the bug finding
problem (see conclusion), whereas ����� is specialized to the e ����� � 	 association rule.

4 Implicit hypotheses

In the previous section, we have shown that the method presented by Jones et al. corresponds to
finding association rules. We have underlined that the ratio between failed and passed runs had
much impact on the result.

In this section we exhibit three hypotheses that have to be verified in order for the approach to
be meaningful. They were not explicit in the original article and are hard to fulfill in practice. They
explain the existence of false positives and false negatives.

4.1 The competent programmer hypothesis

The first hypothesis is that there exists at least one statement that can be considered as faulty. If
not, looking for some statements which are associated to 	;: �=< is meaningless. What should be the
response of a fault localization technique that underlines suspect statements when there is no faulty
statement? The problem is especially blatant when the fault is a hole in the program; e.g., a missing
case in a switch statement, or more simply, a missing statement. As a consequence, the technique
will lack precision when the code fault corresponds to a deep error such as a wrong control-flow.

Figure 3 shows a simple case where the control flow is faulty but no instruction is to blame. In
the program example the fault is that the statement “ � �*%�� ” at the last line should be in the second
block.
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...
if (...)
{// BLOCK 1

...
r = 0;
...

}
else
{// BLOCK 2

...
r = 1;
...

}
if (r == 0)

// BLOCK 3
...

Figure 4: Execution dependences in a program

The hypothesis concerning this type of fault is commonly used in the field of program testing. It
is called the competent programmer hypothesis. Note that Jones et al. used program mutations for
validating their method; this makes this hypothesis true by construction.

It is important to note that, at present and to our best knowledge, there are no techniques to detect
that the competent programmer hypothesis is not fulfilled.

4.2 Independence of association rules

In data mining theory, an association rule � ��� is called fallacious if there exists two other rules
�8� � and �8��� with �����40 � ��� ��� ���5�90 �!� . In such a case, �3��� is only due to the fact
that � implies both � and � , and it is not an interesting information.

In our case, the association rules corresponding to the ����� indicator are of the form e ����� � 	 .
However, in the analyzed programs there are other associations due to the dependences between
statements. If � is a statement which depends of statement � then e ����� � e ��� � . If, in addition,
e ����� � 	 , then e ��� �/� 	 is a fallacious association rule.

The ����� indicator of a statement is computed and interpreted independently from the �����
indicators of the rest of the program. When it corresponds to a fallacious rule, it is a false positive.
There are numerous dependencies inside a program. Indeed, as already mentioned in the introduc-
tion, program dependence analysis [10] and slicing [19, 18] cover a wide area of research. Therefore,
there are numerous fallacious association rules and the approach generates numerous false positives.

For example, all the statements in a given block have the same ����� . If the first one is executed,
all the others are, if the execution of all of these statements terminate. A block is therefore the
minimal granularity that can be expected with the current ����� .
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int multiplication(int x, int y)
{
int r;
if((x == 0) || (y == 0))
{

r = 0;
}
else
{

r = x*y;
}
return 2*r; // fix : return r;

}

Figure 5: Example where executing the faulty statement does not condition the verdict

Another example is the case where two statements in two distinct blocks depend on the same
variables. As a consequence, these executions are not independent and the ����� indicators are
biased because of this link. Figure 4 shows such an example. Executing the third block depends on
executing block 1. Hence, if the ����� of block 1 marks it as suspect, so will the ����� of block 3
even if block 3 is correct.

4.3 Fundamental hypothesis

A statement � will be considered suspect if and only if the 
���� � of the rule � � ����� � 	 � is high. This
value will be high if executing the statement � often leads to a failure. The fundamental hypothesis
of this technique is thus that executing the faulty statements leads most of the time to a failure

Yet, this is not necessarily the case. For example, consider the program on Figure 5. The faulty
statement is the last one, � should be returned instead of

� � � . Consequently, if � is equal to � , the
verdict of the execution will be �;: � � . A failure will appear only if the block corresponding to
7����� and 9��� � is executed. This example shows that there exists some faults where executing the
faulty statement does not cause observable failures.

Particularly, the method cannot be used to localize faulty statements executed by all the test runs.
Such statements are often present in initialization functions or main functions. They will be false
negatives.

Another case where this hypothesis is a problem is programs with multiple faults. If errors are
independent, which means that each fault is responsible for a particular failure, then the technique
can be used, with the limitations previously presented. In that case, each fault can be localized
separately from the others. On the opposite, there can be tighter links between the different faults.
A failure can appear if and only if a combination of many faulty statements is executed. It can also
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...
if (...)
{

...
r = 1; \\ fix : r = 0;
...

}
...
if (...)
{

...
r ++; \\ fix : r = r + 2;
...

}
...

Figure 6: Example where faulty statements can mask other faults

disappear if another faulty statement is executed. In this case two faults are mutually masked. If
such cases happen, the method does not provide good results because the fundamental hypothesis is
not verified: executing a faulty statement does not condition the verdict of the test. Figure 6 shows a
case where two faults can mask each others. If only one of the blocks containing a faulty statement is
executed, a failure will appear. But, if both of them are executed the effects of the faulty statements
disappear.

Note also that programs that implement very regular algorithms, e.g., matrix or graph operations,
execute almost all their statements at all runs. So, there is no statement that leads more often than
the others to a failure.

5 Conclusion

Summary In this article we have re-interpreted the work of Jones et al. as a data mining procedure.
In so doing, we have shown that the ����� indicator corresponds to classical data mining metrics. We
have uncovered a number of requirements and hypotheses which are implicit in the original article
and help to explain a number of the limitations of the approach.

1. The competent programmer hypothesis: if an execution leads to a failure, then there is at least
one statement that can be said to contain a fault.

