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of algorithms that combine the main features and advantages of both simulation and deter-
ministic methods and consider applications to inference in Hidden Markov Random Fields
(HMRF). These algorithms can be viewed as stochastic perturbations of the Variational
Expectation Maximization (VEM) algorithms, which are not tractable for HMRF. We focus
more specifically on one of this perturbation and we prove its (almost sure) convergence
to the same limit set as the limit set of VEM. In addition, experiments on synthetic and
real-world images show that the algorithm performance is very close and sometimes better
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Combiner simulations et méthodes en champ moyen
pour l'inférence de champs de Markov cachés

Résumé : Les problémes & données manquantes sont des cas typiques ou l'inférence exacte
n’est pas possible dés que ’on souhaite prendre en compte des dépendances non triviales
entre variables cachées. Des approximations sont nécessaires et sont géneralement basées
sur des méthodes de simulations ou sur des méthodes variationnelles déterministes. Les
méthodes variationnelles fournissent des estimations rapides et raisonnables dans beaucoup
de cas mais les méthodes & base de simulations, malgré leur colt calculatoire plus élevé,
apportent bien souvent plus de réponses et de garanties sur des questions théoriques impor-
tantes telles que la qualité de "approximation et la convergence des algorithmes. Dans ce
travail, nous proposons une nouvelle classe d’algorithmes qui intégrent les caractéristiques et
les avantages principaux de chacune des approches. En guise d’illustration, nous considérons
une application & I'inférence des champs de Markov cachés et & la segmentation d’image. Ces
algorithmes peuvent étre vus comme des pertubations stochastiques des algorithmes EM va-
riationnels (VEM) qui ne sont pas implementables dans le cas des champs de Markov cachés.
Nous étudions plus précisément 'une de ces perturbations et nous prouvons sa convergence
presque-sire vers le méme ensemble limite que celui de VEM. De plus, nous montrons sur
des images synthétiques et réelles que les performances de ce nouvel algorithme sont trés
proches et parfois meilleures que celles d’autres algorithmes de type EM existant, & base de
méthodes de simulations et/ou de méthodes variationnelles.

Mots-clés : EM variationnel, champs de Markov cachés, approximations par chaines de
Markov Monte Carlo, segmentation d’images
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1 Introduction

Missing data models are commonly used in various applications including areas as diverse as
signal and image processing, genetics and epidemiology. They reveal very useful in model-
ing variability and heterogeneity in data and in solving various labeling or clustering issues.
Due to the missing data structure, inference and parameter estimation tasks in such models
often yield procedures that are intractable as soon as non trivial interactions in the data
are taken into account. In most applications, their complexity requires the development
of approximations techniques. These techniques are usually based either on deterministic
numerical methods such as variational methods (e.g. [22, 38]) or on simulation methods
such as Monte Carlo Markov Chains (MCMC) techniques (e.g. [32]). Choosing one or the
other approach can be advantageous depending on the context and the goal in mind. Infer-
ence problems are usually formulated as the computation of a quantity of interest (e.g. a
probability distribution) as the solution to an optimization problem. Variational inference
methods refer to a certain class of deterministic methods that consist of solving a perturbed
version of the optimization problem. In order to define such a problem, it is necessary to
specify both a cost function to be optimized and a constraint set over which the optimization
takes place. Variational methods then arise as relazations, that is, simplified optimization
problems that involve some approximation of the constraint set, the cost function or both.
The original issue is replaced by an easier optimization problem and variational methods
have been shown to provide fast and reasonable approximate estimates in many scenarios
[22]. However, since it is often the case that there are no other feasible choices rather than to
resort to variational approximation in practical situations, it appears frequently that these
approximations are being used to practical problems with little consideration of important
issues such as accuracy of the approximation, convergence of the algorithms and so on.
Convergence results exist for the so-called Variational Expectation Maximization (VEM)
algorithms (see [4]) but their application is restricted to specific settings which limit the
kind of interactions allowed between the missing data to very simple ones. Variants to ex-
tend the application domain of algorithms such as VEM have been proposed (see e.g. [45]
and [6] in an image segmentation framework) but they did not succeed in preserving the
convergence results. As a matter of fact, in most settings of practical interest, theoretical
results regarding accuracy and convergence properties are still missing. Simulation meth-
ods appear then as natural candidates to make algorithms tractable for a wider class of
problems while providing tools to study their convergence. As an example, convergence of
MCMC based algorithms have been widely studied and a lot of tools are now available that
make various convergence results available or at least easy to derive (see for instance [15]
for a convergence proof of the Monte-Carlo EM algorithm of [39] based on Monte Carlo
integration procedure with MCMC sampling techniques). In this paper, our aim is to show
that combining both type of methods to design new algorithms can greatly improve accu-
racy and modeling flexibility in missing data settings. The main idea is that algorithms
resulting from such a combination will benefit from the good features of both approaches
simultaneously. Deterministic schemes are easy to implement and can provide fast estimates

RR n° 5721



2 Forbes € Fort

while simulation methods often lead to more accurate results with guaranteed convergence.
There have been other attempts at combining approximation techniques and simulation
methods. The closest in spirit to our approach is that in [9]. The authors introduce a class
of MCMC algorithms that use variational approximations as initial proposal distributions
and consider an application to sigmoidal belief networks. In our work, we use a different
approach and different tools. We rather incorporate MCMC simulations into variational
algorithms and focus on a different application. Other attempts in the statistics community
include the use of Laplace approximation with simulation techniques [21], the Gibbsian-EM
[7], the Restoration-Maximization algorithm [30], the Monte-Carlo approximations by [31]
and more recently, the Simulated Field algorithm of [6]. However, most of these procedures
were not originally designed with this combining idea in mind and no convergence results
are available for them. A detailed comparison of some of these algorithms, for the case of
hidden binary isotropic Markov chains, can be found in [2].

Image segmentation and Hidden Markov Random Fields (HMRF) estimation is a typi-
cal setting where one encounters these tradeoffs between accuracy, convergence guarantees
and reasonable computing time. Difficulties arise due to the dependence structure in the
models. The Expectation Maximization (EM) algorithm [11], typically used in missing data
cases, yields update procedures that do not have a closed form expression and is intractable
analytically. Different algorithms have been proposed to overcome this intractability of
EM. Among pure simulation techniques, a straightforward variant of the Monte-Carlo EM
algorithm can be used (see Section 5) while variational versions of EM are deterministic
alternatives. In particular, VEM algorithms have been popular in cases where the E-step
of EM is intractable [22]. The most popular class of VEM procedures is certainly the
mean-field EM one. The mean field approach consists in computing quantities related to
a complex probability distribution, by using a simple tractable model such as the family
of independent distributions. However, introducing relaxation in the E-step does not fully
answer the question of inference in cases where the M-step remains intractable due to the
complex structure of dependence between the hidden variables. It follows that VEM algo-
rithms cannot be directly applied in the HMRF segmentation framework where additional
approximations are required in the M-step. Further algorithms have then been designed,
that propagate the relaxation in the E-step to the M-step. The combination in such a way
of the mean field theory and the EM procedures for HMRF is due to [45]. Using ideas
from this principle, [6] proposed, in the context of Markovian image segmentation, a class of
EM-like algorithms generalizing [45] which show good performance in practice. In this work,
we present another way to overcome the intractability of VEM based on the idea of com-
bining deterministic and simulation-based approximations. We start from VEM procedures
for which convergence properties are well established and introduce simulations in these
algorithms. In addition to make the algorithms tractable, we claim that the introduction
of a small perturbation at each iteration of VEM, yields algorithms with the same asymp-
totic behavior as VEM. More specifically, we propose a class of (stochastically) perturbed
VEM algorithms where the noise at each iteration is controlled so that it gets negligible,
in a sense to be specified, when the number of iterations tends to infinity. We prove our
claim by adapting the results of [15] relative to perturbed iterative maps. We propose an
example of such a stochastic VEM algorithm, the Monte-Carlo VEM algorithm (MCVEM)
which is tractable in practice and for which we prove convergence results. In addition, the
algorithm performance is compared, on synthetic and real-world images, with various other
algorithms that are typical of one of the approach separately. For deterministic algorithms,
we report the comparison with the Mean Field algorithm of [6] while for pure MCMC tech-
niques, we consider a simple extension of the MCEM algorithm, the later being intractable
in the HMRF setting. As an illustration, we also compare with two other algorithms among
the ones that combine simulation and deterministic methods, namely the Gibbsian-EM and
the Simulated Field algorithms, chosen for their flexibility in missing data problems. We
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observe that the MCVEM algorithm provides the best or very close to the best results for
most of our test images. Our algorithm has thus many advantages: (a) it is tractable in
practice, (b) we are able to prove convergence results so that the set of its limit points is
identified (as being the set of the limit points of VEM), and (c) it is efficient when applied to
image segmentation. It illustrates how combining deterministic and simulation techniques
can result in improved algorithms.

The paper is organized as follows. In section 2, we first state the Markov model-based
image segmentation problem and present the variational principle through a description of
the VEM algorithm. The combination with MCMC simulations is specified in section 3
through the presentation of our MCVEM algorithm. Its links to other EM variants are
also specified in this section. Convergence theorems are given in section 4 with their proofs
postponed in Appendix. We show that these theorems apply for our image segmentation
purpose and report experiments on synthetic and real-world images in section 5 illustrating
the good performance of the algorithm. A discussion section concludes the paper.

2 Markov model-based image segmentation

Problems involving incomplete data, where part of the data is missing or unobservable, are
common in image analysis. The aim may be to recover an original image which is hidden
and has to be estimated from a noisy or blurred version. More generally, the observed and
hidden data are not necessarily of the same nature. The observations may represent mea-
surements, e.g. multidimensional variables recorded for each pixel of an image while the
hidden data could consist of an unknown class assignment to be estimated, for each pixel,
from the observations. This case is usually referred to as image segmentation. In this paper,
we focus on Markov model-based image segmentation. In Section 2.1, we recall basic defini-
tions concerning the Markov models used for the unobserved data and specify the complete
parametric models for the observed and unobserved data. We recall the EM algorithm in
section 2.2. Its extension to VEM, which is the basis of our parameter estimation algorithm,
is specified in Section 2.3.

2.1 Hidden Markov random fields for segmentation

Let S be a finite set of sites with a neighborhood system defined on it. Let N = |S| denote
the number of sites. A typical example in image analysis is the two dimensional lattice with
a first order neighborhood system: for each site, the neighbors are the four sites surrounding
it. A set of sites C is called a clique if it contains sites that are all neighbors. Let V be a
finite set with K elements. Each of them will be represented by a binary vector of length
K with one component being 1, all others being 0, so that V will be seen as included in
{0,1}K*K and its elements denoted by {ei,...,ex}. We define a discrete Markov random
field as a collection of discrete random variables, Z = {Z;, i € S}, defined on S, each Z;
taking values in V', whose joint probability distribution py satisfies the following properties,

Vz, pz(zi|zs\giy) = pz(zilz, j€N(®)) (1)
Vz, pz(z) > 0, (2)

where zg\ ;;3 denotes a realization of the field restricted to S\{i} = {j € S,j # i} and N (i)
denotes the set of neighbors of i. More generally, if A is a subset of S, we will write z4
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for {2;, i € A}. In words, property (1) means that the interactions between site ¢ and the
other sites actually reduce to interactions with its neighbors. Property (2) is important for
the Hammersley-Clifford theorem to hold. This theorem states that the joint probability
distribution of a Markov field is a Gibbs distribution given by

pz(z) = W 'exp(—H(2)), 3)

where H is the energy function
H(z) = ) V(=) (4)
c

The V.’s are the clique potentials and may depend on parameters, not specified in the no-
tation. W = Y exp(—H(z)) is the normalizing factor also called the partition function;

z
>~ (resp. >.) denotes a sum over all possible values of z (resp. z4). The computation
z ZA

of W involves all possible realizations z of the Markov field. Therefore, it is, in general,
exponentially complex, and not computationally feasible. This can be an issue when using
these models in situations where an expression of the joint distribution pz(z) is required. In
the following sections, we will deal with approximation of pz(z). We will denote by Z = V'V
the set in which Z takes values and by D the set of probability distributions on Z.

