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Abstract: We use marked point processes to detect an unknown number of trees
from high resolution aerial images. This approach turns to be an energy minimiza-
tion problem, where the energy contains a prior term which takes into account the
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the image. This stochastic process is simulated via a Reversible Jump Markov Chain
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Recuit simulé adaptatif pour la minimisation d’énergie
dans le cadre de processus ponctuels marqués appliqués
a la foresterie

Résumé : Dans ce rapport de recherche, nous utilisons les processus ponctuels
marqués afin d’extraire un nombre inconnu d’objets dans des images aériennes. Ces
processus sont définis par une énergie, qui contient un terme a priori formalisant les
interactions entre objets ainsi qu'un terme d’attache aux données. Nous cherchons
4 minimiser cette énergie, afin d’obtenir la meilleure configuration d’objets, & l'aide
d’un recuit simulé qui s’inscrit dans I’algorithme d’échantillonnage MCMC & sauts
réversibles.

Nous comparons ici différents schémas de décroissance de température, et présentons
certaines méthodes qui permettent d’améliorer la convergence de ’algorithme en un
temps fini.

Mots-clés :  Processus ponctuels marqués, RIMCMC, recuit simulé, schéma de
décroissance de la température, coefficient de contraction de Dobrushin, application
a la foresterie.
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Optimization Techniques in a Marked Point Process Application to Forestry 5

1 Introduction

We aim at extracting tree crowns from remotely sensed images in order to assess
some useful parameters such as the number of trees, their diameter, and the density
of the stem. This problem has been widely tackled in the literature over the past
years. In the case of color infrared images, some methods use a pixel based approach
and give the delineation of the tree crowns [Gou98|, other ones use an object based
approach by modelling a synthetic tree crown template to find the tree top posi-
tions [Lar99].

In [PDZ05]|, we proposed to use a marked point process approach which can em-
bed most of the geometric properties describing the distribution of the trees, espe-
cially in plantations where we obtained good results. Indeed, marked point processes
enable to model complex geometrical objects in a scene and have been exploited for
different applications in image processing [DKLT04|. The context is stochastic, and
our goal is to minimize an energy on the state space of all possible configurations of
objects, using some Markov Chain Monte Carlo (MCMC) algorithms and Simulated
Annealing (SA). In this report, we will focus on the optimization problem.

The first section is dedicated to recall some definitions about marked point pro-
cesses. Then, we present our model adapted to tree crown extraction, and the SA
algorithm. Some convergence theorems are detailed. In the last section, we perform
a range of tests in order to study acceleration techniques that can be used to get
good results in a faster way.

2 Definitions and Notations

For more details about marked point processes we refer to [vL00|, and for their
applications to image processing to [DKLT04].
2.1 Marked point process

Let S be a set of interest, called the state space, typically a subset of R™. A config-
uration of objects in S is an unordered list of objects :

x={z1,...,en},x; €Syi=1,...,n (1)

A point process X in S is a measurable mapping from a probability space
(Q,A,P) to configurations of points of S, in other words a random variable whose

RR n°® 5704



6 Perrin & Descombes & Zerubia

realizations are random configurations of points. These configurations x belong to
v=Jv, (2)
n

where ¥,, contains all configurations of a finite number n of points of S.

A marked point process living in S = P x K is a point process where some
marks in K are added to the positions of the points in P. A configuration of objects
x ={(p1,k1),...,(pn, kn)} is also a finite set of marked points. The marks are some
parameters that fully describe the object. For example, ellipses are described by the
position of their center, their major and minor axis, and their orientation.

The most obvious example of point processes is the homogeneous Poisson process
of intensity measure v(.), proportional to the Lebesgue measure on S. It induces a
complete spatial randomness, given the fact that the positions are uniformly and
independently distributed.

2.2 Application to object extraction

The marked point process framework has been successfully applied in different image
analysis problems [DKL™04], the main issue being that we do not know a priori the
number of objects to be extracted. Since some pioneering work for cell segmenta-
tion [BVL93, RH99], it has been used for road network detection [LDZB04, SDZ00],
building extraction [Ort04, ODZ04|, and tree crown extraction on LIDAR [And03|
or on near infrared images [PDZ05|.

