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Abstract : 

X-by-Wire is a generic term referring to the replacement of mechanical or hydraulic systems, such as 

braking or steering, by electronic ones. In this chapter, we analyze the real-time and dependability 
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constraints of X-by-Wire systems, review the fault-tolerant services that are needed and the 

communication protocols (TTP/C, FlexRay and TTCAN) considered for use in such systems. Using a 

Steer-by-Wire case-study, we detail the design principles and verification methods that can be used to 

ensure the stringent constraints of X-by-Wire systems. 

 
1 Why X-by-Wire systems ? 

Embedded electronics, and more precisely embedded software, is a fast growing area, and software-

based systems are increasingly replacing the mechanical and / or hydraulic ones. The reasons for this 

evolution are technological as well as economical. On the one hand, the cost of hardware components 

is decreasing while their performances and reliability are increasing. On the other hand, electronic 

technology facilitates the introduction of new functions whose development would be costly, or not 

even feasible, if using mechanical or hydraulic systems alone. This evolution, formerly confined to 

functions such as motor control, wipers, lights, or door controls, now affects all car domains, even for 

critical functions such as throttle, brake or steering control. This trend resulted in the introduction of 

the concept “X-by-Wire”, where mechanical or hydraulic systems embedded in an automotive 

application will be replaced by fully electric / electronic ones. 

 Historically, the first critical X-by-Wire function was the Throttle-by-Wire, implemented in a 

Chevrolet Corvette series in 1980 to replace the cable-based throttle. Today, this function is present in 

most vehicles, for example, the Peugeot 307. Shift-by-Wire systems, also known as Gear-by-Wire, are 

also implemented in some high end vehicles such as the BMW 5 and 7 series.  

However, mechanical systems are still necessary for the most currently used X-by-Wire systems, 

either to work in conjunction with the electronic system or as a backup (examples: the Electronic 

Hydraulic Braking system, semi-active suspensions as in the Mercedes Adaptive Dampfung System, 

the Electronic Camshaft in the BMW Valvetronic technology, or the Robotized Gear Box). It is 

interesting to remark that the Robotized Gear Box is an option proposed by all carmakers in the world 

today. 

One of the main obstacles for general acceptance of X-by-Wire systems is the difficulty to prove that 

all the necessary safety measures are followed. It is enough to note that the dysfunction of Steer-by-
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Wire, Brake-by-Wire or Throttle-by-Wire systems would jeopardize the safety of the occupants. As 

seen before, a number of X-by-Wire systems have already been implemented in certain series of 

vehicles, however, Steer-by-Wire and Brake-by-Wire systems will always have a mechanical backup. 

The concern for safety is certainly a major factor.  

Another obstacle is that the customer’s demand is not very great at the moment; he does not realize the 

technical advantages and only sees a higher price tag. But, the advantages of this technology can be 

very attractive for both carmakers and customers (see sections 1.1 and 1.2), which explains why 

carmakers are investing in this domain.   

1.1 Steer-by-Wire system  

The first advantage lies in the decreased risk of the steering column entering the cockpit in the event of 

a frontal crash. Furthermore, the variable steering ratio of the Steer-by-Wire system brings a 

remarkably increased comfort to the driver. This function enables the steering ratio between the hand 

wheel and the wheels to adapt according to the driving conditions. In parking and urban driving, this 

ratio should be smaller in order to reduce the amplitude of the hand wheel rotation. Another facility for 

steering functionality, brought by software-based technology, is the µ-split braking which consists in 

applying a dissymmetric torque to the wheels in case of a dissymmetric adherence. Finally, the 

steering column is one of the heaviest components of the vehicle and removing it significantly 

decreases the weight of the vehicle and thus reduces fuel consumption.  

Among the drawbacks, the electrical power needed to action the front axle requires the use of 42 Volt 

technology. At the SAE Conference in 2003 [1], it was said that this technology would not be mature 

before 2010. This announcement has considerably reduced the emphasis put on the X-by-Wire 

developments in general. Furthermore, the safety issues have not yet been fully defined. 

1.2 Brake-by-Wire systems 

A Brake-by-Wire system implemented with one micro-controller and one actuator per wheel can 

significantly increase the quality of the braking, in particular, by reducing the stopping distance. 

Moreover, this technology provides more precise braking by adapting to the pressure the driver puts 
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on the pedal. Like Steer-by-Wire, there is a significant decrease in the weight of the vehicle in 

removing the hydraulic braking system and, therefore, significantly lowering costs. Finally, Brake-by-

Wire will help to protect the environment because no braking fluid is necessary. 

Unfortunately, as with the Steer-by-Wire system, the 42Volt problem is a barrier for its present 

deployment. Another hindrance comes from the mentality of the customers. Indeed, the customer is 

faced with a new technology for a critical function that will be more expensive in the beginning and 

whose benefits he does not clearly see.   

The first technology in Brake-by-Wire was the introduction of Electro Hydraulic Braking (EHB). The 

main difference between the EHB system and the classic braking system is that each wheel has an 

independent braking subsystem: the hydraulic pressure is applied independently on each wheel. 

However, a classic hydraulic circuit is still implemented from the pedal to the front wheels for safety 

reasons. The EHB system was factory installed for the first time in 2001 with the Mercedes Roadster 

SL. Today, Toyota proposes a “regenerative EHB” in their Prius, which uses the energy dissipated 

during deceleration to charge the battery.  

 

2 Problem, context and constraints for the design of X-by-Wire systems 

2.1 General constraints 

As explained before, some X-by-Wire systems are already standard in certain series. However, while 

the implementation of Brake-by-Wire and Steer-by-Wire is possible with a 14 Volt battery in low 

weight vehicles, this is not the case for the heavier ones. As the first Brake-by-Wire and Steer-by-Wire 

will be costly in the beginning, they have greater chances of being implemented in high-end vehicles. 

Consequently, 42 Volt technology has to be mature before X-by-Wire systems can be mass produced. 

Moreover, Cell Fuel Technology, with fully electric energy sources, seems to be well situated for 

replacing combustion engines. This significantly reduces the necessity of 42 Volt technology in the 

long run [1]. 

In addition, the size of the X-by-Wire systems and their cost are major constraints for carmakers; 

electronics-based systems already account for 30% of the total cost in current vehicles.  
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2.2 Dependability constraints 

An analysis of the requirements for X-by-Wire systems was published in the conclusions of the X-by-

Wire Esprit project 19]. In general, for a critical X-by-Wire system, it must be ensured that [19]: 

- a system failure does not lead to a state in which human life, economics or 

environment are endangered,  

- and a single failure of one component must not lead to a failure of the whole X-by-

Wire system. 