Image segmentation involves observed variables and unobserved variables which have
to be recovered. The hidden variables are modeled as a discrete Markov random field, Z,
with distribution pz as defined in (3) and an energy function H depending on a parameter
B € B C R and henceforth denoted by H(z; ). It is assumed that the observations Y are
conditionally independent given the Markov random field Z, with conditional distribution
Py |z parameterized by 6 € © C R™ , where ng is the dimension of § depending on the model
under consideration.
In the general case, the likelihood of (Y, Z) called the complete likelihood py,z) is given by

P(y,z) (y,z;0,8) = PY\Z(Y | ;0) pz(z; B)
= W(B)™" exp{—H(z; ) +logpy|z(y | z;)}. (5)

Then the conditional likelihood of the hidden variables Z given the observations Y, pzy
is given by pzjy = p(v,z)/py where py is the likelihood of the observations Y (called the
incomplete likelihood). It is easy to see from (5) that the conditional field Z given Y =y is
a Markov field as Z is. Its energy function is

H(z |y;0,8) = H(z;B) —logpyz(y | 2;0).

In the following developments, we will refer to Markov fields Z and Z given Y =y as the
marginal and conditional fields.

In image segmentation problems, the question of interest is generally to recover the unknown
image z, interpreted as a classification into a finite number K of labels. This classification
usually requires values for the vector parameter ¢ = (6, 3).

2.2 Inference by EM algorithm

If unknown, the parameters are usually estimated in the maximum likelihood sense

~

Y = argmax, ey Inpy (y; ¢), (6)
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where U = O x B is the parameter space. This optimization is usually solved by the iterative
EM procedure [11]. Any iteration may be formally decomposed into two steps: given the
current value of the parameter )¢, the so-called E-step consists in restoring the missing data,
i.e. in computing
Qi yh) =D Inpy, ) (v, %) P2y (2ly; ¥1),
zEZ

the expectation of the complete log-likelihood knowing the observations y and the current
estimate ¢!. The parameter is then updated and defined as maximizing this expected
complete log-likelihood

P! = argmax,,c g Q(¢;9°). (7)

It is known that, under regularity conditions, EM converges to the set of the stationary
points of the incomplete likelihood ¢ — py(y;) [41]. As discussed in [8] and [27], EM
can be viewed as an alternating maximization procedure of a function F' defined below
(equation (9)), by rewriting the objective function ln py (y;-) as follows: for any probability
distribution q € D, it holds

Inpy (v;9) = F(g,%) + KL (¢;pzv (y; %)) (8)
where
Pl = i (2RI o), o)
= q(z)
and KL denotes the Kullback-Leibler divergence,
Vpi,p2 € D, KL(p1;p2) = zez;n (i:E:D p1(z). (10)

The Kullback-Leibler divergence is a measure of dissimilarity between two distributions. It is
always positive and is zero when and only when the distributions are equal. The alternating
maximization algorithm is an iterative procedure; for a current value (gt,1*) € D x ¥, set

¢ = argmingep KL (¢:p7v (1yiv")) ()
= argmax,ep F(g,9"),
and
P! = argmax,cy F(q™,¢) (12)
= argmaxycy Z Inp(y,z) (¥, 2¢) ¢ (2).

z€Z

Observe that the maximization (12) can also be understood as the minimization of a
Kullback-Leibler divergence, up to some convention on py thus justifying the name of alter-
nating minimization procedure often found in the literature (e.g. [8, 4]). Roughly speaking,
given (¢*,9?), the algorithm consists in finding ¢**! such that the error when approximating
In py (y;4?) by F(q,%") is minimal. For this optimal ¢/*!, it then finds ¢ such that the
minorizing bound F(qt*t!, 1)) of the objective function 1) — Inpy (y;-) is maximal. The first
optimization (11) has an explicit solution ¢'*' = pzy (:|y;¢"). Hence, according to (12),
argmax,cq F(¢",4¢) = argmax;cy Q(4h,¢") for all t > 0 and the “marginal” sequence
{*}+ of the sequence {(g%,%!)}+ produced by the alternating maximization procedure is an
EM path.

There exist different generalizations of EM when the M-step (7) is intractable; it can be
relaxed by requiring just an increase rather than an optimum. This yields Generalized EM
(GEM) procedures ([24]; see also [3] for a convergence result).
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2.3 Inference by VEM algorithm

Unfortunately, EM (or GEM) is not appropriate for solving the optimization problem (6)
in Hidden Markov Random Field due to the complex structure of the hidden variables Z;
in practice, the distribution pz(z; 8) is only known up to a multiplicative constant (i.e. up
to the partition function) and the domain Z is too large so that the E-step is intractable.
Alternative approaches were proposed and they can be understood as generalizations of the
alternating maximization procedures developed above. The optimization (11) can be solved
over a restricted class of probability distribution D on Z. The quantity F(g'*!,) is com-
puted with some optimal distribution ¢'*' € D and the M-step (12) remains unchanged.
This yields the Variational EM (VEM) algorithms [22]. VEM can also be introduced as
resulting from a relaxation of a convex optimization problem; the objective function py (y;-)
is re-written as the ratio of two partition functions and VEM results from the approximation
of one of them using the notion of conjugate duality in convex analysis (see [37] and [38] for
details).

[4] proved that, under mild regularity conditions, VEM converges to the set £ of the sta-
tionary points of the function F in D. Here again, generalizations of VEM can be defined
by requiring an increase rather that an optimum in the M-step (12) thus defining general-
ized VEM procedures. These relaxation methods are part of the Generalized Alternating
Minimization procedures [4].

The most popular form of VEM is the case when D is the set of the independent probabil-
ity distributions on Z so that ¢'+'(z) is a factorized distribution [[;. s ¢/*"(2;). Computing
the gradient of the Kullback-Leibler divergence with regards to ¢‘**(e;), i € S and e, € V,

K3
and setting it to zero, leads to a fixed point equation:

Vie S,Ver €V, Ingt(exr) = ci+ Y Inpgy(zly;9') {de,(z) [[ it (25)} (13)
2EZ i

where ¢; is the normalizing constant and §. denotes the Dirac mass at point e. The Markov
property implies that the right-hand side of the equation only involves the probability dis-
tributions ¢;, j € N(i). This equation can also be recovered from a different point of view.
The idea when considering a particular site ¢ is to neglect the fluctuations of the sites inter-
acting with 4 so that the resulting system behaves as one composed of independent variables.
More specifically, for all j different from i, the Z;’s are fixed to their current conditional
mean value E[Z;|y;¢!]. However, these mean values are unknown and it is originally the
goal of the approximation to compute them. Therefore, the approximation depends on a
self-consistency condition which is that the mean values that can be computed from the
approximate distribution must be equal to the mean values used to define this approximate
distribution. Then, replacing the exact conditional mean values by the mean values in the
approximation leads to a fixed point equation involving these mean values (see [6] for more
details). Existence and uniqueness of a solution to (13) are properties that have not yet
been fully understood and will not be discussed here. We refer to [36] for a better insight
into the properties of the (potentially multiple) solutions of the mean field equations. Such
solutions are usually computed iteratively (see [40] and [1], [46] and an erratum [13]). We
will discuss in Section 5 the consequences of the non-unicity of the solution when running
mean-field based procedures for image segmentation.

Despite the relaxation which may make the summation of the VEM E-step explicit
for a convenient choice of D i.e. the computation of F(gtt!,4) in (12), VEM remains
intractable for hidden Markov random fields. Indeed, for such models, the M-step (12)
decomposes, omitting the dependence in g+ in the notation, into /! = argmax,;co Q1 (6)
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and B! = argmaxg 3 Q5T (8) where

QN O) = ) Inpyz(yl%0) ¢ (2), (14)
z€EZ

FB) = > Inpz(zB) ¢ (2), (15)
zEZ

= =) H(zB)¢" (z) —InW(B). (16)
zEZ

Under additional commonly used assumptions on py|z, equation (14) can usually be solved
in closed form (see for example section 5). The issue is to solve equation (16) since the
update of 8 requires an explicit expression of the partition function or an explicit expression
of some related quantities (its gradient for example).

To overcome this difficulty, different approaches were proposed. We review in Section 3.1
some of these methods based on mean-field relaxations of EM: the relaxation applied in
the E-step is then propagated to the M-step. The theoretical contribution of this paper
states that introducing noise at each VEM iteration in such a way that this perturbation
gets to zero (in a sense to be specified) as the number of iterations increases, yields an
algorithm which has the same asymptotic behavior as VEM. This noise is defined in order
to make VEM tractable for solving inference in hidden MRF. We thus propose in Section
3.2 an example of such procedures: our stochastically perturbed version of VEM consists in
approximating the partition function W () by some Monte-Carlo sum.

3 Variational EM-like algorithms

In the first approach we consider here (section 3.1), the procedures can be viewed as the
standard EM algorithm applied with a different independent mixture model at each iteration,
corresponding to a simplified distribution. In section 3.2, the approach differs in that the
approximation method does not lead to a simple valid model but appears as a succession of
approximations to overcome successive computational difficulties.

Let 7 be the set of independent probability distributions on Z and Z, be the set
of independent probability distributions on Z such that ¢ € Z, implies that Ve, € V,
Zﬁil gi(ex) # 0; Z,. contains the independent probability distributions on Z such that the
probability that no pixels are labeled k is zero.

3.1 Mean field and Simulated field algorithms

The algorithms proposed in [6] are alternatives to VEM that propagate the approximation
gt of pyy(zly,¥") to pz(z;8). They are based on the observation that both pz(z; )
and pz|y (2z|y; ) are not available but py|z(y|z;0) is (see an illustration in section 5). Fur-
thermore, knowing py z(y|z;6), it is enough to approximate one of the unknown quantities,
either pz(z; B) or pzy(zly;¢), to derive an approximation of the other and of the joint
distribution p(y,z). The authors in [6] use then for pz an approximation obtained by ap-
plying the Bayes formula to the exact py |z and to ¢*' which approximates pyy (zly; ¢t).
It follows an approximation of pz that factorizes so that all the terms in (15) become easy
to compute. When ¢**! is obtained by solving the mean field equations (13), this results in
the so-called Mean Field algorithm of [45] but other variants are investigated in [6] based
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on other factorized distributions. In particular, when the neighbors at each site are set
to simulations instead of mean values, the algorithm becomes stochastic. The Simulated
Field algorithm described in [6] follows this idea: the neighbors are drawn at random and
set to the realization, after one iteration, of a Markov chain with stationary distribution
pz|y(-;y,¢t). Experiments in [6] and [14] show that better performance is obtained with
this latter algorithm.