The approach consists of modelling an observed image J (see Fig. (3) lefthandside)
as a realization of a marked point process of geometrical objects, such as discs,
ellipses, or rectangles for instance. The position state space P will be given by the
image support, and the mark state space K will be some compact set of R?.

2.3 Energy minimization problem

We consider the probability distribution u(.) of an homogeneous Poisson process
living in S with intensity measure v(.), which gives us a probability measure on ¥

(see [vLOO]). We have VB € B(¥) :
) (3)

_ = in (B
w(B) =e (S) <1[®€B] +ZN (' )
n=1 ’
INRIA

n



Optimization Techniques in a Marked Point Process Application to Forestry 7

where
,un(B) :/"'/1[{x1,...,xn}€B]V(dx1)"'V(dxn)-

Then, if the probability distribution of a marked point process X , written P x(.) ,
is uniformly continuous with respect to x(.), the Radon Nikodym theorem (for more
details see [Hal50| for example) defines its unnormalized density f(.) with respect to
this dominating reference measure as :

Px(dx) =  Fx) ) = - exp(~U())(cx) (4)

where Z is a normalizing constant, and U(x) the energy of the configuration x.

Within the Bayesian framework, given the data J, x is assumed to have been
generated thanks to a posterior distribution f(x|J), which can be written as :

F(x[7) o fp(x)L(1x) (5)

From now on we will write f(x) = f(x|J). We aim at finding the Maximum A Poste-
riori estimator x4 p of this density, which is also the minimum of the Gibbs energy
U(x). As for many energy minimization problems, the prior term f,(x) can be seen
as a regularization or a penalization term, while the likelihood L£(J|x) can be seen
as a data term. We note V¥,,;, the subset of ¥ where the energy is minimized, and
Upin > —o0 the value of this energy. By analogy, Ue: < 400 is the maximum of

U(x). -

The landscape of U(x) in the problem of tree crown extraction is very elaborate
as we will see in the sequel. U(x) contains a lot of local minima [PDZ05|. That is
why the classical SA scheme has to be adapted in order to give a good estimation of
XM AP In a reasonable time.

2.4 Simulation of Marked Point Processes

A marked point process X is fully defined by its unnormalized density f(x) under
a reference measure, which is often in practice the homogeneous Poisson measure.
Sampling a realization of this process is not obvious, this requires some MCMC al-
gorithms, with P x (dx) as equilibrium distribution.

In particular, the Reversible Jump MCMC (RIJMCMC) algorithm [Gre95] allows
us to build a Markov Chain (X,) which jumps between the different dimensions

RR n°® 5704



8 Perrin & Descombes & Zerubia

of U. At each step, the transition of this chain is managed by a set of proposi-
tion kernels {Q,(X,.)},,cas Which propose the transformation of the current con-
figuration x into a new configuration y. This move is accepted with a probability
a=min{l, R(x,y)}, where :

Px (dy)Qm(y, dx)
Px (dx)Qm (x,dy)

R(x,y) = (6)

is called the Green ratio.

The Markov chain (X,,) converges ergodically to the distribution P x under some
stability condition on the Papangelou conditional intensity [vLO00| which must be

bounded :

f(xU{u})
f(x)
with M > 0 finite, for all x € ¥ and v € S. When (7) holds, the ergodic convergence
of (X,) is ensured (see [GM98], with a kernel containing uniform birth and death).

A(x,u) = <M (7)

Model optimization is achieved by this RJIMCMC algorithm embedded in a SA

scheme. This consists of sampling f,(.) = fﬁ() instead of f(.), where T}, is a
temperature parameter which tends to zero as n — oo. The Markov chain (X))
is now nonhomogeneous, and the convergence properties detailed in [GM98] do not
apply anymore. This will be detailed in the next sections.

3 Owur model for tree crown extraction

We aim at extracting tree crowns from remotely sensed images of forests. Our data
contain infrared information, which enhances the chlorophyllean matter of the trees.
To perform this object extraction, we use a marked point process of ellipses. The
associated state space S is therefore a bounded set of R :

S=PxX= [O,XM] X [O,YM] X [am,aM] X [bm,bM] X [0,71’[ (8)

where X and Yj are respectively the width and the length of the image J, (@, arr)
and (by,, bar) respectively the minimum and the maximum of the major and the mi-
nor axes, and 0 € [0, 7 the orientation of our objects. In practice we set a,, = by,
and aps = bys. In order not to have two points of S representing the same object,
we set b < a.