The system shall memorize intermittent failures and it shall signal a critical failure to the driver, for 

example through a lightning on the dashboard.. Moreover, it is required that the system is at least able 

to tolerate one major critical fault without loss of the functionality for a time long enough to reach a 

safe parking area. This requirement is a very constraining one, because if only two redundant 

components are used to provide a critical function, in case of failure of one of these components, the 

driver must immobilize the vehicle. This requirement will have to be confronted to the availability 

requirements in the future. 

In terms of the criticality of the involved functions, automotive X-by-Wire systems can reasonably be 

compared with Flight-by-Wire systems in the avionic field. According to [19], the probability of 

encountering a critical safety failure shall not exceed 5⋅10-10 per hour and per system, but other studies 

have been realized with a maximal bound of 10-9. This quantification can be translated in terms of 

Safety Integrity Level (SIL, see [2]) and a maximal bound of 10-9 corresponds to a SIL4 system. In 

fact, SIL4 conformance is reached below 10-8. 

Up to now, it has been a challenge to reach such dependability because of the lack of experience in the 

automotive industry with X-by-Wire systems and because of the complexity of the problem. In 

particular, the environment (EMI, temperature peaks, ..) may reduce the predictability of the system 

and the design is subject to heavy cost and weight constraints. It is likely that, as in the aeronautic 

industry, for legal and technical reasons, the design process (e.g., software development, methods and 

tools for validation, ...) will have to be certified in the future. 
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Finally, one objective that must be reached is that an X-by-Wire system offers the same availability 

and the same maintainability as their mechanical/hydraulic counterparts. The challenge is to prove that 

a given X-by-Wire system adheres to all these requirements. 

2.3 Real-time constraints 

Belonging to the chassis domain, Steer-by-Wire and Brake-by-Wire systems are intrinsically real-time 

distributed systems. They implement complex multivariable control laws and deliver real-time 

information to intelligent devices that are physically distant (for example, the four wheels). They have 

to respect stringent time constraints, such as a sampling period of only a few milliseconds. End-to-end 

response times shall also be bounded, for example, the time between a request from the driver and the 

response of the physical system must be lower than a few tens of milliseconds (see the Steer-by-Wire 

example in section 4). An excessive end-to-end response time of a control loop may induce not only 

performance degradation but also cause the instability of the vehicle.  

Although these constraints may differ according to the driving conditions, they all have to be respected 

whatever the situation. So, in general, the worst case scenario must be taken into consideration and 

these real-time constraints must be met with a high probability, even if the system is under random 

perturbations, because of the critical safety nature of the X-by-Wire applications. 

 

3 Fault-tolerant services for X-by-Wire 

3.1 Overview on the communication services 

The communication system has to provide services that are pertinent with respect to the dependability 

objectives of the application (see section 2). For instance, the knowledge of the stations that are 

operational at a given time is usually needed by X-by-Wire applications and thus, a membership 

service that furnishes this information  will ease the development of application-level software and its 

accuracy.  
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3.1.1 Time-Triggered communication 

Among communication networks, one distinguishes time-triggered protocols where activities are 

driven by the progress of time and event-triggered protocols where activities are driven by the 

occurrence of events. Both types of communication have advantages but one considers that, in general, 

dependability is much easier to ensure using a time-triggered bus (refer, for instance, to [3] for a 

discussion on this topic). This explains that, currently, only time-triggered communication systems are 

being considered for use in X-by-Wire applications. In this category, multi-access protocols based on 

TDMA (Time Division Multiple Access) are particularly well suited; they provide deterministic access 

to the medium (the order of the transmissions is defined statically at the design time and organized in 

“rounds”), and thus bounded response times. Moreover, their regular message transmissions can be 

used as “heartbeats” for detecting station failures. 

The two TDMA based networks that are candidates for supporting X-by-Wire applications are TTP/C 

(see 3.2.1) and FlexRay (see 3.2.2). At the time of writing, FlexRay, which is backed by the major 

players of the European automotive industry, seems in a strong position for becoming the standard in 

the industry, although the specifications are not yet finalized. 

3.1.2 Fault Tolerant Unit (FTU) 

To achieve fault-tolerance, that is to say, the capacity of a system to deliver its service even in the 

presence of faults, certain nodes are replicated and clustered into Fault-Tolerant Units (FTUs). An 

FTU is a set of several stations which perform the same function and each node of an FTU possesses 

its own slot in the round so that the failure of one or more stations in the same FTU can be tolerated. 

Actually, the role of FTUs is two-fold. First, they make the system resilient in the presence of 

transmission errors (some frames of the FTU may still be correct while others are corrupted). Second, 

they provide a means to fight against measurement and computation errors occurring before 

transmission (some nodes may send the correct values while others may make errors). The stations 

forming an FTU will be called replicas from here out. The use of fail-silent nodes (see section 3.1.3) 

greatly simplifies the design of a fault-tolerant architecture. However the fail-silent property is 

generally not easy to verify. The number of replicas per FTU, which are required to tolerate k faulty 
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components, depend on the behavior of the individual components (see [4]). For instance, if the failure 

of k nodes must be tolerated, then the least necessary number of replicated nodes is k+1 when all 

nodes are fail-silent.  

3.1.3 Fail-Silent Node 

As previously explained, fail-silent nodes greatly decrease the complexity of the design of a critical 

application. A node is said fail-silent if: 

1. a) it sends frames at the correct point in time (correctness in the time domain), and b) the 

correct value is transmitted (correctness in the value domain), or 

2. it sends detectably incorrect frames (e.g., wrong Cyclic Redundancy Check - CRC) in its 

own slot or no frame at all. 

A communication system, such as TTP/C, is able to provide very reliable support for the requirements 

1.a) and 2) (which provide the so-called “fail-silence in the temporal domain” once they are 

accomplished), especially through the bus guardian concept, while the value domain is mainly the 

responsibility of the application. The reader is referred to [4, 5, 6] for good starting points on the 

difficult problem of ensuring fail-silence 

3.1.4 Bus Guardian 

When communications are multiplexed, it may happen that a faulty ECU, transmitting outside its 

specification, for instance, at the wrong time or with a larger frame, perturbs the correct functioning of 

the whole network. One well-known manifestation is the so-called “babbling idiots” nodes that 

transmits continuously. To avoid this situation, a component called the “bus guardian”, restricts the 

controller’s ability to transmit by allowing transmission only when the node exhibits a specified 

behavior. Ideally, the bus guardian should have its own copy of the schedule, it should be physically 

separated from the controller, it should possess its own power supply and it should be able to construct 

the global time itself. Due to the strong pressure from the automotive industry concerning costs, these 

assumptions are not fulfilled in general, which reduces the efficiency of the bus guardian strategy. 
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3.2 Main time-triggered protocols for automotive industry 

3.2.1 TTP/C  

The TTP/C protocol (Time Triggered Protocol), which is defined in [7], is a central part of the Time-

Triggered Architecture (TTA – see [8]) and it possesses numerous features and services related to 

dependability such as the bus guardian (see [5]), the group membership algorithm (see [9]) and 

support for mode changes (see [10]).  The TTA and the TTP/C protocols have been designed and 

extensively studied at the Vienna University of Technology. Hardware implementations of the TTP/C 

protocol, as well as software tools for the design of the application, are commercialized by the TTTech 

company [11] and available today. 