An important implementation detail is related to the global optimization strategy adopted
in [6]. The fixed point equation (13) defines a functional relationship between its left and
right-hand sides. The equation is then usually solved iteratively by applying the functional
relationship until ¢**! no further moves. In [6], the idea is to immediately take into account
each change in ¢! when updating the other parameters (0, 3). It follows that the factorized
distribution ¢+ does not necessarily solve (13) (in the Mean Field case) but is the result
of only one iteration. The Simulated Field algorithm is implemented according to the same
strategy.

3.2 The Monte-Carlo VEM algorithm

The Monte-Carlo VEM (MCVEM) algorithm illustrates a novel strategy that combines
MCMC and variational methods. The algorithm consists in running a particular VEM
procedure (namely the one corresponding to equation (13)), and replacing the update of the
parameter § by the maximization of some quantity in which the partition function W(g) is
approximated by a Monte-Carlo sum. This yields the following iterative procedure.

Fix a positive sequence {v'}; such that inf; y* > 0, a sequence of positive integers {J;}¢
and a sequence of probability distributions {n*}; on Z. For the current value (q*,4?) of the
parameter:

(i) Update the g-component

t+1

¢t = argmin 7 KL (¢;pz)y (|y;¢")) -

(ii) Sample a Markov random field {Z%'}1 <<, with invariant distribution 7*(z) and com-
pute Q5 (8) = —{3,cz H(z; B)¢'*' (z) + In Wem (8)} where

Jt
oo (B) = J%Zexp (—H(zj’t;ﬁ) - lnwt(zj’t)) .
i=1

(iii) Update the 9)-component by setting 87! = argmaxy.q Qi*'(6) and

B! = argmaxg g oLt (B),

where B = {8 € B, |8 — | <~'}.

In practice, the step (i) is implemented directly by iteratively solving a nonlinear system
given by the mean field equations (13).

The step (ii) followed by the update of the S-component looks like the algorithm proposed
by [20] for maximum likelihood parameter estimation of exponential families, except that, in
[20], it is assumed that the samples are independent and identically distributed. In MCVEM,
the rough idea is that the partition function is approximated by a Monte-Carlo sampling
from some distribution 7¢, thus using an importance sampling estimator (or possibly a self-
normalized importance sampling estimator [19]). If the sampler is good enough so that a
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law of large numbers holds, limy_, oo W™ (8) = W(B), and one can expect that by choosing
J large enough, W' (8) provides a good approximation of W (). As discussed in [43], the
best choice for approximating W () is # = pz(+; 8). This is useless for our purposes since we
want a good approximation of W () whatever 3, for a given distribution 7. Nevertheless, by
choosing 7t = pz(-; B%), it can be expected that for some J sufficiently large, W7 (B) is a
good approximation of the partition function W () in a neighborhood of 3. This explains
the local optimization of Q5t'(58) and the introduction of the domain Bf. We assumed
throughout this paper that {y'}; is a deterministic sequence uniformly bounded away from
zero. One could be interested in choosing 7! as a function of the Hessian of Q’;“(,Bt); in
that case, {7'}; is a random sequence and the study of the asymptotic behavior of MCVEM
is slightly more complex. We will discuss this extension in Section 4.5.

In practice, we choose 7t = pz(-; t) and sample the Markov random field by using Monte-
Carlo Markov Chain samplers (Gibbs sampler [18], Hastings-Metropolis sampler [25], Swendsen-
Wang sampler [35], - --). Observe that W7™ (8) can be known up to a multiplicative con-
stant independent of $: this allows the choice 7t = pz(-; 3¢) which is known up to the
partition function W (B3!). Here after, we will simply write W78 as a shorthand notation
for Wpz(8°).

We have found this simple method for estimating W () easy to use and very satisfying in
our experiments that we chose as typical segmentation problems (see Section 5). However,
we are aware of possible limitations of such MCMC samplers. In practice our numerical
results could certainly be further improved by using more sophisticated methods. A full
analysis of the problem of estimating normalizing constants has been given by [17]. They
discussed several methods that are more sophisticated but also more cumbersome. In this
paper, our focus is mainly on convergence results and on showing that it is advantageous to
combine variational and MCMC methods. We did not investigate further the possibility of
using better samplers.

Due to the simulation step, MCVEM is a stochastic algorithm. A difficulty, when dealing
with random sequences {(¢*,%?!)}: is to guarantee the almost-sure boundedness. This can
be done by a simple modification of the iterative scheme MCVEM, as described in [15] for
the stabilization of the Monte-Carlo EM: let {C'}; be a sequence of compact subsets such
that for any ¢ > 0,

ct ettt L x ¥ =Jc. (17)
>0

Roughly speaking, it consists in introducing a variable 7* which counts the number of re-
projections from time 0 to time ¢ (77 = 0). At iteration ¢+ 1, the candidate (¢**!, 1) has
to be in the compact C™'; otherwise, the sequence {(qf, ")}, is reinitialized: (g‘+!,!*+1) is
replaced by (¢°,4°), and 71 = 7t + 1. A detailed algorithmic description can be found
in [15].

4 Convergence theorems for stochastically perturbed VEM

algorithms

We first address the convergence of a generalized VEM algorithm: in this generalization, the
update of the 3-component is done by local optimization on the domain B! of the function
B+ QL(B), while VEM requires a global optimization. We show that the key property
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for convergence is the existence of a positive Lyapunov function (see Appendix 8 for a
definition), namely the function L = exp(F') where F is given by (9). Unfortunately, due to
the introduction of a perturbation at every iteration of the (generalized) VEM algorithm,
this function is not a Lyapunov function for MCVEM. To overcome this drawback, a result
of interest is the following limit: for any compact set K in 7, x ¥,

11?’1 |L(qt+17'¢t+1) - L(qt+15 ¢t+1)| ]I(qi,lllt)EK: = 07 (18)

almost surely when the perturbation is stochastic, where (qt*1,4!*1) results from one iter-
ation of the perturbed algorithm and (g**!,**!) results from one iteration of generalized
VEM when both the algorithms are started at (gt,?!). [15] proved that when this limit
holds, the perturbed algorithm and the exact one have the same asymptotic behavior (un-
der additional regularity conditions omitted at this level of the exposition). Condition (18)
means that the perturbation vanishes along the compact path, when measured in terms of
the error induced on the Lyapunov function; as a consequence, the perturbed algorithm
inherits the effect of the Lyapunov function and converges to the same limit set as the orig-
inal (unperturbed) generalized VEM algorithm. This sufficient condition is adapted from
results on perturbed iterative random maps [15]. When applied to MCVEM, we will show
that this condition is nothing more than a condition on the Monte-Carlo approximation:
if the fluctuations of the Monte-Carlo approximation of W(8) by W8 are well enough
controlled (in a sense to be specified) and the number of simulations J; goes to 400 when
t — +o0o at a rate depending upon the control, then MCVEM and VEM have the same
asymptotic behavior.

Condition (18) requires a compact path : we extend the stabilization procedure in [15] to
the present framework. When applied to MCVEM, this yields the re-projection algorithm
derived in Section 3.2; we show that the number of re-projections is finite almost-surely, so
that the stable MCVEM path remains compact and stable MCVEM and MCVEM have the
same asymptotic behavior. This is our second result of convergence.

While the condition (18) applies to any (stochastic) perturbation of generalized VEM, we
only consider MCVEM for clarity: we derive sufficient conditions on the model and on the
approximation ensuring convergence of stable MCVEM. We detail the proofs and give the
extension of the results by [15] on iterative random maps in Appendix 9, so that convergence
results for any other perturbation of VEM can easily be deduced from the present work.

This section is organized as follows: we start with formulating sufficient conditions on
the model (paragraph 4.1) and on the Monte-Carlo approximations (paragraph 4.2). We
then state a theorem on the convergence of the generalized VEM algorithm (paragraph 4.3)
and a theorem on the convergence of the MCVEM algorithm (paragraph 4.4). The central
result of this section is Theorem 2 that addresses the convergence of the MCVEM paths. It
is the main original theoretical contribution of this paper. The proofs of these theorems are
postponed in Appendix 8 and 9. Possible extensions are briefly discussed in section 4.5.

4.1 Model assumptions
We assume that

A1l Z is finite, BCR, © CR™ and ¥ = © x B.

A2 (i) The function 9 = p(y,z)(y,2; %) is continuous on .
(ii) For all ¢ € Z,., the set argmaxycg Y ,cz Py|z(¥|2;0)q(z) is not empty.
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(iii) For any z € Z, B+ H(z;f) is twice-continuously differentiable on B.
The function 8 = —{>_, .z H(z; 8)q(z) +1n W ()} is strictly concave and admits
a unique maximum in B for any ¢ € 7.

(iv) The function B — —{3°,.; H(z;B)q(z) + mW¥(B)} is strictly concave and
admits a unique maximum in B, for any ¢ € Z,., any integer J and any b € B.

Define Lon Z x ¥,
L(g, ¥) = exp(F(q,%)), (19)

where F is given by (9).

A3 For any M > 0, the level set {(¢,%) € Z, x ¥, L(g,¢) > M} is bounded.

Under A1 and A2(i), L is a continuous function and the level set is a closed subset of
Z, x ¥. Hence, it is compact in Z, x ¥. Define

L£={(¢",v*) €L, x ¥,q" € argmin 7 KL (¢;pz v (-ly;¥*)) and ¢* € argmax,, o F(¢*,¢)} .

(20)
We will prove that under A1, A2(i) and A3, L is the solution set of the generalized VEM
algorithm and of the VEM algorithm (see Theorem 1 below; see also [4, Theorem 2], where
the same result is obtained under different sufficient conditions). When L is continuously
differentiable on Z, x ¥, the solution set of VEM (and of generalized VEM) can also be
characterized as the set of the stationary points of L in the interior of Z, x ¥ (Appendix 8,
Remark 6).

A4 Assume either that

(i) the set L(L) is compact.
(ii) for all compact K C Z, x ¥, L(K N £) is finite.

Under A1-A2(i), L is continuous on Z, x ¥ and £ is a closed subset of Z, x ¥. Hence, A4
is verified whenever L(L£) is bounded.

4.2 Monte-Carlo approximations

Under A2(iii) (resp.A2(iv)), MCVEM updates the S-component by computing the root of

Ji ;
‘ w(z’; B, ")
B ) VeH(z8)q"" (2) — ) VsH(2'; B) :
g ; YLy w(@r; B, 5
where w(z; 8,b) %. Hence the expectation VInW(B) = — 3", VgH(z; ) pz(z; B) is

estimated, in MCVEM, by importance reweighting the output {Z%!}; from the chain with
stationary distribution pz(-; 4%). The update of the 3-variable thus follows the MCMCML
algorithm proposed by [12] for the estimation of fully observed Markov Random Field prior
parameters.

We formulate sufficient conditions that imply a local uniform control of the difference be-
tween VInW and its Monte-Carlo approximation. Let Ey g be the expectation on the
canonical space associated to the Markov random field with initial distribution A and sta-
tionary distribution pz(-;3). Let Cl(C4) be the closure of the a-neighborhood of some
(bounded) set C.
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A5 There exist r > 2 and a probability distribution A on Z such that for any compact
subset C C B and any a > 0,

sup sup JT/QIE,\J, HVg{ln W“’(ﬂ) —1In W(ﬂ)}ﬂ
BECI(Ca),beC J2>1

is finite.