INRIA



Optimization Techniques in a Marked Point Process Application to Forestry 9

As explained in Section (2.3), we work in the Bayesian framework : the density
f(x) of one configuration is split into a prior term and a likelihood term.

3.1 Prior energy U,(x)

The prior term gives a general aspect of the solution we desire, by adding some
constraints to the configurations that should fit the data. As we are working on
plantations of poplars, we model the periodic pattern of the alignments. Thus, we
consider three components in the prior energy (see [PDZ05| for more details) :

e a repulsive term between two overlapping objects x; ~, x; in order to avoid
over-detection. An overlapping coefficient A(x1,x2) € [0, 1] penalizes more or
less 1 ~, x9 depending on the overlapping area :

Ur(x) =7 Y Alwi,z;), 7 € RF (9)

Ti~rT;

e an attractive term that favours regular alignments in the configuration. A
quality function Q(z1,x2) € [0, 1] quantifies the quality of the alignment of two
objects x1 ~g X2, with respect to two predefined vectors of alignments :

Ua(x) = Ya Z Q(mi,l‘j), Yo € R™ (10)

ZTi~alj

e for stability reasons and because of the attractive term, we have to avoid ex-
treme closeness of objects. This can be done by adding a hard core constraint
in our prior process :

f oo if Ay, xj) € x| d(xi,xj) < 1
Un(x) = { 0 otherwise (11)

The first two neighbourhood relationships are shown in Fig. (1). Then, the prior
energy is :

Up(x) = Uy (x) + Ug(x) + Up(x) (12)

RR n°® 5704



10 Perrin & Descombes & Zerubia
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Figure 1: Lefthandside : two overlapping objects and the quality of this interaction.
Righthandside : The four regions around one object where some alignments are
favoured.

3.2 Likelihood £(J|x)

The likelihood of the data Jgiven a configuration x is a statistical model of the
image. We consider that the data can be represented by some Gaussian mixture of
two classes (the trees with some high grey value and the background with low grey
value), where each pixel is associated to one of these two classes :

e C; = N(m;,0;) for the pixels inside at least one of the objects of the configu-
ration,

e C, = N(m,,0,) for the pixels outside.

Other models to define the likelihood are studied in [PDZ05].

3.3 RJMCMC algorithm

As explained in Section (2.4), we use a RIMCMC dynamics in order to sample our
marked point process. The global proposition kernel Q(x,.) contains uniform birth
and death (Qpp), translation (Qr), dilation (Qp), rotation (Qr), split and merge
(Qsnr), and birth and death in a neighbourhood (Qppn). More details about this
kernel can be found in [PDZ05]. Fig. (2) gives an overview of some of these moves.

INRIA
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ROTATION TRANSLATION
—a

k;,—' Se-- ——> MERGE

DILATION TRANSLATION + DILATION —— > SPLIT

Figure 2: Lefthandside : non jumping kernels, i.e. moves that do not affect the
number of objects of the configuration. Righthandside : split and merge kernel, the
grey shapes can be seen as the trees we want to extract.

3.4 Data and results

Here we present one extraction result obtained on an aerial image of forests provided
by the French Forest Inventory (IFN). The parameters of the model can be found
in [PDZ05]. Our goal is to compare this result to those obtained in the next sections,
that is why a very slow plateau cooling schedule was chosen in order to have a good
estimation of Up,. Tab. (1) presents some statistics related to the simulation, and
Fig. (3) shows the image and the extraction result.

Number of iterations | N = 30 millions

Length of plateau k = 5000
Cooling parameter a = 0.9995
Final energy Uy = 134662

Number of objects n(Xy) = 292

Table 1: Statistics about the extraction after a slow decrease of the temperature.

RR n°® 5704



12 Perrin & Descombes & Zerubia

Figure 3: Lefthandside : some data provided by IFN (resolution 50cm/pixel).
Righthandside : the poplar extraction result, after 30 millions iterations (45 minutes
on a Red Hat Linux 3GHz machine).