On a TTP/C network, the transmission support is replicated and each channel transports its own copy 

of the same message. Although an Electro Magnetic Interference (EMI) is likely to affect both 

channels in quite a similar manner, the redundancy provides some resilience to transmission errors 

(see section 4.4.4) TTP/C can be implemented with a bus topology or a star topology. The latter 

topology provides better fault tolerance since the star can act as a central bus guardian and protect 

against errors that cannot be avoided by a local bus guardian such as spatial proximity fault. For 

instance, a star topology is more resilient to spatial proximity faults and to faults due to a 

desynchronization of an ECU (see section 3.1.4). To avoid a single point of failure, a dual star 

topology shall be used with the drawback that the length of the cables is significantly increased. 

At the Medium Access (MAC) level, the TTP/C protocol implements the synchronous TDMA 

scheme: the stations (or nodes) have access to the bus in a strict deterministic sequential order and 

each station possesses the bus for a constant period of time called a “slot” during which it has to 

transmit one frame. The sequence of slots such that all stations have accessed the bus one time, is 

called a “TDMA round”. An example of a round is shown in Figure . The size of the slot is not 

necessarily identical for all stations in the TDMA round, but successive slots belonging to the same 

station are of the same size. Consecutive TDMA rounds may differ by the data transmitted during the 

slots, and the sequence of all TDMA rounds is the “cluster cycle” which repeats itself in a cycle.  
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TTP/C includes powerful but complex algorithms for easing and speeding up the design of fault-

tolerant applications and some of them have been formally verified (see for instance [9] and [12]). In 

particular, TTP/C implements a clique avoidance algorithm and a membership algorithm that also 

provides data acknowledgment. The fault hypothesis used for the design of TTP/C is well specified 

and also quite restrictive (two successive faults must occur at least two rounds apart). Situations 

outside the fault hypothesis are treated using “never give up” (NUP) strategies [3] which aim to 

continue operation in a degredaded mode. For example, an usual method is that each node switches to 

local control according to the information still available, while trying to return to the normal mode. 

3.2.2 FlexRay  

A consortium of major companies from the automotive field is currently developing the FlexRay 

protocol. The core members are BMW, Bosch, DaimlerChrysler, General Motors, Motorola, Philips 

and Volkswagen. The specifications of the FlexRay Protocol are not publicly available nor finalized at 

the time of writing, however, material describing the protocol is available on the FlexRay web site 

[13]. 

The FlexRay network is very flexible with regard to topology and transmission support redundancy. It 

can be configured as a bus, a star or multi-stars and it is not mandatory that each station possess 

replicated channels, even though this should be the case for X-by-Wire functions. 

At the MAC level, FlexRay defines a communication cycle as the concatenation of a time-triggered 

(or static) window and an event triggered (or dynamic) window. In each communication window, 

whose size is set statically at design time, a different protocol is applied. The communication cycles 

are executed periodically. The time-triggered window uses a TDMA MAC protocol; the main 

difference with TTP/C is that a station might possess several slots in the time-triggered window, but 

the size of all slots is identical. In the event-triggered part of the communication cycle, the protocol is 

FTDMA (Flexible Time Division Multiple Access): the time is divided into so-called mini-slots, each 

station possesses a given number of mini-slots (not necessarily consecutive) and it can start the 

transmission of a frame inside each of its own mini-slots. A mini-slot remains idle if the station has 
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nothing to transmit. An example of dynamic window is shown in 
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Figure 2: on channel A, frame m started to be transmitted in mini-slot m while mini-slots m+1 and 

m+2 have not been used. It is noteworthy that the frame m+3 is not received simultaneously on 

channels A and B since, in the dynamic window, transmissions are independent on both channels. The 

FlexRay MAC protocol is much more flexible than the TTP/C MAC since in the static window nodes 

are assigned as much slots as necessary (up to 4095 for each node) and since frames are only 

transmitted if necessary in the dynamic part of the communication cycle. Compared to TTP/C, the 

structure of the communication cycle is not statically stored in the nodes, it is indeed revealed during 

the startup phase. However, unlike TTP/C, mode changes with a different communication schedule for 

each mode are not possible. 
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Figure 1: Example of a FlexRay communication cycle with 4 nodes A, B, C and D 

Slot Counter

Channel 1

Channel 2

n n+1 n+2
n+2

Frame ID n+1

n

Frame ID n

n+1

Frame ID n+2

n+3

MiniSlot

n+4 n+5

Frame ID n+5

n+3

Frame ID n+4

n+6
n+4

n+7 n+8

 

 12 



Figure 2: Example of message scheduling in the dynamic segment of the FlexRay communication 

cycle 

From the dependability point of view, all services and functionalities of FlexRay, except the bus 

guardian and the clock synchronization, are not currently well documented nor is the fault-hypothesis 

used for the design. However, it seems that most features will have to be implemented in software or 

hardware layers on the top of FlexRay with the drawback that efficient implementations might be 

more difficult to achieve. 

3.2.3 TTCAN 

TTCAN (Time Triggered Controller Area Network – see [14]) is a communication protocol developed 

by Robert Bosch GmbH on the basis of the CAN physical and Data-Link Layer. Time-triggered 

communication is built upon the standard CAN protocol but the controllers must be able to disable 

automatic retransmission and provide the application with the time at which the first bit of a frame was 

sent or received [15]. 