A5 is verified whenever

wup sup I By [|W4(8) - WB))
BECI(Ca),beC J>1

|

sup sup J72 By [|Va{W(8) - W(B)}
BECI(Ca),beC J>1

is finite and

]
is finite. Observe that both of these integrals are on the form

T

J
Exy ||D_{H(Z78,0) =Y H(= 8,b)pz(z:0)}| |,

=1

where pz(z; b) is the invariant probability distribution of the Markov chain {Z7}; with initial
distribution A. Sufficient conditions implying this uniform control of the L"-norm difference
for a Markov chain can be found in [15] (see section 5 for an example). Finally, we assume
that the number of simulations {J;}; increases at a rate such that the larger r, the weaker
the rate.

A6 {J};is a positive integer-valued sequence such that )", Jt_r/ ? < 00 where r is given

by A5.

We refer to section 5 for an illustration of a suitable choice of {J;} in practice.

4.3 A convergence theorem for some generalized VEM

Consider the generalized VEM algorithm that replaces, at each iteration, the global opti-
mization in (16) by a local one on Bt.

Theorem 1 Assume A1, A2(i)-A2(iii) and A3. Fiz a positive sequence {v'}; such that
inf; vt > 0 and let {(¢*,v*%)}: be the generalized VEM path started at (¢°,v°) € T, x .
The sequence {L(q*,4!)}s converges monotonically to L* = L(q*,1*) for some (¢*,v*) € L.
Furthermore, the sequence {(q*,%!)}: converges to the set {(¢q,%) € £, L(q,) = L*}.

Our generalized VEM procedure applied with 4% = +o0o is the VEM procedure, so that
Theorem 1 also addresses the convergence of VEM. Theorem 1 shows that the generalized
VEM algorithm has the same asymptotic behavior as the VEM algorithm, since the limit
set does not depend upon the sequence {7'};. In addition, this result coincides with [4,
Theorem 2, assertion (1)] (the assertions (2) and (3) of this reference do not apply to VEM).
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Our assumptions imply the conditions in [4]: under A1, A2(i)-(iii) and A3, the sequence
is compact, this compact is stable under action of the point-to-set map associated to each
iteration of VEM and this map is closed (see e.g. [4, Definition 1]) so the conditions of [4,
Theorem 2] are verified. Our conditions, relative to the quantities defining the model, are
more explicit than the conditions in [4] and easily checked in the considered applications
(see Appendix 10).

Even though Theorem 1 can be a consequence of [4, Theorem 2, assertion (1)], we provide
a detailed proof in Appendix 8. We indeed establish auxiliary results (closedness of the
limit set £, existence of Lyapunov functions, - --) that are crucial in the proof of Theorem 2
which is the original theoretical result of this contribution. These auxiliary results are not
provided in [4].

4.4 An almost-sure convergence theorem for the stable MCVEM

algorithm

The convergence of the random trajectories is established almost surely with respect to P,
the probability on the canonical space associated to the trajectories of stable MCVEM,
started at (¢°,¢°), given the initial distribution X of the Markov random field, the sequence
of compact sets {C'}; satisfying (17) and the sequence {y'};.

Theorem 2 Assume A1l to A6. Let {C'}; be a sequence of compact sets satisfying (17),
(q°,4°) € Z, x C° and X be given in A5. Fiz a positive sequence {v'}; such that inf; v¢ > 0.
Consider the stable MCVEM random sequence {(q*,4")};. Then,

i) (a) limy 7t < 0o w.p.1 and limsup, |[¢!| < oo w.p.1.
t

(b) {L(g*, ")} converges w.p.1 to a connected component of L(L).

(ii) If in addition L(LNCL({(¢%,v!)}¢)) has an empty interior, then {L(q",¥')}s converges
w.p.1 to L* and {(q*,4?)}; converges to the set L~ = {(q,%) € L, L(q,v) = L*}.

This theorem states that for almost all trajectories of stable MCVEM, the number of
re-projections is finite and the path remains in a compact set. Furthermore, we deduce
from Theorems 1 and 2 that when L(L N C1({(¢%,%?!)}:)) has an empty interior, the stable
MCVEM algorithm, the generalized VEM algorithm and the VEM algorithm have the same
asymptotic behavior: in all cases, the sequence {L(q?,%*)}; converges to L* = L(g*,v¢*)
for some (g*,%*) in the solution set £, and the path {(¢%,%%)}; produced by the stable
MCVEM path, the generalized VEM one or the VEM one, converges to some subset of
L. For example, if A4(ii) is verified, L(£ N C1({(¢%,4!)}+)) is finite thus having an empty
interior.
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4.5 Extensions

Finite state space Z: we assumed that the state space Z of the hidden MRF is finite for
simplicity. Nevertheless, A1 and A2(i) can be replaced by the conditions that KL and L
are continuous functions on Z, x ¥ and the partition function W is continuous on B.
Deterministic sequence {v'}; in Theorem 1: the convergence theorem is stated for a given
deterministic sequence {7'}; such that inf,y* > 0. This condition is crucial in the proof
of Theorem 1 since it ensures a minimal growth of the Lyapunov function outside compact
sets (see Appendix 8.2 and the use of T*). Nevertheless, ¢ could be chosen ’on line’, as a
function of the algorithm. For example, a natural choice is to determine 4* as a function of
the Hessian V2QLT!(4?), provided that inf; ¢ > 0.

Deterministic sequence {7v'}; in Theorem 2: here again, one could choose 7! as a function
of V2QL!(BY); in that case, {y'}; is a random sequence. The present proof of Theorem 2 is
not valid anymore and conditions ensuring the sequence {y'}; is close in some sense to the
sequence computed from the exact Hessian V2 Q5T (%) have to be assumed. Details of this
extension are left to the interested reader.

5 Application to image segmentation

In this section, we turn more specifically to the applications. We consider simple models and
use a K-color Potts model as the distribution of the hidden fields. Each z; takes one of K
states, which can represent K different class assignments. Each of them is represented by a
binary vector of length K with one component being 1, all others being 0. The distribution
of a K-color Potts model is defined by,

pz(z;8) = W(ﬂ)_lexp(ﬂz,zfzj),

i~vj

where the notation i ~ j represents all couples of sites (7, j) which are neighbors. Parameter

B is a spatial parameter that controls the strength of the interaction between neighboring

sites. In a segmentation framework, the Potts model acts as a regularizing (smoothing)

term. The lower (3, the weaker the regularization. The factorized conditional distribution

py|z(y | 2; 0) is of the form py |4 (y | 2z; 0) = [ fi(ys | zi; 6) where f; is a univariate
i€s

Gaussian distribution: if z; is in class k, f; is the Gaussian distribution with parameters
pr and oy, pr and o being the mean and the standard deviation. The parameter to be
estimated is then (8, 6) with 6 = {(ur,0r),k=1,...,K}.

For the simulation step of MCVEM, we use the Gibbs sampler. For such models and this
sampler, we show in Appendix 10 that the various assumptions are satisfied so that the pre-
vious convergence results applied : any MCVEM path converges, and the set of the limiting
values is the set of the limiting values of VEM. Furthermore, assumption A5 is actually
satisfied with any initial distribution A and any r > 2. Hence, there are no restrictions for
the initialization of the Markov chains at each iteration, and suitable choices of J; are any
polynomially increasing sequences.

We compare MCVEM to different algorithms when applied to parameter estimations and
image segmentations. We first run an EM procedure (hereafter called ind-EM), assuming
that missing data are independent, in order to illustrate the gain in taking into account
the spatial information. The following other procedures are based on models assuming
dependencies. As a typical simulation method, we run a kind of Monte-Carlo EM (hereafter
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MC2-EM) where two Monte-Carlo approximations are introduced at each iteration. The first
one corresponds to the MCEM algorithm [39] and the second one makes the M-step tractable
by approximating the partition function W () as in MCVEM. By combining the convergence
results of MCVEM (Section 4) and of MCEM [15], it can be established that MC2-EM
converges almost-surely to the stationary points of the incomplete log-likelihood In py (y; %)
and due to its stochastic nature, converges to a (local) maximum [15]. MC2-EM has a much
higher computational cost but it provides reference solutions to assess the proximity of the
MCVEM limiting values to the maxima, of the incomplete log-likelihood. We then compare
to the Mean Field algorithm of [6] (see Section 3.1), as a typical deterministic variational
algorithms. Finally, we run two other algorithms designed to overcome the intractability
of EM in hidden MRF, the Gibbsian-EM [7] that combines Monte-Carlo techniques and
pseudo-likelihood approximation and the Simulated Field of [6] (see Section 3.1). The latter
two can also be seen as combinations of simulations and deterministic approximations but
are not part of the novel strategy we propose. No convergence results are available for them.

In addition to parameter estimation, the way the segmentation task is carried out in
the different procedures can varies. For MCVEM, Mean Field and Simulated Field algo-
rithms, images are restored by using the MAP (Maximum a Posteriori) principle based on
the factorized distribution ¢**! that approximates the conditional distribution pzy (-|y; ¢*).
Gibbsian-EM and MC2-EM both generate realizations of the conditional field and the im-
age reconstruction is performed using the MPM decision rule (Maximizer of the Posterior
Marginal, [23]). Note that for the first three algorithms, the MAP and MPM rules coincide
when applied to ¢! since ¢t is a factorized distribution.

For the Potts models, we assumed a first order neighborhood (four neighbors per pixel). For
the stochastic algorithms (i.e. all but ind-EM and Mean Field), we report the mean values
of the estimates along the random path, where the mean is over the iterations after the
burn-in period. Regarding the segmentation results, the error rate (i.e. the proportion of
misclassified pixels) corresponds to the mean error rate computed after the burn-in period.

5.1 Practical implementation of MCVEM

Prior to any performance comparison, we discuss implementation details of MCVEM such
as the initialization of the Markov chain at each iteration, the choice of the simulation
scheme J; and of the sequence {y'};. As an illustration, the algorithm is run on a 133 x 142
noise-corrupted 2-color image (Figure 10). We used Gaussian densities with class-dependent
variances so that the true noise parameters are (u1,01) = (51,130) and (u2,02) = (255, 300).
In Figure 1, we plot (u!,ot,8?) as a function of the number of iterations when the Markov
chain is, at each iteration, initialized at the same point (solid line) or at the last sample
drawn at the previous iteration (dot line). The considered .J; is J; ~ (2t)!'2. In the two
cases, the results, in terms of parameter estimation and segmentation, are similar but the
convergence when using the first strategy is very slow. The same observation holds for other
choices of J; so that in what follows, only the second strategy will be kept.