INRIA



Optimization Techniques in a Marked Point Process Application to Forestry 13

In the following, as our algorithm is stochastic, each scenario will be simulated
10 times, and the statistics will represent the mean values of the statistics observed
during these simulations.

4 Simulated Annealing

The SA algorithm is a stochastic global optimization procedure which exploits an
analogy between the search of the minima x € ¥,,,;,, and a statistical thermodynamic
problem. As explained in [vLA87|, the thermal mobility of molecules is lost when
the temperature is slowly decreased, going from a liquid state to a pure crystal
which is a stable state of minimum energy. Cerny [Cer85| and Kirpatrick [KGV83|
simultaneously applied this analogy and proposed an algorithm using a Metropolis
Monte Carlo method and some temperature parameters, in order to find the global
minima of an energy function U(z). Ever since it has been widely used in many
optimization problems including applications in image analysis [Win03]. In this
section, we present this algorithm, its convergence properties and some ideas to
accelerate it.

4.1 The algorithm

At each iteration of the SA algorithm, a candidate point y is generated from the
current position x using the distribution Q(z,.), and accepted or refused via an
acceptance ratio a(x,y). This acceptance ratio is controlled by a parameter T' called
the temperature [Cer85, KGV83|, which slowly decreases to 0 during the algorithm :

ot = i {1 xp (L2 V) -

The principle of SA is also to accept some random ascent moves since the tem-
perature parameter is high, in order to escape local minima of the energy. When
T — oo, the algorithm tends to sample a uniform distribution on S, while for T — 0
it tends to a Dirac distribution on W,,;,. The evolution of the temperature parame-
ter T,, during the optimization process is called the cooling schedule.

SA also samples a nonhomogeneous Markov chain (X,) which should find the
states of minimum energy W,,;, with an appropriate cooling schedule. A schedule is
said to be asymptotically good [Aze92] if it satisfies :

lim P(X, € Uppin) = 1 (14)

n—oo

RR n°® 5704



14 Perrin & Descombes & Zerubia

Energy U(x)
A

>
State space S

A x1 x2 Xmin B

Figure 4: Starting from point B, both SA algorithm and determinist algorithms like
steepest descent find the global minimum X,,;,. Starting from A, SA jumps the
local minima, but the determinist algorithm is stuck in z1. d(zl) and d(z2) are
respectively the depths of the local minima z1 and 2.

INRIA
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4.2 Convergence results

Originally, SA algorithm was introduced for combinatorial problems (especially the
Traveling Salesman Problem and Graph Partitioning) on some finite solution set S,
but where #(S)! was very large. Thus, most of the convergence proofs have been
obtained in the case of §(S) < co.

Geman and Geman [GG84| showed that some logarithmic decrease of the tem-
perature
lim T, log(n) > K >0 (15)
n—oo

with K large enough, depending on A = Uj,ae — Unin, was sufficient to guarantee
the convergence (see Eq. (14)). Then, Hajek [Haj85| proved that K could be the
maximum of the depths d,,, of local minima x,,. He also linked the constant K with
the energy landscape. We will see how crucial it is to adapt SA to the energy of
the problem at hand. Details about this theorem, and speed of convergence can be
found in [vLAS8T7]|.

More recently, some results have been established in the case of general state
spaces for continuous global optimization. Most of the time, the case of compact
sets was studied |Loc00]|, while in [ABDO1, HS91] more general state spaces were
taken. The logarithmic schedule T, > ﬁ was proven to be asymptotically
good for some constant K depending on the energy landscape. This cooling schedule
can be accelerated with some restrictions on the proposal distribution Q(z,.).

Finally, point process theory and SA have been linked in [vL93|, where some
convergence proofs of inhomogeneous Markov chain were established in the case of
a birth and death process, and in [SGMO04] for general RIMCMC dynamics.

4.3 Convergence theorems in the RIMCMC framework

The proofs of convergence of the non-stationary Markov chain use the Dobrushin’s
contraction coefficient of the proposition kernel, they can be found in [vL93, SGMO04].
We just recall the definitions and the principal theorems of convergence in the sequel.