The bus topology of the network, the characteristics of the transmission support, the frame format, as 

well as the maximum data rate - 1Mbits/s - are imposed by CAN protocol. Channel redundancy is 

possible, but not standardized and no bus guardian is implemented in the node. A key idea is to 

propose, as with FlexRay, a flexible time-triggered/event-triggered protocol. TTCAN defines a basic 

cycle (the equivalent of the FlexRay communication cycle)  as the concatenation of one or several 

time-triggered (or “exclusive”) windows and one event-triggered (or “arbitrating”) window. Exclusive 

windows are devoted to time triggered transmissions (i.e., periodic messages) while the arbitrating 

window is ruled by the standard CAN protocol: transmissions are dynamic and bus access is granted 

according to the priority of the frames. Several basic cycles that differ by their organization in 

exclusive and arbitrating windows and by the messages sent inside exclusive windows can be defined. 

The list of successive basic cycles is called the system matrix and the matrix is executed in loops. 

Interestingly, the protocol enables the master node, the node that initiates the basic cycle through the 

transmission of the “reference message”, to stop the functioning in TTCAN mode and to resume in 
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standard CAN. Later, the master node can switch back to TTCAN mode by sending a reference 

message. 

Exclusive
Window
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...
Exclusive
Window

Exclusive
Window

Arbitration
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Reference
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Window

Reference
Message

master node
transmission
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Figure 3: Example of a TTCAN Basic Cycle  

TTCAN is built on a well-mastered and cheap technology which is CAN but, as defined by the 

standard, does not provide important dependability services such as the bus guardian, membership 

service and reliable acknowledgement. It is, of course, possible to implement some of these 

mechanisms at the application or middleware level but with a reduced efficiency. It seems that 

carmakers may consider the use of TTCAN for some systems during a transition period until the 

FlexRay technology is fully mature. 

3.3 Operating Systems and middleware services 

In the context of automotive applications, a middleware is a software layer located above the platform 

(hardware, operating system, protocols) that aims to offer high-level services to the application in 

order to reduce the time needed to market and improve the overall quality of the system. The main 

purpose of a middleware is to hide the distribution of the functions and the heterogeneity inside the 

platform (ECU, network, CPU, OS, ...). Another interest of middleware is to provide high level 

services; and, for X-by-Wire applications, services related to dependability are needed. 

Several projects aimed at the development of automotive middleware layers have been undertaken 

(EAST:  www.east-eea.net, AUTOSAR: http://www.autosar.org/). To the best of our knowledge, the 

only results publicly available have been produced in the context of the OSEK/VDX consortium 

(detailed information can be obtained at http://www.osek-vdx.org), which is  a project of the 
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automotive industry whose objective is to build a standard architecture for in-vehicle control units. 

Among the results of the OSEK/VDX group, two are of particular interest for X-by-Wire: the 

OSEKTime operating and the Fault-Tolerant Communication layer. 

3.3.1 OSEKTime 

OSEKTime OS (OSEK/VDX Time-Triggered Operating Systems, see [16]) is a small operating 

system designed to offer the basic services needed by time-triggered applications. In particular, 

OSEKTime OS offers services for task management, interrupt processing and error handling.  

An offline-generated dispatcher table, termed a “dispatcher round”, activates the tasks in a determined 

order and repeats itself  as long as the system is running. Several different dispatcher tables, 

corresponding, for instance, to different functioning modes of the system, can be defined, but the 

switching from one table to the next can only take place at the end of a round.  

Tasks cannot be blocked waiting for an external event but they can be preempted; a running task will 

always be preempted by a task that is activated and the designer must take resource contention into 

account in this case. An interesting feature of OSEKTime OS is the deadline monitoring that can be 

performed for some specified tasks: when such a task is still not finished at its deadline, a specific 

application error handling routine is invoked and the operating system  is re-initialized.  In OSEKTime 

OS, the rate at which interrupts can occur is bounded, at a rate specified when the system is 

configured, in order to keep the system predictable. 

As for communication cycles in time-triggered networks, the configuration of the dispatcher round can 

be done off-line through a software tool that will ensure the correctness of the system. 

3.3.2 FTCom 

OSEK/VDX FTCom (Fault-Tolerant Communication, see [17]])  is a proposal for  a  software layer 

that provides services for facilitating the development of fault-tolerant applications on top of time-

triggered networks. One important function of FTCom, with respect to X-by-Wire, is to manage the 

redundancy of data needed for achieving fault-tolerance (see section 3.1.2). From an implementation 

point of view, it is sometimes preferable to present only one copy of data to the application in order to 
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simplify the application code and to keep it independent from the level of redundancy (i.e., the number 

of nodes composing an FTU). In OSEK/VDX terminology, the algorithm responsible for the choice of 

the value that will be transmitted to the application is termed "the agreement algorithm". Many 

agreement strategies are possible: pick-any (fail-silent node), average-value, pick-a-particular-one, 

majority vote, etc.  OSEK FTCom provides a generic way for specifying the agreement strategy of 

replicated data. 

Two other important services of the FTCom are 1) to manage the packing/unpacking of messages [18], 

which is needed if the use of network bandwidth has to be optimized, and 2) to provide message 

filtering mechanisms for passing only “significant” data to the application. 

 

4 Steer-by-Wire architecture: a case study 

A Steer-by-Wire system aims to provide two main services: controlling the wheel direction according 

to the driver's request and providing a "mechanical-like" force feedback to the hand wheel. In this 

section, we present the functional point of view of such a system, the real-time and dependability 

properties that have to be observed, and a realistic operational Steer-by-Wire system used as a 

reference architecture for evaluation purposes. Finally, we will focus on the real-time requirements 

and, after proposing a way to model failures, we will show how each component or subsystem of the 

reference architecture can reach the dependability objective.   

4.1 Functional description of a Steer-by-Wire system 

In a Steer-by-Wire system, two main services have to be provided: the front axle actuation and the 

hand wheel force feedback. So, from a functional point of view, this implies two main functions that 

are not completely independent. However, in the following discussion, in order to simplify their 

description, we will not take into account the interdependencies between these functions. 

Front axle control. This function computes the orders that are given to the motor of the front axle, 

mainly according to the state of this front axle and the commands given by the driver through the hand 

wheel. The driver's requests are translated through: 

- the hand wheel angle, 
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- the hand wheel torque, 

- the hand wheel speed. 

Hand wheel force feedback. This function computes the order that will be given to the hand wheel 

motor, in particular, according to: 

- the speed of the vehicle, 

- the front axle position, 

- the front tie rod force. 

The elaboration of these orders requires the execution of filtering algorithms, complex control laws 

under stringent sampling periods of a few milliseconds. The main property to ensure is that the end-to-

end response time between a new command from the driver and the effect on the front axle is 

bounded.  