We then consider different schemes for J;, namely J; ~ (2t)101, J; ~ (2¢)1-3 and J; ~ (2t)%5.
All schemes result in a convergence to the same value of 8. A zoom on the evolution of the
successive § values (Figure 2) shows that the value of 8 in average is not sensitive to the
scheme but that its variation is all the smaller as the rate is higher (a phenomenon already
mentioned in [15]). The mean values, computed when the curves stabilize, are equal to 0.93
while the standard deviations are respectively 1.7 10e—3, 0.9 10e—3 and 0.6 10e—3. Similar
behavior was observed on other images suggesting not surprisingly that limiting the number
of simulations has a cost in that it produces paths with higher variations. In the following
developments, we will consider J; ~ (2t)%-3.
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We then study the robustness of MCVEM to the choice of the starting parameter values

and to the choice of yv. We consider in turn three sets of parameter starting values. The
means and variances are first set to the empirical means and variances corresponding to a
kmeans classification (displayed in Figure 10) and then to those corresponding to a 2-color
classification obtained by simple thresholding of the image pixels values. For the first case,
two values of 8 are considered, § = 1 and 8 = 5 while for the second case, only g8 = 5
is used. For MCVEM, + is constant over the iterations, v¢ = v and is respectively set to
51072 and 5 1072 for 3 = 5 and 8 = 1. The path {3%}; of successive estimations of 3 is
plotted in Figure 3. We observe that the estimation of 8 = {(ux,0r),k=1,..., K} is well
performed whatever the algorithm. The plots show that the limiting behavior of MCVEM
(dash-doted lines) does not depend on +, at least when + is small enough. For large values
of v (say v = 0.1), the sequence {3!}; may oscillate for a long time between two values of
the form § and 8 ++. This illustrates the fact that W7 8 can be considered as a reasonable
approximation of W () in a neighborhood of 3!, and justifies the introduction of a local
optimization domain B! in the update of 3. This local optimization explains the linear path
of MCVEM in the first iterations. These plots illustrate that MCVEM is very robust to
initialization.
For comparison with the two other variational methods we consider, we also run the Mean
Field and Simulated Field algorithms and show the results on the same figure 3. It appears
that the starting value is crucial for the limiting behavior of Mean Field. On some other syn-
thetic images (not shown here), Mean Field actually fails to converge even with reasonable
initializations such as those provided by running a k-means algorithm. The trajectories of
Simulated Field do not converge to some fixed limiting value but the behavior of the differ-
ent trajectories is similar. The same kind of phenomenon was already pointed out in [2] for
the Restoration-Mazimization algorithm close in spirit to the Simulated Field algorithm. We
believe that convergence of the Simulated Field algorithm has to be understood in a different
way. An approach similar to what is done for the so-called Stochastic EM algorithm is more
appropriate (see [28, 5]). The sequence {(g*, ")}, is a realization of a Markov Chain and the
asymptotic behavior of this sequence is related to the ergodic behavior of this Markov chain.
Hence, averages of the parameters should converge and this suggests to replace the current
implementation of Simulated Field algorithm by an averaging procedure [29]. However, such
extensions are beyond the scope of this paper and we run the algorithm as described in [6].
Despite the variations in the estimation of the spatial parameter 8, the corresponding seg-
mentations are quite stable: the mean error rate is in the range (2.86%, 2.92%) for MCVEM
(resp. (2.82%,3.10%) for Mean Field and (3.42%, 3.65%) for Simulated Field).

We finally discuss how the possible non-unicity of ¢t*!, the mean-field approximation of
the conditional field pz v (-ly;'), may affect the resulting image segmentations. To that
goal, we compute the mean error rates for the segmented images when 3 is assumed to be
known but 0 = {(ux,0r),k = 1,...,K} is unknown. On Figure 4, we plot these mean
error rates versus 3 for two different starting points corresponding respectively to a kmeans
and a thresholding classification as above. These plots show that for large values of g,
the segmentation is greatly dependent of the initial segmentation. In addition, the curves
give an idea of the 3 value that corresponds to the minimum error rate. For MCVEM and
Simulated Field, this naive computation is not far from the estimates obtained by running the
full algorithms when all the parameters (3,6) are unknown (these estimations are reported
in Table 4). MCVEM converges to a limiting value and Simulated Field fluctuates around
a mean value such that the segmentation is not affected by the non-unicity of ¢t*t!. This is
not the case for Mean Field thus showing that the Mean Field segmentation may depend on
the implementation of the algorithm.
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5.2 Synthetic and real images

We now compare into more details the algorithms performance when applied to parameter
estimation and image segmentation. We report the estimations of 8 and 8 = {(uk,0x), k =
1,..., K} and the mean segmentation error rates when a ground truth is available. For
comparison, we also indicate in column ref. the error rates when the parameters are not
estimated but fixed to their true values if known. When given, the corresponding seg-
mentations are computed after the same fixed number of iterations (200) for each iterative
algorithm. Three types of test images are presented. Detailed comments on the results are
postponed after the description of all experiments.

The algorithms are first tested on images simulated from hidden Potts models for which
the true parameters 8 and € are known. We created 100 x 100 images by simulating 2D
K-color Potts models for K = 2,3,4 and different values of 8 (lower than the critical value
B. = In(1 + VK)), and then adding a Gaussian noise. For each set of parameters we
investigate, 20 realizations of each corresponding Potts model are simulated. We then run
the different algorithms on these 20 simulations. The results are reported in Tables 1, 2 and
3. For K = 2, the values reported are the mean and standard deviation values over the 20
runs. For K = 3,4, we observe that the estimation of the parameter 6 is always satisfying
and only the results on 3 are reported.

The following test images are noise-corrupted images corresponding to known values of
K. These images before degradation are not realizations from a known Markov field model.
The first image is the logo image described in 5.1 and shown in Figure 10. The other example
is a 128 x 128 image obtained by adding some Gaussian noise to the 4-color top left image of
Figure 10. The noise parameters are given by 6 = {(ur, o),k =1,...,4} with g = k and
o = 0.5 for k = 1,...,4. The results are reported in Tables 4 and 5. The corresponding
segmentations are shown in Figures 10 and 10.

We finally run the algorithms on real images for which a true value of K does not exist
(in real-life, it is usually part of the problem to assess its value) but for which intuition
or expert knowledge could give an indication of what would be a reasonable value. As an
illustration, the top left image in Figure 7 is a 256 x 256 image of muscle fibers, the top
left image in Figure 8 is a 76 x 91 PET image of a dog lung (see [34] for more details on
its nature and origin) and the top left image in Figure 10 is a 256 x 256 satellite image.
They have been chosen because they correspond to rather different application domains and
because non expert users can easily assess the quality of their segmentations.
More specifically, a simple histogram of the grey-levels in the muscle image shows essentially
three modes. The image contains dark color fibers which are homogeneous and more textured
lighter color fibers. The region between the fibers is also light color but homogeneous. We
chose this image to compare the segmentation results because it is relatively easy to give
an ideal segmentation for this image. We run the algorithms for K = 4 because the lighter
color fibers can clearly be divided in two groups in terms of their grey-levels. We then assess
the algorithms ability to recover the two-three types of fibers against the background. The
resulting segmentations are shown in Figure 7.
For the dog lung image, the aim is to distinguish the lung from the rest of the image in
order to measure the heterogeneity of the tissue in the region of interest. Only pixels in
this delimited area are then considered to compute a heterogeneity measure, such as a
coefficient of variation. The interpretation of the image suggests that 3-color segmentations
are reasonable. The image is constructed based on radioactive emissions from gas in the
lung. Ideally, the background should correspond to one color and two other colors should
account for the high gas density in the interior of the lung and the somewhat lower gas
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density around the periphery. The resulting segmentations are shown in Figure 8.

Figure 10 is a SPOT satellite image representing part of the Aquitaine region in France.
It contains large homogeneous regions (large fields, woods ),precise contours (rivers, roads)
and more heterogeneous areas (houses, small fields) or textured parts. Whether relevant
segmentations should focus on contours or regions may depend on the application in mind.

All tables show that ind-EM differs from the other algorithms: the estimates are some-
what poor (see e.g. Table 5) and the error rates are much higher. The gain in taking into
account spatial dependencies clearly appears.

We observe that the estimation of the means and standard deviations {(ug,o%),k =
1,... K} is an easy task in the sense that all algorithms (except ind-EM) have similar good
performances. We then focus our comments on the estimation of the spatial parameter 3
which is more critical. When the true value is lower than the critical value 8., MCVEM
seems to underestimate § (see Tables 1-3). More generally, MCVEM provides the lowest
estimates, while Mean Field provides the highest ones. The Mean Field algorithm system-
atically overestimates §. It is quite difficult to determine which approach is the best, since
the value of the spatial parameter § acts upon the image segmentation. Nevertheless, the
results of MC2-EM which converges to the (local) maxima of the incomplete log-likelihood
In py (y;%) can be taken as reference values. It appears that MCVEM and MC2-EM are
very close (see Tables 5 and 4) while Mean Field and Simulated Field and Gibbsian-EM are
of a different kind. For the § estimation, Simulated Field is close to Gibbsian-EM while
Mean Field is the most atypical. Despite Simulated Field and Gibbsian-EM rely on different
tools (mean-field based variational technique on one hand, pseudo-likelihood approximation
on the other hand), they are numerically close. We believe that, due to the ergodicity
of the discrete-valued Markov chain which admits the conditional field pzy as invariant
distribution, they have indeed very similar asymptotic behaviors.

In terms of segmentation results, MCVEM leads to very satisfying error rates: for the
hidden Potts images, the error rates are close to the minimal error rates (achieved with
MC2-EM and Gibbsian-EM) even though the 8 estimate is poorer. The algorithms divide
into two groups: on one hand, MCVEM and MC2-EM which provide lower values of 8 and
consequently images with possibly more isolated points (Figures 10 and 10); on the other
hand the Mean Field, Simulated Field and Gibbsian-EM algorithms that provide larger 3
estimates and smoother images. It appears clearly, e.g. on the logo image, that MCVEM
tends to better preserve fine structures, the continuous lines in the original image being
less interrupted in various locations (see also the satellite image). It performs slightly bet-
ter than Simulated Field and Mean Field. The triangle image with no such fine structures
cannot illustrate this ability of the algorithm. However we observed the same phenomenon
on various other synthetic images with fine structures. On the contrary, when large ho-
mogeneous area exists, MCVEM and MC2-EM segmentations are not smooth enough and
isolated points are still visible, producing consequently slightly higher error rates (Figure 10
and Table 5). Note that in practice such points are not an issue since they can be easily
dealt with afterwards using some simple morphological operator leading to potentially fur-
ther improved error rates. For example, application of a median filter on the MCVEM image
reconstruction improves the error rate, 2.73% instead of 2.89% for the logo image (Figure
10, bottom right), 0.63% instead of 0.81% for the triangle image (Figure 10, bottom right).
Similar conclusions can be drawn from the real image experiments. The MCVEM, Simulated
Field, MC2-EM and Gibbsian-EM algorithms perform similarly well while the Mean Field
algorithm has trouble segmenting some of the light color fibers correctly (Figure 7). For the
dog lung image (Figure 8), the MCVEM and M(C2-EM segmentations are not as smooth
when considering the light grey region but provide a more accurate segmentation of the
white region. For instance, the segmentation of the upper and central parts of the right lung
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looks better. All spatial algorithms provide however smoother segmentations than kmeans
and ind-EM. For the Simulated Field algorithm, we report the segmentations corresponding
to the implementation of [6] as specified in Section 3.1; however, for these two images, 200
iterations are not enough for convergence. We observe that when carrying out more simu-
lations at each iteration or similarly when performing more iterations, the Simulated Field
algorithm tends to loose the small regions (e.g. the central and background small regions in
Figure 8) so that the segmentations are then very close to the Gibbsian-EM ones.