14(S) is the cardinal of the set S

RR n°® 5704



16 Perrin & Descombes & Zerubia

Definition Total Variation

Let pi(.) and po(.) be some probability measures on a
measurable space (U, B(WV)). Their total variation distance
1s defined as the maximal difference on measurable subsets

AeB(V) :

|1 — pollry = sup  |u(A) —v(A4)] (16)
AeB(D)

In the continuous case, if both pu1(.) and ps(.) are absotulely
continuous with respect to some measure p(.) with Radon-
Nikodym derivatives f,, and f,,,

s = palry =5 [ 1) = fuaGoluta) (17

Definition Dobrushin’s contraction coefficient

For a transition probability kernel Q(.,.) on (¥, B(V)),
Dobrushin’s contraction coefficient ¢(Q) is defined by :

c(Q) = sup [Q(x,.) — Qy, )|y (18)

x,yeW¥

INRIA
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Theorem Limait theorem

Let (X,) be a non-stationary Markov process with a
transition kernel Qy(.,.) defined by :

Qn(x,A) = Q(x, A)

where Q°(.,.) is the application &-times of the transition ker-
nel Q(.,.) defined by the Metropolis Hastings updates of the
RIMCMC algorithm. Assume also that conditions

[e.9]
> lmn = Fagallry < oo (19)
n=1
and
lim ¢(Qnyn) =0 (20)
n—oo

hold ¥ny > 0 and transition probabilities Qnyn(x,A) =
P(X, € AlX,, = x). Then, the limit lim,_ oo ™ = 7o
erists and also lim, o m0Qo,n = Teo in total variation, for
any nitial distribution .

We need now to prove conditions (19) and (20), which is done in the following.

RR n°® 5704



18 Perrin & Descombes & Zerubia

Theorem Summability condition

Let U* be the set of configurations minimizing the en-
ergy U(x) of the model previously defined, and assume that
w(U*) > 0. Let T, be a sequence of temperatures such that
lim,, oo T, = 0 and consider the probability densities f"(.)
given by

Falx) = f(x)7r

with respect to the reference measure p(.) on W. Then the
sequence T, = [ fpdp converges in total variation to the
uniform distribution on U*.

Moreover, the sequence of probability densities satisfies

Eq. (19) :
o0
Z H7Tn - 7Tn+1HTV < 00
n=1
Lemma Dobrushin condition

Let Qu(x,A) = Q%x,A) be the transition kernel in-
troduced previously. If the step § is a finite integer, such
that § > n(x) for all the configurations of objects x € U,
then the Dobrushin’s condition (20) holds.

As a conclusion, if such a § > n(x) can be found (this is our case thanks to the
hard core energy which bounds the total number of objects), the nonhomogeneous
Markov chain converges and a logarithmic cooling schedule in the SA algorithm

(see [SGMO4]) is sufficient.

4.4 Acceleration methods

In the previous subsection, we noticed that a logarithmic decrease was needed to en-
sure the convergence of SA. However, these schedules require too much computation
time and are not achievable in practice. Even if we are bound to lose the con-
vergence conditions, we prefer implementing some faster cooling schedules. Many
methods have been proposed in that prospect (see [Aze92, Fac00, SSF02, Var96| for

INRIA
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instance), and we will test some of them in our application.

The first family of methods consists in adapting the cooling schedule itself [Fac00,
vLA87, Var96]. Most of the cooling schedules in the literature rely on exponential,
also called geometrical, cooling schedules of the form :

T, =Ty*a" (21)

with a < 1 and very close to 1 (see [VLA87| for more details). A slight adaptation
of this schedule brings us to the fixed length plateau cooling schedule, where the
temperature parameter is decreased every k * n iterations of the algorithm (k fixed,
n € N). This enables the Markov chain to have more time, at a given temperature,

1
to reach its equilibrium distribution P%* (dz) = f(2) T u(dz). We will see in the next
section the influence of the parameters a and k.

Another family of methods consists in adapting the candidate distribution at
each step [GM93, HS91, Ing96|. In the Fast SA [SH87| or in the Adaptive SA
(ASA) [Ing96] for instance, the convergence relies on the asumption that we globally
explore at each step the feasible region, i.e. that each state is reachable from the cur-
rent position Xg, though the probability of sampling points far from X decreases to
0 when n — oco. An additional temperature parameter t,, is added in the proposition
density of the next candidate, which can decrease to 0 much faster than logarith-
mically (exponentially for the ASA), while the cooling schedule of the temperature
parameter T,, — 0 without any speed constraint.