4.2 Dependability and real-time properties 

As stated in section 2.2, a Steer-by-Wire system must comply with the Safety Integrity Level 4 (SIL4 

[2]). This means that the system shall be able to tolerate a single failure and to ensure that the 

probability of encountering a safety-critical failure does not exceed 10-9 per hour. An important issue 

is to formally determine the relation between the distributed system that supports the steering control 

function and the failure occurrences at the steering system level. Section 4.4.5 aims to propose a few 

solutions to this problem. 

Besides these dependability constraints, any steering system has to ensure certain performances. 

Specifically, let us consider the front axle control function. According to the vehicle technical 

requirements stated in [19], whatever the system is (i.e., mechanical / hydraulic or by-wire), the 

maximum angles of the front wheels should be at least ±40 degrees (respectively, ±90 degrees for 

upcoming systems). This leads to a specific performance property imposing the ability to control the 

steering with a velocity of at least 40 degrees per second (respectively, 90 degrees). 

Furthermore, some real time properties are derived from control requirements. In particular, some 

control laws implemented in the case study required a sampling period equal to 2 ms (i.e., 500 

sampled wheel angle values per second). Each sample was treated through filtering and control 
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algorithms and led to a value that is used by an actuator in order to reach the desired steering position. 

Obviously a delay (named end-to-end response time), that cannot be neglected, exists between one 

sampling and its corresponding reaction on the actuator. This delay is mainly due to the execution of 

the algorithm on the ECU and to the transfer of the sampled value through the communication 

systems. In order to guarantee vehicle stability, this delay has to be less than a given bound that 

depends on the type of vehicle as well as on the driving condition (velocity, wheel angle, …). It is the 

carmakers’ responsibility to be able to compute the limit of the tolerated delay for any given situation 

the vehicle may be in. 

Notice that the occasional absence of samples or out-of-bound delays at the controller or actuator 

level, for instance, due to frame loss, does not necessarily lead to vehicle instability, but degrades 

steering performance (or Quality of Service). This is because most of the control laws that are used are 

designed with specific delay and/or absence of sampling data compensation mechanisms, tolerating 

thus, perturbations under a given threshold. In section 4.4.5.1, we will show an example of how to 

evaluate such a threshold value using a Matlab/Simulink model of the system. 

4.3 Operational architecture 

An operational architecture, which is a solution for the implementation of the functions presented in 

section 4.1, is described in this section. Figure 4 illustrates the hardware architecture on which the 

operational one is based. It includes four Electronic Control Units (micro-controllers) named, 

respectively, HW ECU1 (Hand Wheel ECU1), HW ECU2 (Hand Wheel ECU2), FAA ECU1 (Front 

Axle Actuator ECU1), and FAA ECU2 (Front Axle Actuator ECU2). Each node is connected to the 

two TDMA-based communication channels (BUS1 and BUS2). Finally, three sensors, named as1, as2 

and as3, placed near the hand wheel measure the requests of the driver in a similar way, the latter 

being translated into a 3-tuple <hand wheel angle, hand wheel torque, hand wheel speed>. Three other 

sensors, named rps1, rps2 and rps3, are dedicated to the measurement of the front axle position. 

Finally, two motors (FAA Motor2 and FAA Motor2), configured in active redundancy, act on the front 

axle while two other motors (HW Motor1 and HW Motor2) realize the force feedback control on the 
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hand wheel. Sensors as1, as2 and as3 (respectively, sensors rps1, rps2 and rps3) are connected by 

point-to-point links, both to HW ECU1 and HW ECU2 (respectively, FAA ECU1 and FAA ECU2). 

Implementation of the “Front axle control” function 

The requests of the driver are measured by the three replicated sensors as1, as2 and as3 and sent to 

both HW ECU1 and HW ECU2. Each ECU performs a majority vote on the 3 received values and 

transmits a “secure” data on both communication channels BUS1 and BUS2. The two ECUs, FAA 

ECU1 and FAA ECU2, placed behind the front axle, consume this data, as well as the last wheel 

position, in order to elaborate the commands that are to be applied to FAA Motor 1 and 2. 

Implementation of the  “Force feedback control” function 

In a way similar to the previous function, measurements taken by rps1, rps2 and rps3 are transmitted 

both to FAA ECU1 and FAA ECU2. Each of these ECUs elaborates information transmitted on the 

network. The consumers of this information are both HW ECU1 and HW ECU2 which compute the 

command transmitted to HW Motor 1 and 2.  

The replication of algorithms on several ECUs, of measurements from several similar sensors and of 

information transmission over redundant buses is highly used in this operational architecture. The 

choices made in terms of redundancy and diversification (see section 4.4.3) are constrained by 

dependability, cost and dimension requirements. Alternative Steer-by-Wire architectures presented in 

literature (e.g., [19]) use, in addition, two central ECUs located between the hand wheel and the front 

but, from an economic point of view, it is of course preferable to use only four ECUs if dependability 

criteria are met. 
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Figure 4 : Steer-by-Wire operational architecture 

4.4 Dependability issues 

In this section, after recalling which failures are taken into account, we justify choices that are made 

for the specification of the hardware architecture. 

4.4.1 Failure Model 

The terms fault, error and failure are currently used in system engineering.  In [20], these terms are 

clearly defined. Let us consider that a system has to deliver a service. A system failure is an event that 

occurs when the delivered service deviates from the expected one. An error is the part of the state of 

the system that may cause a subsequent failure and a fault is the adjudged cause of an error. A fault is 

active when it produces an error, otherwise it is dormant. Note that, if we consider that a system is 
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composed of components, we can observe possible causal relations between failure of one or several 

components and failure of the system:  

Component System
Fault  Error  Failure Fault  Error  Failure

 

Figure 5: Failure propagation 

Usually, two classes of faults can be distinguished according to their effects inside a system: 

Byzantine faults and coherent faults. These faults are caused by a failure of one or several components 

of the system. A Byzantine fault is a fault whose effect can be perceived differently by different 

observers. The effect of a coherent fault is seen the same by all observers. Moreover, the property of 

“fail silence”, assumed for some components, leads to a third class of fault. A component is said to be 

“fail silent” if, each time it is not silent, we can conclude that it is functioning properly. Note that at a 

system level, the silence of this class of component is seen as a fault when it occurs.  

A second classification of faults relies on the duration of a fault. In this case, we consider two types of 

faults according to their effect on the whole system. In our context, we will state that “transient fault” 

is a fault whose duration is such that the system does not reach a “not safe state”. A “permanent fault” 

is a non-transient one. The main issue is to evaluate the delay after which a transient fault becomes a 

permanent one. In section 4.4.5.1, we present a method for the evaluation of the “worst tolerable 

delay”. 