As mentioned earlier, for each algorithm, the displayed segmentation is computed using
the current state of the algorithm after a fixed number of iterations. The error rate com-
puted at each iteration, after the burn-in period, stabilizes for Mean Field and MCVEM. For
example, on the logo image of Figure 10, the error rate is almost always constant. For fixed
values of the parameters, the MCVEM segmentation procedure does not require simulations
any more and is equivalent to the Mean Field segmentation procedure. This is not true
for the MC2-EM, Gibbsian-EM and the Simulated Field procedures which remain stochastic
since even for fixed values of the parameters, the segmentation step still relies on samples
drawn from the conditional field. Nevertheless, for MC2-EM and Gibbsian-EM, the error
rate has a small variation along the path (4 10e—2 for the logo image) while the Simulated
Field algorithm provides the most unstable procedure since, as already mentioned, its paths
do not converge. For the logo image, the error rate variation is 11 10e—2. More complex
segmentation rules could be considered to overcome this instability. For example, the dif-
ferent segmentations that can be computed along the iterations can be seen as successive
votes, and the final image reconstruction based on the mean value of these votes. For the
logo image, this yields for resp. the Simulated Field, the Gibbsian-EM and the MC2-EM
algorithms a mean error rate of 3.18%, 2.94%, 2.83% and a lower variation along the path
(resp. 2.40 10e—2, 1.70 10e—2 and 1.25 10e—2).

6 Discussion and future work

In this paper, we proposed a new algorithm to carry out Markov model-based segmentation
in practice, combining variational and MCMC ideas. This combination allowed us to prove
the first, to our best knowledge, convergence result for this kind of algorithms. This result
extends to a whole new class of algorithms. It is based on the idea of seeing the algorithm
under study as a perturbed version of a reference algorithm for which convergence results
are well established and usually based on a well identified Lyapunov function. For instance,
this applies when the model complexity leads to an exact deterministic algorithm which is
intractable and must be replaced for practical implementation by an approximate version.
The key idea in our contribution, is that although a Lyapunov function does not usually exist
for the perturbed algorithm, it is possible to control the distance to this Lyapunov function.
Studying its limit set is then made possible through the definition of a set such as £ in
Section 4.1, which defines the algorithm solutions as satisfying an optimality criterion. These
observations open the way to a general approach to implement intractable (deterministic)
algorithms in practice through adequately designed stochastically perturbed versions. In
the hidden Markov random fields context, a natural development of the present work would
then be to further study other noisy EM versions with preserved limit sets.

As regards the MCVEM algorithm we focused on, we showed that in addition to garan-

teed convergence properties, it provided good segmentation results and compared favorably
to other approximated algorithms. Various experiments pointed out that MCVEM was close
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to the MC2-EM algorithm based on the MCEM algorithm which is known to converge to
local maxima of the incomplete log-likelihood. MCVEM is then clearly to be favored since
it has a much lower computational cost than MC2-EM. In particular, the segmentation step
in MCVEM is simple and does not require the additional computations needed in MC2-EM.
Also MCVEM tends to provide adequate regularizations through values of § which are not
too large and has this way the ability to preserve fine structures. This characteristic can
also be responsible for misclassified pixels but they mainly correspond to isolated points.
These points can be easily dealt with using some straightforward postprocessing procedure.
The performance of MCVEM is then very satisfying, all the more so as the results could be
further improved by more focus on the use of better sampling techniques. For illustration
purpose, we restricted to a simple Gibbs sampler but investigating the use of more sophisti-
cated methods (e.g. [33, 16]) would be worthwile. More generally, an alternative approach
of the sampling problem would be to consider stochastic approximation techniques such as
presented and used in [42] and [10]. We suspect the same kind of convergence results could
follow using the same idea of controlling the distance to a reference Lyapunov function.

In this paper, comparison with other existing EM-like procedures showed that the rela-
tionship between our algorithm and the former was not obvious. Our study revealed three
groups. MC2-EM and MCVEM distinguish from the Gibbsian-EM of [7] and from the Mean
Field and Simulated Field algorithms of [6]. Simulated Field does not converge in the same
sense and is closer to the Gibbsian-EM. It tends to produce smoother segmentations but
more unstable trajectories. Mean Field has a third specific behavior. Its convergence is
not always guaranteed and when observed, the resulting segmentations are very smooth.
Further comparisons and investigations would be useful. We believe this first effective step
opens the way to a better understanding of the behavior and theoretical properties of a lot
of Markov model based algorithms. In particular, analysing how simulation steps should
be incorporated so as to interact advantageously with deterministic approximations seems
promising.

7 Acknowledgments

The authors would like to thank Juliette Blanchet for help with some experiments, Marc
Sigelle and Olivier Cappé for fruitful discussions.

8 Proof of Theorem 1

A map T from points of 7, x ¥ to subsets of Z,. x ¥ is called a point-to-set map on 7, x .
Let T* be the point-to-set map on Z, x ¥ in the (¢ + 1)-th generalized VEM iteration:

(§,7) € T'(§,v) where ¢ = (0, 3) iff
qe afgminqu,KL(fI;pZ\Y(‘W;7/;))7

6 € argmaxyco Z Inpy|z(ylz; 0) q(z),
z€EZ

B = argmaX,e( o—fi<yey D InP2(zib) 4(2).
z€Z
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Let T* be defined as T with +* replaced by inf; 4* in the update of the S-component. Under
A1l and A2(i)-(iii), T and T* are well-defined.

8.1 Auxiliary results

Definition 3 Let {T*}; and T* be point-to-set maps on I, x ¥ and let L C I, x ¥. L :
T, x¥ — Ry is a Lyapunov function relative to ({T}, L) iff for allt, (a) for anyu € 7, x ¥,
v € T'(u), L(v) > L(u); (b) for any compact set K C (I, x )\ L, inf,ex vert(uy{L(v) —
L(u)} > 0.

This definition is more restrictive than the definition given for example in [44] and [4]: in
these contributions, the condition (b) is substituted by the condition {L(v) — L(u)} > 0 for
all (u,v) such that u ¢ £ and v € T?(u).

Lemma 4 Assume A1, A2(i)-(iii) and A3. The function L is a positive continuous Lya-
punov function relative to ({T%};, L) and to (T*, L).

Proof: Under Al and A2(i), L is continuous on Z, x ¥. From (8) and the definition of
¢, F(g"th, 4" > F(¢',9"). By definition of ¢!, F(g"th, ¢'+h) > F(¢"*',¢"). Hence,
for any t, F(g"tt,¢ttt) > F(gt,¢t). If (¢, 4?) ¢ L, the inequality gets strict. We now
prove that this inequality remains strict, uniformly when v € K. Since L is continuous,
it is sufficient to prove that T*(K) is in a compact subset of Z, x ¥. If (g,¢) € T*K),
(7,%) € {(g,%) € I, x ¥, L(q,v) > infx L} which is a compact set of Z, x ¥ by A3. This
concludes the first part of the proof. The second part, relative to T is along the same lines
and is omitted. O

Lemma 5 Under A1 and A2(i)-(iii), L is a closed subset of T, x U.

Proof: The functions (g,v) = KL(g;pzy (-ly; %)) and (¢,¢) = F(g,%) are continuous on
Z, x U. It is thus trivial to verify that any point (g,) € Z, x ¥ which is the limit point of
a converging L-valued sequence, is in L. O

Remark 6 Under additional regularity conditions on the model, Lemmas 4 and 5 can be

proved with L replaced by the set of the stationary points of L in the interior of T, x W.

8.2 Conclusion

L(q°,4°)} is a compact subset of Z. x ¥; since

Under A3, K = {(¢,%) € Z, x ¥, L(q, ) Y) >
- > L(g°,9Y), {(¢*,¥")}+ is in K and the generalized VEM

L(g+, vt > L{gvY) > - > L(g
path is compact.
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The first claim of Theorem 1 is that the sequence {L(q?,%*)}; converges monotonically to
L*. This comes from the existence of a continuous Lyapunov function and can be proved
along the same lines as the proof of [44, Lemma 4.1. p.89]. The details are omitted.

We now establish the existence of some (¢*,4%*) € £ such that L* = L(g*,v*). Define the
set A = L(LNK), which is compact in Ry since L is continuous on Z, x ¥, K is compact in
Z. x ¥ and L is closed in Z,, x ¥ (Lemma 5). Let a > 0 and set A, be the a-neighborhood
of the closed set A in L(Z, x ¥). As A is compact, A = ﬂa>0 Ay. Since A, is a finite
union of disjoint bounded open intervals, there exist n, > 0 and two increasing real valued
sequences {aq(k)} and {bo(k)}, 1 <k < ng, such that

Ae= J  (aa(k),ba(R)). (21)

kE{l,"' 7"(1}

L71(A,) is an open neighborhood of £ N K, and we define
€ = inf (L) — L(w)}. (22)

wEK\L~1(A),vET*(u)
Since K \ L~1(A,) is a compact subset of 7. x U, ¢, is positive by Lemma 4. By definition
of T*, L(g"t',¢™!) > L(g",4*") where (g1, 9™) € T*(¢%,4"); together with (22),
this implies

(a",9") € K\ L7 (Aa) = L(¢",9") = L(¢',¢) > ea. (23)

Define k% = min{l < k < ng,limsup, L(¢%,9') < by(k)} and I(a) = (aq(kX);ba(kX)).
Since {L(g*,*)}; is bounded, (23) shows that {L(q?, ")} is infinitely often (i.0.) in A,
and since A, is a finite union of intervals, {L(q?,%")}; is i.0. in an interval of (21); thus,
limsup, L(¢', %) = lim; L(¢*,v?) = L* € I(a). Let 0 < a; < az. By definition, A,, C
Agsy, thus I{aq) C I(az) and L* € I(a1) N I(az). Let {an}n be a decreasing sequence
such that lim, o, = 0; then L* € ), I(ay). {I(an)}n is a decreasing sequence of intervals,
N, I(an) is an interval and N, I(an) C L(L N K). Hence, {L(¢*,¢")}+ converges to this
interval, thus proving that L* = L(g*,9*) for some (¢*,¢*) € L.

Finally, the convergence of {(¢%,%%)}; to a subset of £ is a consequence of (23).

9 Proof of Theorem 2

The proof of Theorem 2 mimics the proof of [15, Theorem 3]. To that goal, we adapt the
deterministic results by [15, Section 5.1] in order to take into account the fact that in the
present contribution, (a) VEM map and MCVEM map are point-to-set maps, and (b) we
have a family of “exact” map {T?};. We start with stating these modified deterministic
results (Appendix 9.1) and prove Theorem 2 in Appendix 9.2.

9.1 Deterministic results

The following three propositions are respectively adapted from [15, Propositions 9,10,11].
The first proposition provides sufficient conditions for the convergence of some perturbed it-
erative maps on U, which approximate in some sense a sequence of maps having a Lyapunov
function. The U/-valued path of the “perturbed” algorithm is assumed to be compact. The
second proposition proves that this compactness assumption can be replaced by a recur-
rence condition whenever there exists a Lyapunov function that controls excursion outside
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the compact sets of . As a corollary, the third proposition shows that the stabilization
procedure derived in Section 3.2 ensures the compactness of the sequence defined by the
perturbed maps.

Proposition 7 Let U C R™, K be a compact subset of U and L C U such that LN K 1is
compact inU. Let {T*}; and T* be point-to-set maps on U. Let L be a continuous Lyapunov
function relatively to ({T%}4, L) and to (T*,L) such that for all t > 0 and u € U, there exist
vttt € TtH(u) and w € T*(u) and L(vi*t!) > L(w). Assume that there exists a K-valued
sequence {u'}y such that there exists v!*! € Tt(u') and limy |L(utt!) — L(v**1)| = 0. Then
{L(ut)}; converges to a connected component of L(LNK). If L(LNK) has an empty interior,
{L(u')}s converges to L* and {u'}; converges to the set L1« NK where Lp« = {u € L, L(u) =
L*}.