2. Independence of the indicators hypothesis: suspicion ratio of a statement can be interpreted
separately from the rest of the program.

3. Fundamental hypothesis: executing a faulty statement leads most of the time to a failure.
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Thus, the method has intrinsic limitations:

; The bug in the program cannot be an error in the control-flow in order to verify Hypothesis 1.

; As a consequence of Hypothesis 2, the most precise element that can be localized is a basic
block. Due to this hypothesis, many correct statements are considered as suspect statements:
at least all the statements of a basic block that contains an actual erroneous statement.

; To verify Hypothesis 3, faulty statements whose execution does not necessarily cause a failure
cannot be localized by this method. Particularly, faults in statements that are always executed
will never be localized; e.g., in initialization.

; Programs containing many faults interacting together cannot be debugged with this method
because if failures are due to more than one fault, Hypothesis 3 is not verified.

Perspectives Even if the proposed method relies on hypotheses that are hard to fulfill, the idea of
association rules is nevertheless interesting.

The ����� approach looks for association rules of the form

e ����� � 	 .

A very natural approach to enhance Jones et al. method is to exploit association rule formalism
to the full. Indeed, the formalism permits that left and right parts of association rules are sets of
items. The right part of ����� association rules is 	 , but it could be extended to accommodate
failure circumstances; e.g., name of failure event. The related association rules could then be, for
example, of the form

e ����� � ��	 � � � � _ � � ' 
+��
 .
Still, the details of such an extension requires some ingenuity. The left part is not limited to be

a single statement number. One could allow several items in the left part. The related association
rules could then be for example of the form

� e ����� � � � � � e � � � 
 � 	 .

This would permit to alleviate Hypotheses 1, and 2, and relax Hypothesis 3. The error is no longer
supposed to reside in one statement. Statement need no longer be considered as independent, and
the notion of a statement causing a failure is replaced by the notion of a combination of statements
causing a failure.

To address the limitations of Hypothesis 1, another avenue worth exploring is the use of alterna-
tive trace representations, or even alternative spectra. Namely, e ���%� , which is the trace that statement
� is executed, could be enhanced by other types of information about executions. In other contexts,
other forms of traces have been used. For example, Denise et al. use execution paths [6], Dallmey-
er et al. use method call subsequences of a given length [5], Souter et al. use contextual variable
Def-Use information [17], Langevine et al. use a generic execution trace format [13]. The related
association rules could then be for example of the form
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20 Denmat, Ducassé & Ridoux

� e ����� � path � ) � � use � 7���) � ��)�� � 
 � ��	 � � � � _ � � ' 
+��
 .
The search spaces would of course be much larger than for the ����� indicator. There exists data

mining algorithms, such as A priori already mentioned, that have proved their worth for very large
data bases.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items
in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pages 207–216. ACM Press, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 20th Int.
Conf. Very Large Data Bases, VLDB, pages 487–499, 1994.

[3] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing errors in coun-
terexample traces. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, pages 97–105, New York, NY, USA, 2003. ACM
Press.

[4] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules
for market basket data. In Proceedings of the 1997 ACM SIGMOD International conference
on Management of Data, pages 255–264. ACM Press, 1997.

[5] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for java. In Proc. 19th
European Conference on Object-Oriented Programming, 2005.

[6] A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic method for statistical testing. In
Proceedings of the 15th. IEEE International Symposium on Software Reliability Engineering
(ISSRE), pages 25–34, 2004.

[7] S. Guillaume. Traitement des donnés volumineuses, mesures et algorithmes d’extraction de
règles d’association et règles ordinales. PhD thesis, Université de Nantes, Décembre 2000.

[8] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical investigation of program spec-
tra. In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 83–90. ACM Press, 1998.

[9] J. Hipp, U. Guentzer, and G. Nakhaeizadeh. Data mining of association rules and the process
of knowledge discovery in databases. In Industrial Conference on Data Mining, pages 15–36,
London, UK, 2002. Springer-Verlag.

[10] S. Horwitz and T. Reps. The use of program dependence graphs in software engineering.
In 14th International Conference on Sotware Engineering, pages 392–411, Melbourne, May
1992.

INRIA



Data Mining and Cross-checking of Execution Traces 21

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In Proceedings of the 16th Interna-
tional Conference on Software Engineering, pages 191–200. IEEE, 1994.

[12] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault
localization. In Proceedings of the 24th International Conference on Software Engineering,
pages 467–477. ACM Press, 2002.

[13] L. Langevine, P. Deransart, and M. Ducassé. A generic trace schema for the portability of
cp(fd) debugging tools. In J. Vancza, K. Apt, F. Fages, F. Rossi, and P. Szeredi, editors, Recent
advances in Constraint Programming. Springer-Verlag, Lecture Notes in Artificial Intelligence
3010, 2004.

[14] D. Leon, A. Podgurski, and L. J. White. Multivariate visualization in observation-based testing.
In Proceedings of the 22nd International Conference on Software Engineering, pages 116–125.
ACM Press, 2000.

[15] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang. Automated
support for classifying software failure reports. In Proceedings of the 25th International Con-
ference on Software Engineering, pages 465–475. IEEE Computer Society, 2003.

[16] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In Proceedings
of the 18th International Conference on Automated Software Engineering, pages 30–39. IEEE
Computer Society, 2003.

[17] A. L. Souter and L. L. Pollock. Contextual def-use associations for object aggregation. In
PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 13–19, New York, NY, USA, 2001. ACM Press.

[18] F. Tip. A survey of program slicing techniques. Journal of Programming Languages, Septem-
ber 1995.

[19] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352–357,
July 1984.

[20] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE Transac-
tions on Software Engineering, 28(2):183–200, 2002.

RR n˚5661



Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

http://www.inria.fr
ISSN 0249-6399