Following the approach proposed in [21], we define the system dependability requirement by a triplet 

FM(b,c,f), named “Flexible Failure Model”, where b is the maximum number of Byzantine failing 

sources, c the maximum number of coherent failing sources, and f the maximum number of fail-silent 

sources that the system must be able to tolerate. In this case study, we consider a failure model defined 

by FM(1,1,1): the system must always tolerate, at a given time, one Byzantine fault or one coherent 

fault or a fault due to one fail-silence of a component.  
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4.4.2 Operational architecture vs dependability requirements 

In this section, we give some rules that we applied for designing the architecture. The system under 

study has to provide two main services: controlling the front axle according to the driver requests and 

furnishing a force feedback to the driver. We focus on the former. A similar rationale can be used for 

the second one. In both cases, the main question is the evaluation of the minimum number of 

redundant components that contribute to meet the dependability requirement.  

Dependability analyses are generally based on a strong hypothesis assuming that, in the whole system, 

n simultaneous component failures can never occur for any set of redundant components (set of 

redundant hand wheel sensors, set of redundant “Hand Wheel ECU”, …). In this case study, we 

suppose that n is equal to 1.  

Note that in [22], Lamport states that 3n+1 redundant components are necessary to tolerate n 

Byzantine faults. In order to tolerate n coherent faults, it is sufficient to have 2n+1 redundant 

components. 

 

ECU redundancy 

Two functions need to be implemented in ECU: Front Axle Control and Force Feedback Control. To 

avoid costly and numerous wires, ECUs have to be placed close to the sensors, and communication 

between ECUs has to be multiplexed. A Hand Wheel ECU (respectively, a Front Axle ECU) is a 

consumer of information sampled from the hand wheel (respectively, front axle) and is a producer of 

information used by the Front Axle Control function (respectively, Force Feedback Control function) 

implemented in a Front Axle ECU (respectively, in a Hand Wheel ECU). According to the rule given 

by Lamport, the minimum number of redundant Hand Wheel ECUs (respectively, Front Axle ECUs) 

should be 4. This solution is mainly used in the aeronautic domain. But, automotive requirements are 

completely different in terms of cost and space. Therefore a classical solution is to use Fail-Silent 

ECUs. In this case, obviously, only two Hand Wheel  ECUs (respectively, Front Axle ECUs) are 

necessary. However, we have to ensure the fail-silence property. To do this, several techniques based 

on the Petri-Nets analysis [23], C Model simulation [24] or fault injection [25] are used. 
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Hand Wheel Sensor redundancy 

A Hand Wheel sensor produces information for two Hand Wheel ECUs. Three Hand Wheel sensors 

are necessary for ensuring that each Hand Wheel ECU, assumed to provide a voting algorithm, is able 

to tolerate one Byzantine fault (and subsequently one coherent fault or one fail-silent sensor). 

 

Actuator Redundancy 

Actuators are mechanical components without any calculating ability, and a single actuator can take 

charge of piloting the Front Axle. Furthermore, according to the inherent reliability properties of these 

actuators, we guarantee that an actuator can never wrongly apply an order received by a Front Axle 

ECU. Under these assumptions and taking into account the formerly stated fail-silence property of a 

Front Axle ECU, only 2 couples <Front Axle ECU,actuator> are necessary for the tolerance of, at 

most, one fault.  

4.4.3 Redundancy and diversification 

According to the dependability requirements, presented in section 4.2, and to the assumption made on 

the ECUs (fail-silence in our case) and according to the failure occurrence model (section 4.4.1), a 

certain level of redundancy has to be implemented. If the chosen fault-tolerance strategy is failure 

recovery, redundant ECUs will work only in the case of the primary ECU failing. In this case, failure 

detection must be quick and reliable. Otherwise, if the strategy is failure compensation, as with the 

front axle motors, redundant ECUs will be placed in parallel and work simultaneously. Because of the 

stringent real-time constraint, our architecture must provide failure compensation.  

It is worthy to note that the redundancy of identical ECUs does not prevent the architecture from 

common mode failures: the hardware of redundant ECUs should be furnished by different suppliers 

and their software realized by different teams. The Ariane 501 explosion is a good example to show 

the importance of diversification. Both back-up and active inertial reference systems failed for the 

same reason [26]. If software and/or hardware had been diversified, one of the two inertial reference 

systems would have remained safe. But, for cost and maintenance reasons, it is not always possible to 

implement diversified components and technologies. 
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4.4.4 Configuration of the communication protocol  

Communication is driven by a TDMA-based protocol with two replicated channels. More precisely, 

the network that is used in this case study is TTP/C because of the availability of the protocol 

specification and the components. However, the same analysis is valid for any time-triggered protocol 

such as TTCAN and FlexRay. 

For reliability reasons, the same frame is transmitted on the two replicated channels. In order to avoid 

common mode failures (EMI, temperature, …) channels should be placed as far as possible from each 

other in the vehicle.  

4.4.4.1 Slot allocation strategy to maximize the “robustness” of the transmission 

In TTP/C, the transmission order inside a round can be freely chosen by the application designer. 

Among the criteria for constructing the TDMA round, applicative constraints like computation time 

and sampling rates can be taken into account. But, as shown in [27, 28], the robustness of a TDMA-

based system against transmission errors heavily depends on the location of the slots inside the round. 

In automotive systems, one observes that transmission errors are highly correlated: there occur 

perturbations that corrupt several consecutive frames (so called "bursts" of errors). Should two frames 

that belong to the same FTU (Fault Tolerant Unit, see section 3.1.2) be transmitted just one after the 

other, then a single perturbation could corrupt both of the frames. The objective to pursue depends on 

the status of the FTU with regard to the concept of “fail-silence” (see 3.1.3). For FTUs composed of a 

set of fail-silent nodes, the successful transmission of one single frame for the whole set of replicas is 

sufficient since the value carried by the frame is necessarily correct. In this case, the objective to 

achieve with regard to the robustness against transmission errors is the minimizing of the probability 

that all frames of the FTU (carrying data corresponding to the same production cycle) be corrupted. 

This probability is denoted P_all in [27]. 

In practice, replicated sensors may return slightly different observations and, without extra 

communication for an agreement, replicated nodes of a same FTU may transmit different data. If a 

decision, such as a majority vote, has to be taken by a node with regard to the value of the transmitted 

data, the objective is to maximize probability that at least one frame of each FTU is successfully 
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transmitted during a production cycle. If the production cycle is equal to one round then it comes back 

to minimizing P_one, the probability that one or more frames of an FTU have become corrupted. 