Proposition 8 Let U C R™, {Tt}; and T* be point-to-set maps on U and L C U. Assume
that (S1) there exists a continuous Lyapunov function L relative to ({T'}+, £) and to (T*, L)
such that (a) for oll M > 0, the level set {u € U,L(u) > M} is compact in U, (b)
U= U,sint, p{u €U, L(u) > n}, (c) for allu € U, there exist v'+! € T'(u) and w € T*(u)
such that L(v**1) > L(w). (S2) L(L) is compact, or S2° L(L N K) is finite for all compact
set K CU. (S3) there exists a U-valued sequence {u}; such that (a) {u'}, is infinitely often
in a compact subset C° CU and (b) for any compact set K C U, there exists v'T! € Tt (u?)
such that limy |L(u!*!) — L(v*+1) | M ex = 0.

Then {u'}; is in a compact subset of U.

Let {Tt}t be a family of point-to-set maps on 4. Choose a sequence of compact subsets
{C*}; of U such that for any ¢ > 0, C* C C** and U = |J,, Ct. Define a sequence {u'}; as
follows: let u° € C° and set 7° = 0.

o if THut) C €™, choose ut*! € Tt(ut) and set 701 = 7%.

o else, set u!t! =40 and 71+ =7t + 1.

Proposition 9 Let U C R™, {T*}; and {T*}; be point-to-set maps on U. Let {u'}; be
the sequence given by the re-projection procedure above. Assume (a) SI1-2 holds, (b) for all
u € C°, for all @' € Tt (u), there exists v't' € Tt(u) such that lim; |L(at) — L(v™t1)] =0
and (c) for any compact subset K C U, for all @' € Tt (ul), there exists v'*! € Tt (u') and

limg |L(@t*!) — L(v*)|[Tyeex = 0. Then, limsup, 78 < oo and {ul}; is a compact sequence.

Indications for the proof: The proofs can easily be adapted from the proofs of [15,
Propositions 9,10,11], up to a modification that plays a central role and we now detail.
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In [15], the key assumption is the existence of a Lyapunov function L relative to (T, £), for
some point-to-point map T'. This implies that for any compact X C U, infx{L(T (u)) —
L(u)} > € > 0, and yields an inequality which is fundamental in the proof: for any u® € K,

L(utt) — L(u?) > L(ut) — L(T(u})) + e

In our case, we assume the existence of a Lyapunov function L relative to ({T%¢}s,£) and
to (T*, L), for the point-to-set maps {T}; and T* such that for all ¢ > 0 and u € U, there
exist v'*! € T*(u) and w € T*(u) and L(v**') > L(w). This implies that for any compact
K cU, inf e wers(u){L(w)—L(u)} > € > 0, and for any u* € K, there exists v'+! € T*(u?)
such that

L(ut™) — L(u?) > L(u'*TY) — L) + e

9.2 Conclusion

We prove the assertion (i)(a) and to that goal, we check the conditions of Proposition 9. T"
refers to the (t+1)-th generalized VEM iteration and T* to the (t+1)-th MCVEM iteration;
Tt is defined by: (q,v) € T%(q,v) where ¢» = (6, ) iff

g € argmin,; KL(g;pzv(-ly;9)),
6 € argmaxyco Z Inpy|z(ylz; 0) q(z),
zEZ
B = argmaxyc c, 1, Al<yt} — {Z H(z;b)3(z) +In WJz,B(b)} )
zEZ

L (resp. L) are given by (19) (resp. (20)) and Y =Z, x ¥. By Lemma 4, L is a continuous
Lyapunov function relative to ({T%};,£) and to (T*,£). Under A3, the level sets of L are
compact in Z. x ¥. 0 < L(g, %) < oo for all (g,%) € Z, x ¥ so that Z,. x ¥ is a denumerable
union of the level sets of L. Finally, let (7,¢) € T%(g,v) and set § = ¢, 6 = 6 and

ﬂ = argMaXyc (g |z—B|<inf, 'yt}zzez lan(z7b)Cj(z) Then (‘L T/’) € T*(qa ¢) and L(Cj, ¢) >
L(G,%). Under A4, S2 or S2’ holds. This concludes the verification of condition (a). The
condition (b) results from the condition (c) applied with £ = {u}. We now establish (c)
and prove that the limit holds P-a.s. Hereafter, for (¢%, ") € K, let (¢+1, tt1) € T(¢t, ¢t).
Define (qt-i-l’@t-i-l) by qt-i-l — qt-i—l’ gt+1 — §t+1 and
gt = argMmaXge g gt|<~t} Z Inpz(z; 8)g" (2),
zEZ

so that (g, 1) € T*(q",4"). Finally, define (¢"+', 1) (resp. (¢, 4"*1)) by ¢+ =
Gttt = gttt gttt = gttl = 1+l and Gt (resp. FUT1) as Bit! (resp. ['T!) by setting
vt = oo.

We establish that for all € > 0,

(24)

Z]I{|L(at+1,dt+1>—L(w+1,zﬁt+1>\JI(qt,¢t)GK2e} <
t>0

P-a.s. which is implied, by the second Borel-Cantelli Lemma by the P-a.s. convergence of
the series with general term

B (L@@, 64 — L@ 0 ) [T yoyex > €l F)
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Fy is the sigma-field o (27,0 < j < J,,1 < s < ¢ — 1). With this choice of the point (g1, ¢**+1)
in the set T%(gt,4!), we have

L5 = 1@ 5 = | Y (ﬁijﬁ §i§) i (@)
S {Hm A - H@: B ) () + 0 oo )

z€EZ

Lemma 10 Assume A1, A2(i)-(ii). If {(¢%,¢')}s € K for some compact K of I, x ¥, there
exist (deterministic) compact sets C and C' in B, depending upon K, such that {¢}; C C
and {Bt}t c .

Proof: Let C" be the compact set that contains {3t};. By the implicit function theorem,
there exists a continuously differentiable function p : Z — B such that for all ¢ € Z,
G(q,p(q)) = 0 where G(q,8) = Vp{>_,czInpz(z; B) q(z)}. Since T is compact, the family
{B**'}; is in a compact interval, say C'. Let C be the smallest closed ball that contains
B UC'UC". We prove that B¢ € C for all t. 3° € C by definition of the compact. Let
t > 0; either ft+! = gtt! and St € C' C C, or Bt = Bt + sign(BtH! — B) +4%; if such,
BEA B < B+l < Bty 3L and B+ € C. 0

Let C1(Cs) be the closed d-neighborhood of C, for some positive § small enough so that
Cl(Cs) is a compact of B. Under Al and A2(iii), H(z;-) and W are continuous for all z € Z
and thus, uniformly continuous on Cl(Cs). Since Z is finite, there exists 7 > 0 depending
upon Cl(Cs), € and § such that for all (z,y) € Cl(Cs), ¢ € Z,,6 € O,

|.Z' _y| <n= |L(q707$) - L(Q707y)| <e
Hence,

P(IL@™*", ™) = L@ 9" Mgt yryex 2 €| Ft)
< P(|L(qt+1’,&t+1) _L(qt—i-l,,(z}t-i-l)' > e, |Bt+1 _Bt+1| < 5|-7:t)]I(qt,z/;t)e)C
-HP( |L(qt+1’,¢~}t+1) _ L((jt+1,1,/_)t+1)| > e, |Bt+1 _ Bt+1| > 5|ft)]l(qt,¢t)e;c
< ]p( |Bt+1 _ Bt+1| >, |Bt+1 —Bt+1| < 5|.7:t)1[(qt,¢t)e;c
+P(|L(§t+1’¢t+1) _ L((it+1,§l_1t+1)| > e, |Bt+1 _ Bt+1| > 5|]:t)]I(qt,¢t)elc
<2P(IBH - B 2 ol B )T poexc (26)

where a = § An Ainf,+t > 0.

Lemma 11 Set Gy;(q,8) = —V{> ez H(zB)q(z) +In W7eb(8)}. Under A1, A2 and
A5, for any 0 < a < infy?, there exists a deterministic . > 0 (independent of t) such that

|Gy e (G, B —a) -GG, B =) | < v and |Gy pe (6T, B +a) -GG, B +a)| <o

= A<
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Proof: Let p be the continuous function defined in the proof of Lemma 10. For a > 0, define
G = minge7 G(g,p(g) — ) and G = maxyez G(g, p(q) + @). Under A2(iii), 8 — G(g,p) is
strictly decreasing for all ¢ € Z, so that G(q, p(¢) —«) > 0 and G(q, p(¢)+a) < Oforall g € Z.
Furthermore, since ¢ — G(g, p(q)+a) is continuous on T for all a € { a,a},@>0et G <0.
Finally, recall that by definition of S+, A1 = p(¢*1). Set « = L min(G, —G). Since for
all a € {—a,a}, |Gy p (@, B +a) — G(@, B! + a)| <o then Gy g (g1, B! —a) >
0 and Gyp(gt", A" +a) < 0. We distinguish four cases.

Case 1: Bl = i+l and B+l = i+l Under A2(iii), B! is the unique solution to
Grpe(@1,) = 0; hence, () — a < A1 < p(@**) +a and this yields [F+1 — 51| < .
Case 2:B!*! # Bt+1 and Bt+! # B+, We prove that B! = Bt+1. To that goal, we first
assume that %1 > % which implies, under A2(iii), that St = gt4~t. If gt —a > Bt4At,
Gipt (@, B) > 0 for all Bt — 4t < B < Bt + 4! since under A2(iv), 8 — Gy p: (G, B) is
decreasing. Hence, it = Bt +~t = Bt+1. If B+ — o < Bt 4+ ~%, the condition o < inf, ~*
implies that there exists 4% < f < 8 + ~¢ such that Gy g (G*1?, 8) > 0; since fiH! # B+t
this implies, together with A2(iv), B! = ¢ + 4%. The case B! < B is along the same
lines and is omitted.

Case 3: i1 # Bt+1 and B+l = B+, We first assume that Bt+! > B¢ so that Bi+! =
Bt + 4t Since Gy g (!, 1+ — ) > 0 and fi+! = g1 gl — o < B < Bt 4 4t
Furthermore, Bt+1 # ft*1 so that ft+1 < G+, This yields |[§tt! — g+!| < a. The case
Bt < Bt is along the same lines and is omitted.

Case 4: B+l = B+l and B+ # Bi+!. We first assume that S%+! > B¢, The conditions
a < inf;y* and B! = A1 imply Bt — 4t < Bt — a < B + 4. These inequalities,
combined with Gy g (§+!, B! — a) > 0 and FP+! # G+ yield f+1 = 5t + 4%, Finally,
Gy p (@1, B + a) < 0 and F*1 = B8 + 4 imply B¢ + 4 < f+! + a. We thus obtain
|3t — Bt+1| < a. The case ! < St is along the same lines and is omitted.