In practice, we will run some finite schedules, starting from a temperature T
and ending with a temperature T. Some papers tackle this problem of optimal
schedules in some finite time in combinatorial optimization problems [BK94, SK91|.
The goal is to find the optimal temperature schedule for a given number of iterations
N, i.e. the schedule that gives the lowest expected value of energy. This leads to
the “Best So Far” for instance, which consists in taking the minimum value of the
energy U(X,,) encountered during the simulation, instead of the “Where You Are”
(last) value U(Xn).

However, finite schedules lead all to what is called broken ergodicity [SSF02],
especially in applications with a continuous state space of varying dimension. The
Markov chain is no longer ergodic because the state space is too big to be explored
and would require a huge number of iterations at each temperature, even if there is

RR n°® 5704



20 Perrin & Descombes & Zerubia

a nonzero probability of reaching any state from any other state. This phenomenon
have been studied in [Ort04], and a new adaptive annealing schedule which takes into
account the convergence delay has been proposed. This one was inspired by [Fac00,
THO95|, where the authors proposed to decrease the temperature in a plateau cooling
schedule only if the mean of the energy during the current plateau was bigger than
the former one :

Ty = { B EDO 0 < EUCOL )

a *x T}, otherwise

where E[U(X)],, = 1 Z;jgﬁlﬂ)n U(X;). In practice this schedule is very long, that is
why Ortner [Ort04] proposed to accept the decrease with less constraints. Moreover,
he remarked that the selection of the minimum was done during a specific period of
the cooling schedule, called the critical temperature. He also constructed an heuristic
that enables the cooling schedule to decrease faster when the region is not interesting,
and to go slower, or even to warm the temperature, when the temperature is critical.
This adaptive schedule is very interesting because it fits the energy landscape of the

problem.

To conclude, in complex optimization problems in a finite time like the problem
we have to solve, the adaptability of the algorithm is of high interest, in order to avoid
too much computation. We compare in the next section some few results obtained
with some of these schedules.

5 Comparative results

Different experiments were carried out in order to compare some cooling schedules
of the SA in our energy minimization problem. As explained above, we simulated 10
times each experiment to avoid too much imprecision.

5.1 Initial and final temperature

We still have not discussed the choice of the two bounds T and Ty . In the literature,
it is often suggested to link Ty with the standard deviation of the energy U(zx) of
random objects x € S, typically twice as large (see [Whi84|). We can, for example,
estimate this value by sampling at infinite temperature. For the stopping tempera-
ture Ty, it is more difficult to estimate a good value in continuous problems, while
in discrete problems [Whi84| suggests taking it of the order of the smallest energy
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scale. Generally speaking, the cooling schedule should always take into account the
energy to be optimized, its scale, its landscape, the number and the size of local
minima (see [SSF02]).

a5 x 10° Mean and Standard deviation of the energy at high temperature
. T T T T
A | \~ ﬂ \h\ v"\ i
M | iy
AL Tl I
\ il
3h |/ 1
—— Energy U(x)
— EUX]
25 — 10*S[E(X)] R
2F 4
151 4
1 4
0.5 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
Iterations (in millions) X 10°

Figure 5: Estimation of the standard deviation of the energy during an infinite
temperature simulation.

First, we would like to assess the influence of the initial temperature T in our
problem. To that prospect, we use Fig. (5) and take twice the standard deviation as
a first initialization of the temperature : Ty ~ 25000. Then, we compare this value
with a bigger value Ty = 1000000 and some smaller ones Ty = 100 and Ty = 1, in
a plateau cooling schedule of fixed length k& = 5000. Only «a is varying in order to
end the cooling schedule at the same final temperature : Ty = 1077, Some statistics
are presented in Tab. (2), and compare the mean value of the last energy U(X y)
(Where-You-Are), the standard deviation of this energy, and the mean value of the
total number of extracted objects.