It has been shown in [27], with some reasonable assumptions on the error model, that the optimal 

solution to minimize P_all is to “spread” the different frames of a same FTU uniformly over the 

TDMA round. An algorithm that ensures the optimal solution is provided for the case where the FTUs 

have, at most, two different cardinalities (for instance, one FTU is made of 2 replicas and other FTUs 

are made of 3 replicas). For the other cases, a low-complexity heuristic is proposed [27], and it was 

proven to be close to the optimal on simulations that were performed. 

In [28], it was demonstrated that, under very weak assumptions on the error model and whatever the 

number of FTUs and their cardinalities, the clustering together of the transmission of all the frames of 

an FTU minimizes P_one when the production cycle of the data sent is equal to the length of a TDMA 

round. 

These two results, for the fail-silent case and non fail-silent case, provide simple guidelines to the 

application designer for designing the schedule of transmission. In our case-study, since all ECUs are 

fail-silent, our requirement is to minimize the probability of losing all replicas in the TDMA round, 

and thus the redundant frames have to be spread over time. 

4.4.4.2 Allocation of the slots in the round  

Let us consider the architecture shown in Figure 4 with the following characteristics for the production 

of data: 

HW ECU1/ HW ECU2 - production of two pieces of data packed in a single frame: 

- HW Angle every 2ms, 

- HW Torque every 4ms. 

FAA ECU1/ FAA ECU2 - production of two pieces of data packed in a single frame: 

- FAA position every 2ms, 

- Tie Rod Force every 4ms. 

The size of the TDMA Round is set to the minimal production period, i.e., 2ms. Since the frames are 

composed of the same information, whatever the round, the size of the cluster cycle is equal to one 
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round, which is possible with the latest version of the specification [7]. According to all these 

considerations, the location of the slots inside the round will be the following: 
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Figure 6: Placement of the slots in the cluster cycle 

The slot duration is set equal for every slot. However, it is not a constraint imposed by the TTP/C 

protocol but, in this case study, this choice has been justified by application level constraints (deadline 

on tasks, …). 

4.4.5 Evaluation of the Behavioral Reliability of the Architecture 

For a given Mean Time To Failure (MTTF) of the components (sensors, computers, network links, 

actuators) and their redundancy, the use of classic reliability analysis methods, for instance Fault-Tree 

Analysis (FTA) and Failure Mode and Effect Analysis (FMEA), can provide an estimation of the 

reliability of a Steer-by-Wire architecture (see, for instance, [29]). However, neither transient faults 

nor real-time performances are taken into account in these kinds of evaluation, and thus, these 

evaluations are clearly not sufficient in our context. 

Under normal conditions, the use of a time-triggered scheduling of tasks and messages allows the 

reception of the sensor data at regular intervals, thus providing bounded end-to-end delays. However, 

random environmental perturbations (e.g., EMI) could make the communication system unavailable 

during some time periods. For example, consecutive transmission errors can create a time period 

during which the controller or the actuators do not receive any sensor data. The concept of behavioral 

reliability, defined in [30], for determining the probability with which the Steer-by-Wire system 

violates the end-to-end delay constraints for one hour under a stochastic perturbation model. Our 

objective is to ensure this probability must be less than 10-9 which is more stringent than the SIL4 

requirement, see section 2.2. 

 26 



The end-to-end delay for the front axle control function is composed of the so-called “pure delay” 

(delay induced by the system before the driver’s command is given to the actuators) and the 

mechatronic delay introduced by the actuators (electric motors in our case). The mechatronic delay can 

be bounded by a constant Tmec. In what follows, we will only focus on the analysis of the pure delay 

analysis which is denoted by Tp. Systems that  are not able to ensure a pure delay Tp lower than a 

tolerable upper bound Tmax are considered to be unstable. The value of Tmax can be estimated by tests in 

vehicles and simulations. 

The behavioral reliability is estimated by the probability that the pure delay is greater than the 

maximum tolerable bound : PBR = P[Tp > Tmax]. When Tp is equal to or lower than Tmax, the quality of 

service is degraded while the vehicle is considered to be potentially unstable when  Tp > Tmax . 

4.4.5.1 Evaluation of Tmax 

To illustrate the method, only the function “turning the wheels according to driver’s request” is 

considered. The evaluation of Tmax can be performed either by testing in a vehicle or by using 

Matlab/Simulink. The method we adopted was using Matlab/Simulink first, and confirming the results 

with testing in vehicles. The software framework used was composed of a Matlab/Simulink model of 

the Steer-by-Wire architecture and a vehicle environment model.  

The architecture presented in section 4.3 was simulated according to a hand wheel angle utilization 

profile (positions of the hand wheel over time). The impact of the variation of Tp on performance, 

mainly the stability of the vehicle and the time needed to reach the requested wheel angle, was 

evaluated and translated in terms of the “Quality of Service Score”, denoted by S. Table 1 shows an 

example of the relation between the score S given to the system and the perturbation time. It 

corresponds to an instantaneous rotation of the hand wheel from 0° to 45° at 100km/h. From Table 1, 

with a minimum tolerable score of 11, one sees that 17.6 ms is the critical limit for this perturbation 

time: beyond this limit, the vehicle becomes unstable and the safety of the driver can be at risk.  

The different values of Tp in Table 1 correspond to the cases where, during 1, 2, 4, 5, 6, 7, 8, 9 and 14 

consecutive cluster cycles, the front axle actuators receive nothing (caused, for instance, by 

environmental perturbations). In practice, even without receiving any sampling data, the actuator still 
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performs but the turning of the front axle is made, for instance, on the basis of the command of the 

previous period, or with an estimation based on the commands of several previous periods. So, in this 

case Tp + Tmec is no longer the end-to-end delay strictly speaking, but the delay during which the 

system has not been able to take into account the current hand wheel angle in order to compute the 

commands for the actuators. 

 

Configuration of 
the Steering System

TP (ms) Score 
S 

Mechanical steering 
system 

0 11.23 

Steer-by-Wire 3.6 11.21 
Steer-by-Wire 5.6 11.19 
Steer-by-Wire 9.6 11.15 
Steer-by-Wire 11.6 11.13 
Steer-by-Wire 13.6 11.10 
Steer-by-Wire 15.6 11.05 
Steer-by-Wire 17.6 11 
Steer-by-Wire  19.6 10.90 
Steer-by-Wire 29.6 10.45 

Table 1: QoS score vs. perturbation time 

 

4.4.5.2 Quantification of the Behavioral Reliability 

With the use of the TTP/C network, communication cycles are predefined and cyclic. However, as will 

be shown by the analysis of the example shown in Figure , Tp can be greater than a cluster cycle 

because of a possible desynchronization between the sampling period and the cluster cycle. The 

evaluation of the behavioral reliability should be based on the worst case Tp but not the nominal Tp 

because of the safety-critical nature of the system. Moreover, with transient failures due to 

perturbations, Tp  becomes a random variable. Therefore, in this section, we first evaluate Tp and then 

the behavioral reliability. 