This yields, on the event {(¢%,9¢) € K} € F,

]In( |L((jt+1, ,&t-ﬁ-l) _ L(qt-i-l’,&t-i-l)' Z €|ft )
<SPG (@, BT — @) — GG, BT — a)| > 4| F)
+ PGy (¢, BT +a) = G@H, BT + )] > 0| F)
<P(VIn W7 (B4 —a) - VInW (B! — 0)| > 4| F)
+P(VIn W78 (B! 4 o) - VIn W (B! + a)| > | 7). (27)

N | =

By the Markov’s inequality and Lemma 10, this yields for all » > 1,
P(|L(@GH, ") = L@, ") g yryex > € Fr)

2 - . r
—— sup K, vaww (8) —Van(,B)‘ |
t U gecicer)

<

For r given by A5, there exists a constant C' such that for any ¢,
PL@ ™ 9) = L@ ) Tge oy exc > el ) < CF; 772

The series (24) is thus finite P-a.s. for some sequence {.J;}; satisfying A6. This concludes
the proof of the first claim (i)(a).

We now check the conditions of Proposition 7. By Lemma 5, £ is a closed set in Z,. x ¥
so that £N K is a compact subset of Z,, x ¥, whatever K compact. Let {u! = (¢*,¢!)}; be

INRIA



Combining simulation and mean-field like methods

27

the stable MCVEM trajectory. It remains to show that the limit holds P-a.s. It is sufficient
to prove that for any deterministic compact X C Z, x ¥,

lim L@, ) - L@ 6 ) Mg gyex =0 Pas. (28)

for some (gt*1, ¢t*t1) € Tt(qt, 4t); we choose

“t+1 _ i+l pt+l _ i+l gl
=q¢, =607 p

q = argmaxﬁe{mfﬁt‘syt}{zlan(ZQﬂ)qt—H (Z)}

z€EZ

Here again, the limit is a consequence of the P-a.s. convergence of the series

S OP(IL(@T, D) — L@ ) Mg yeyex > €| ). (29)
t>0

Since the number of projections is finite a.s., (¢"**,¢!*!) = (¢, ¢t for all t large
enough. Thus the series (29) is finite P-a.s. if the series (24) is finite P-a.s. The convergence
of (24) has just been established, thus concluding the proof.

10 Application to image segmentation

We show that the model described in Section 5 satisfies the conditions A1l to A6. We
assumed that at each pixel, the observations are univariate; this is not at all restrictive and
the multi-dimensional case could be considered in the same way.

Conditions A1-A2 are trivially verified; for A2, we use the strict concavity of 8 — In W ().
Details are omitted.

Regarding assumption A3, since L is a continuous positive function and Z, is bounded it is
enough to show that for ¢ € Z,., L tends to 0 on the boundaries of ¥. Let In L be divided in
three parts,In L(q, ) = a(q, 8)+b(q, 8) +c(q), where (up to an additive constant independent
of the parameters),

K
a@8) = —5 3 o) + oy (4 — )] aile)
i€S k=1
b(g,8) = Y a(z)n(pz(%p)).
z€Z

Forge 7., foralll =1,..., K there exist i € S such that g;(¢;) > 0. Then whenever there
exists k such that oy, tends to 0 or u tends to o0, part ok_l (y; — p)? is the most significant
term in expression a(q, ). If o tends to +o0o, then the most significant term in a(q, ) is
In(o,). In all cases a(q, ) tends to 0. When § tends to +oo (resp. —oc) then pz(z; 3) tends
to 0 except in z € arg max h(z) (resp. z € arg mzin h(z)) so that clearly b(q, 3) tends to 0. It

follows that A3 is satisfied.

For A4, we show that £ is compact which implies that L(L) is compact since L is continuous.
Under the stated assumptions, £ is closed (see Lemma 5) and it remains to prove that £ is
bounded. Let us first observe that for (¢*,¢*) € L, ¢* is included in a compact set and *
satisfies Vy F'(g*,9*) = 0, which leads to closed-form expressions

VE, ui = Eies viq; (ex) ’
>ies € (ex)
- YiesWi — 1) (Wi — pi)'a; (ex)
Eies q; (ex) ’
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hence, ¢* and 6* are linked through a continuous and bounded function on Z, and 6* is
bounded. By applying the implicit function theorem we prove that the same holds for g*
(see the details in the proof of lemma 10 in Appendix 9) which shows that £ is bounded.
For A5, we can actually show that a more general condition holds: applying the results by
[15], we can deduce that the conditions in A5 hold for all » > 2 and any initial distribution
A. Referring to [15, Proposition 1], it is enough to show that for the Markov chain used in
the approximation of W(8), the state space is small (see e.g. [26]). The Gibbs sampler is
a Markov chain with kernel P = P, P; ... Py where P, replaces the n** pixel with a draw
from the conditional pz(zn|zs\{n}) leaving zs\ n} unchanged. Since £ = V¥ is a product
space with V finite, the small set property follows easily.
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Figure 1: Logo image: MCVEM trajectories when z%! = z° (solid line) and z%t = zJt-1,t~1

(dot line). [top] p1 (the first 8 values are discarded), [center] o1 (the first 8 values are
discarded), [bottom] S.

0.942 T T

0.938| 4

0.936

0.934

0.932

100 150 200

Figure 2: Logo image: f trajectory as a function of the number of iterations when J; ~
(2¢)1-01 (dot line), J; ~ (2t)'? (dash-dot line) and J; ~ (2t)'® (solid line). The first 50

iterations are discarded.
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Figure 3: Logo image: § trajectory versus the number of iterations for different parameter

starting values, with Mean Field (dot line), Simulated Field (solid line) and MCVEM (dash-
dot line)

Figure 4: Logo image : Error rate versus 8 obtained by Mean Field (dot line), Simulated
Field (solid line) and MVCEM (dash-dot line), when the segmentation algorithm is started

from two different initial classifications.
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Figure 5: Logo image: [top, from left to right] original image, noise-corrupted image, initial
segmentation using kmeans, ind-EM, MC2-EM; [bottom, from left to right] Gibbsian-EM,
Simulated Field, Mean Field, MCVEM, MCVEM + Median Filter

Figure 6: Triangle image: [top, from left to right] original image, noise-corrupted image,
initial segmentation using kmeans, ind-EM, MC2-EM; [bottom, from left to right] Gibbsian-
EM, Simulated Field, Mean Field, MCVEM, MCVEM + Median Filter
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Figure 7: Muscle image: [top, from left to right] original image, k-means, ind-EM, MC2-EM,
[bottom, from left to right] Gibbsian-EM, Simulated Field, Mean Field, MCVEM.

Figure 8: PET image of a dog lung: [top, from left to right] original image, initial segmen-
tation, ind-EM, MC2-EM; [bottom, from left to right] Gibbsian-EM, Simulated Field, Mean
Field, MCVEM.
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Figure 9: Satellite image: [top, from left to right] original image, initial segmentation,
ind-EM, MC2-EM; [bottom, from left to right| Gibbsian-EM, Simulated Field, Mean Field,
MCVEM.

algorithm B8 72! 42 o1 o9 error rate ref.
true values 0.78 1 2 0.5 0.5 - -
ind-EM - 1.01 2.01 0.50 0.50 15.91 15.85
- (3.16 10e-2) (2.65 10e-2) (1.41 10e-2) (1.26 10e-2) (0.33) (0.26)
Mean Field 0.94 1.01 2.00 0.51 0.50 10.28 9.77
(2.83 10e-2) (1.73 10e-2) (1.41 10e-2) (10e-2) (10e-2) (0.49) (0.42)
Simulated Field 0.78 1.00 2.00 0.50 0.50 10.96 11.04
(2.24 10e-2) (10e-2) (10e-2) (10e-2) (10e-2) (0.43) (0.48)
MCVEM 0.73 0.98 2.02 0.48 0.48 9.87 9.77
(1.77 10e-2)  (1.13 10e-2) (1.12 10e-2) (7.3 10e-3) (7.1 10e-3) (0.42) (0.42)
MC2-EM 0.77 1.00 2.00 0.50 0.50 9.81 9.81
(1.44 10e-2) (1.19 10e-2) (1.20 10e-2) (0.80 10e-2) (0.81 10e-2) (0.39) (0.39)
Gibbsian-EM 0.77 1.00 2.00 0.50 0.50 9.79 9.81
(2.23 10e-2) (1.14 10e-2) (1.24 10e-2) (0.82 10e-2) (0.84 10e-2) (0.40) (0.39)

Table 1: Parameter estimates and error rates for the hidden 2-color Potts model with 8 =
0.78 (first order neighborhood). The results are mean values over 20 runs, the standard

deviations are also reported in parenthesis.
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algorithm B error rate ref.
true values 0.90 - -
ind-EM - 21.31 (0.60) 21.14 (0.50)
Mean Field 1.03 (2.45 10e-2) 14.03 (0.60) 13.78 (0.59)
Simulated Field 0.90 (2.45 10e-2) 15.67 (0.56) 15.69 (0.64)
MCVEM 0.85 (1.89 10e-2) 14.02 (0.59) 13.78 (0.59)
MC2-EM 0.89 (1.36 10e-2) 13.77 (0.53) 13.79 (0.54)
Gibbsian-EM 0.89 (2.23 10e-2) 13.77 (0.53) 13.79 (0.54)

Table 2: Beta estimates and error rates for the hidden 3-color Potts model with 8 = 0.9 (first
order neighborhood). The results are mean values over 20 runs, the standard deviations are

also reported in parenthesis.

algorithm B8 error rate ref.
true values 1 - -
ind-EM - 24.23 (0.54) 23.87 (0.45)
Mean Field 1.05 ( 1.95 10e-2) 18.32 (0.51) 18.38 (0.45)
Simulated Field 0.90 (1.64 10e-2) 20.73 (0.55) 20.82 (0.48)
MCVEM 0.81 (1.17 10e-2)  18.66 (0.50) 18.38 (0.45)
MC2-EM 0.89 (1.07 10e-2) 18.15 (0.49) 18.24 (0.47)
Gibbsian-EM 0.89 (1.67 10e-2) 18.14 (0.50) 18.24 (0.47)

Table 3: Beta estimates and error rates for the 4-color Potts model with 8 =1 (first order
neighborhood). The results are mean values over 20 runs, the standard deviations are also

reported in parenthesis.

algorithm B w1 e o1 09  error rate
true values - 51 255 130 300 -
ind-EM - 52 255 128 304 22.69
Mean Field 4.22 53 260 130 306 3.10
Simulated Field 2.15 52 250 128 302 3.42
MCVEM 093 50 262 125 305 2.89
MC2-EM 091 50 261 125 305 2.89
Gibbsian-EM 1.82 52 251 128 303 2.92

Table 4: Parameter estimates and error rates for the degraded 2-color logo image.
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algorithm B8 7 2 13 [ o1 o9 o3 o4  error rate
true values - 1 2 3 4 05 05 05 05 -
ind-EM - 0.85 1.69 2.54 393 0.44 0.42 0.46 0.53 29.4
Mean Field 399 0.99 200 298 4.01 049 0.50 048 0.50 0.44
Simulated Field 3.46 1.00 2.00 297 4.01 0.49 0.50 0.48 0.50 0.40
MCVEM 1.27 099 2.00 298 4.01 048 048 0.46 0.50 0.80
MC2-EM 126 099 2.00 297 4.01 048 048 046 0.49 0.81
Gibbsian-EM 3.01 1.00 2.00 298 4.00 049 0.50 0.48 0.50 0.31

Table 5: Parameter estimates and error rates for the degraded 4-color image.
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