What can be deduced from these results is that the estimation of the initial tem-

perature with the standard deviation is not the best one, considering the final value
of the energy. With Ty = 100, we obtain better results for the expectation of the
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\ | Tp = 1000000 | Ty = 25000 | Ty =100 | Tp =1 |

Iterations (¥10°) 2 2 2 2
Plateau length k 500 500 500 500
Cooling parameter a 0.9914 0.9923 0.9937 0.9948
Mean E[U(Xn)] 136317 136200 136002 | 136713
Standard deviation o[U (X )] 216.12 222.05 139.07 | 314.65
Mean E[n(Xy)] 282.0 283.6 284.3 285.3

Table 2: Different starting temperatures Ty, with the same number of iterations
(N = 2000000) and the same final temperature T = 1077.

final energy and for its variance, which is the lowest. One can suppose that at higher
temperature, we lose some time and that the selection of the minimum begins around
T = 100 (critical temperature). When the cooling starts with 7p = 1 < 100, it is
'too late’.

Then, we could try to change the final temperature, starting from Ty = 100. The
results are presented in Tab. (3). It is interesting to note that it is less important to
end with a very low temperature than it is to spend more time around the critical
temperature. It seems that T = 10™% is a good final temperature, but the varaiance
of the final energy is high. We also deduce that the interesting part of the schedule
is 100 > T > 10~%. The best schedule would be perhaps the one which decreases
quickly to this critical temperature, then waits, and then goes fast to a very low
temperature for a quasi-deterministic schedule.

5.2 Parameters a and k of the plateau cooling schedule

The problem in this cooling schedule is also to determine the two parameters a
and k. During how many iterations should the Markov chain X, stay at a given
temperature 7 Some tests have been performed in order to see the influence of these
parameters. The results are shown in Tab. (4). It appears that the parameters a and
k (keeping the same number of iterations) do not have a big impact on the results.
This makes sense, because whatever they are, the Markov chain will spend the same
time in the critical zone of the temperature.
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[Tv =107 [Ty =10"* | Ty =10 | Ty =10"" | Ty =107 [ Ty = 107"

Iter. (x10°) 2 2 2 2 2 2
500 500 500 500 500 500
0.9971 0.9966 0.996 0.9948 0.9937 0.9914
N 135914 135843 135848 135961 136002 136713
olU(Xn)] 113.43 239.11 140.88 187.77 139.07 96.70
E[n(Xn)] 284.1 284.7 285.0 284.9 284.3 284.6

Table 3: Different ending temperatures T, with the same number of iterations
(N =2000000) and the same starting temperature 7y = 100.

\ | k=10 | k=100 | k=500 | k= 1000
Iter. (x10°) 2 2 2 2
a 0.99987 | 0.99874 | 0.9937 | 0.9874
E[U(Xy)] || 135944 | 136054 | 136002 | 135876
olU(Xy)] || 151.24 | 266.65 | 139.07 | 226.07
E[n(Xn)] 286.1 285.1 284.3 286.4

Table 4: Different fixed length plateau schedules, with the same number of iterations
(N = 2000000), initial temperature Ty = 100 and stopping temperature Ty = 1079

5.3 Adaptive cooling schedule

In the previous results, we noticed that some better values for Ty and Ty could be
found. Unfortunately, we cannot afford doing so many simulations for every image
for which we want to use our model. That is why the cooling schedule proposed
in [Ort04, ODZ04] is interesting, because it adapts the cooling speed to the energy
landscape.

We still set & = 500, and &’ = 50 the length of the 10 sub-plateaus. We note

j=kn+(i+1)k’

EUXOL =2 Y

j=kn+ik’

U(X;) (23)
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the mean of the energy on the i" sub-plateau. We have E[U(X)], = 15 Ly~i=d o ElU(X)]E,.
A decrease of the temperature would be accepted if at least one sub- plateau has a
mean energy FE[U(X)]? lower than the global former energy E[U(X)],_1. Moreover,
the cooling parameter a, now depends on n, and we can accelerate or even warm
the temperature (if the ergodicity is broken) according to :

1
X)), <E[U(X)]n-1} =0 and a, = a;;
an * Ty, if § {E[U X)]?@ < E[U(X)]nfl} € [134]
an * T, if ${E[U(X)]}, < E[U(X)]p-1} > 5 and ay, = aj,
We use r = 0.9, and threshold the parameter a, in order that 0.96 < a, < 0.996.
Obviously, starting from a temperature Ty and ending at a temperature T, we can-
not predict the number of iterations it will take.

i*Tn if t{E[U

Tn+1 = (24)

In Tab. (5), we compare the results of different adaptive schedules with Ty =
25000 and T = 1077. S1 is the simple plateau schedule with the constant speed
studied before (a = 0.9923). Then, S2 and S3 are some adaptive plateau schedules
for which the speed changes during the simulation in accordance with the previous
observations (see Fig. (6), lefthandside). S2 and S3 spend respectively p = 80% and
p = 90% of the time in the critical zone 100 > T > 10~%. S4 is the limit adaptive
geometric schedule (p = 100% studied before) where Ty = 100 and Ty = 1074
Finally, S5 is the adaptive schedule presented above, which accelerates or warm the

temperature.