 

Worst case pure delay without transient failures 
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Figure  shows the temporal characteristics of the front axle control function and the relationship with 

the cluster cycles. The Fault Tolerant Communication Layer (section 3.3.2) has been configured so 

that the front axle ECUs (FAA ECU1 and 2) have to wait for all replicas of data before consuming 

them. 
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Figure 7: Temporal characteristics of the function “turning the wheels according to the driver’s 

request” 

Cluster cycles are numbered by index i = 1, 2, … The ith cluster cycle starts at ti. For the front axle 

control function, the “worst case pure delay”, denoted by Tp
WC, appears when the ith hand wheel sensor 

sampling period starts just after ti. This slight desynchronization leads to a situation where, during the 

ith cluster cycle, only the data elaborated using the sample of the (i-1)th cluster cycle are transmitted to 

the front axle ECUs. In fact, in TTP/C, data kept in the buffer of each HW ECU is transmitted at the 

beginning of each slot. In Figure , at the beginning of each HWA ECU slot, data in the buffer has not 
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yet been refreshed and only data corresponding to the previous sample is transmitted. So, the worst 

case delay between the ith HWA sample and the beginning of the ith actuation is given by: 

WC
p MA NET TT T T= + +T   (1) 

where TMA is the duration of a cluster cycle, TNET corresponds to the delay between the beginning of a 

cluster cycle and the arrival of all the replicas to the FAA ECU2, and where TT  is the treatment time 

of the data within a FAA ECU.   

Although, in our case, we have only one TDMA-round per cluster cycle, in general, one can find 

several TDMA-rounds per cluster cycle. In this latter case, assuming that there is one computation per 

data reception, the equation 1 takes the form : 

WC
p r NETT nT T= + + TT   (2) 

where Tr  is the duration of a TDMA round and n is the number of the TDMA-rounds between two 

HWA data emissions (n could be less than or equal to the number of TDMA-rounds in a cluster cycle). 

This result should be used for system dimensioning at the design step in order to ensure that Tp
WC is 

smaller than the tolerable upper bound Tmax (e.g., 17.6 ms for the example presented in 4.4.5.1). For 

the slot placement given in Figure , we obtain: 

TWCPD = 1*2 + 1.4 + 0.2 = 3.6 ms  

This is to say that, in failure-free conditions, the pure delay is bounded by 3.6 ms. 

 

Pure delay under transient failures and behavioral reliability evaluation 

When perturbations occur, the pure delay can be longer than Tp
WC, but how the perturbations will 

influence the pure delay depends on the failure occurrence model. Establishing a realistic failure 

model according to perturbation occurrences is a complex statistical work that is beyond the scope of 

this chapter. A more realistic failure model of EMI perturbations is proposed in [31]. 

In what follows, to illustrate the evaluation method of Behavioral Reliability (PBR), we use a simplified 

failure model, stationary in time and where failures are independent from each other. The granularity 

of the failure model is the Cluster Cycle (one failure leads to one erroneous or one empty cluster 

cycle). A failure can happen at any step detailed in Figure . Whichever step has a failure, we consider 
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that no information is transmitted to the actuators during this cluster cycle (the information is lost or 

destroyed before the command is given to the actuators). In the worst case, each time a failure occurs, 

the actuator has to wait Tp
WC plus one cluster cycle TMA to receive refreshed information. Let Tp

WC,ERR
   

denotes the maximum delay with N consecutive erroneous cluster cycles:  

p

]

,WC ERR WC WC
p MA p rT NT T NnT T= + = +   (3) 

Behavioral Reliability is then calculated by PBR =P[Tp
WC,ERR > Tmax] = P[N(nTr) + Tp

WC > Tmax]. So, 

we have: 

max[ ( ) /WC
BR p rP P N T T nT = > −    (4) 

This probability can be directly used to determine the Safety Integrity Levels (SIL). In this case-study, 

the requirement is that PBR < 10-9. 

In our simplified failure model, as the failures occur following a stationary and uniform probability 

distribution, PBR also gives the probability of failures per hour. For the studied architecture, the 

maximum tolerable number of erroneous cluster cycles is given by: 

N = (Tmax- Tp
WC)/(nTr) = (17.6 – 3.6)/2 = 7. 

So, we must here have PBR = P[N > 7] < 10-9 (failure/hour). 

As explained before, the chosen error model is a simplified one: erroneous or empty communication 

cycles are assumed independent events and the probability of losing one cluster cycle is ER. So, the 

probability of losing x consecutive cluster cycles before one successful transmission is P[N = x] = (1 

– ER)(ER )x (Geometric law) 

1

0

[ ] 1 [ ] ( )
x

x
BR R

k

P P N x P N k E +

=

= > = − = =∑    (5) 

The proposed operational architecture meets the dependability requirements with ER < 0.075  under a 

geometrical failure model. In practice, it is necessary to use a more realistic error model, constructed 

on the basis of measurements taken from a prototype. Indeed, the effects of transient failures and 

external perturbations, such as EMI or temperature peaks, are not negligible and will become even 

more problematic when the 42V technology [32] is used. 
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5 Conclusion 

X-by-Wire is a clear trend of automotive development due to the advantages of the electronic 

components for enhancing safety, functionality and reducing cost.  

In this chapter, after having examined the real-time and dependability constraints of the X-by-Wire 

systems, we reviewed the fault-tolerant services and the communication protocols (TTP/C, FlexRay 

and TTCAN) that are needed for such systems. Methods for designing a dependable X-by-Wire 

system were described and a Steer-by-Wire system based on TTP/C was then used as a case study. We 

showed how to build a fault-tolerant architecture by choosing the necessary redundant components 

and the schedule of transmission. A method for evaluating the probability that the real-time constraints 

would be violated under a simple perturbation model was also proposed. This method can be used to 

predict whether the architecture meets the SIL4 requirement. 

If the dependability of the X-by-Wire can be evaluated by assuming that one can establish a realistic 

failure model, the certification organization still remains to be convinced. At the time of writing, the 

legislation in some  countries does not authorize fully X-by-Wire cars to circulate. The use of X-by-

Wire systems mass production cars in the future also depends on other factors such as the advances in 

the 42V technology.  
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