[ st | S2:80% | S3:90% | S4:100% | S5
Iter. (x10°) 2 2 2 2 E[N] =2.03
Plateau length k 500 500 500 500 500
Cooling parameters || a = 0.9923 | a1 = 0.9789 | a; = 0.9583 | a = 0.9966 | 0.96 < a < 0.996
az = 0.9957 | as = 0.9962

E[U(XnN)] 136200 136048 135952 135843 135805

olU(Xn)] 222.05 218.65 193.58 239.11 132.84
Mean E[n(Xy)] 283.6 283.5 284.5 284.7 285

Table 5: Comparison of different schedules with T = 25000 and Ty = 107,

As expected, the adaptive schedule makes the most of the NV iterations and spend

much more time in the interesting part of the temperature (see Fig. (6)).

We see
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T T T

— - adaptive schedule S5

—— adaptive plateau schedule S3
plateau schedule S1

—log(T)

—— Critical zone
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Iterations X 106
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. . . . >

Iterations

Figure 6: Top : Comparison of the adaptive plateau schedule and the adaptive
schedule. Bottom : Cooling schedule of an adaptive plateau schedule, p being the
percentage of iterations spent in the critical zone. For Ty > T > 100 and 10~* >
T > Ty, an = ai. For 100 > T > 1074, a,, = ag. In order to spend more time in the
critical zone, 1 > a9 > a;.
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that our estimation (around 7' = 100) of the beginning of the critical zone is quite
good.

5.4 Adapting the proposition kernel to the temperature

A last optimization can be performed on the proposition kernel Q(z,y). Indeed, this
influences the global optimum of the SA, considering that at low temperature, the
system is looking preferably for small perturbation. We also decrease along with the
temperature our parameters in the translation, the rotation, and the dilation moves
in order to propose smaller perturbations. Results are shown in Tab. (6). We can
see that the results are much better with an adaptive proposition kernel. This can
be understood because whatever the temperature is, the energy of the configuration
should vary at the same order on the scale of one transition [SSF02|. At a very low
temperature for example, many costly energy evaluations will be required to reach
any improvement of the objective function if we propose big moves to some of the
objects of the configuration. It seems that keeping a good acceptance ratio even for
low temperatures is crucial.

classical kernel | adaptive kernel
Iterations (x10°) 2 2
Plateau length k 500 500
Cooling parameter a 0.9923 0.9923
E[U(XnN)] 136200 135669
olU(Xn)] 222.05 78.8
E[n(Xn)] 283.6 284.1

Table 6: Comparison between a classical kernel and an adaptive proposition kernel.

6 Conclusion

In this report, we have performed some optimization tests on a marked point process
problem algorithm applied to tree crown extraction. It is in fact an energy minimiza-
tion, which can be studied using a SA scheme embedded in RIMCMC procedure.

First, it appears that the adaptive cooling schedule proposed in [Ort04] gives
better results that any geometric schedule, knowing the starting and the ending
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temperatures of the schedule. It fits well the energy landscape, and accelerates or
warms the temperature in order to minimize the broken ergodicity phenomenon,
which always occurs in finite schedules. Then, adapting the proposition kernel itself
is also interesting. It increases the acceptance ratio of the proposition kernel for low
temperatures, and also finds better local minima of the energy.

Future work could involve the implementation of another optimization algorithm,
such as genetic algorithms. Moreover, other techniques which could improve the
Markov chain speed will be studied. Among all, Data Driven Markov Chain Monte
Carlo [TZ02| achieves high acceleration by using the data (clustering or edge de-
tection in the image segmentation problem for instance) to compute importance
proposal probabilities which drive the Markov chain.
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