N

N

Extending Decentralized Discrete-Event Modelling to
Diagnose Reconfigurable Systems
Alban Grastien, Marie-Odile Cordier, Christine Largouét

» To cite this version:

Alban Grastien, Marie-Odile Cordier, Christine Largouét. Extending Decentralized Discrete-Event
Modelling to Diagnose Reconfigurable Systems. 15 international workshop on principles of diagnosis,
Jun 2004, Carcasonne / France. inria-00000524

HAL 1d: inria-00000524
https://inria.hal.science/inria-00000524
Submitted on 27 Oct 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00000524
https://hal.archives-ouvertes.fr

Extending Decentralized Discrete-Event Modelling to
Diagnose Reconfigurable Systems

Alban Grastien! and Marie-Odile Cordier! and Christine Largouét?

Abstract.

On-line reconfiguration is the ability to rearrange dynami-
cally the elements of a system to accommodate failure events
or new requirements. Due to the modular representation, de-
centralized discrete-event approach, recently proposed for the
diagnosis of systems, is particularly well suited to the diag-
nosis of reconfigurable systems. The contribution of this arti-
cle is to extend our decentralized approach to reconfigurable
discrete-event systems. A first step in this direction is to ex-
tend the way a decentralized system is modelled. The idea
consists in modelling separately the behavior of the compo-
nents and the system topology. A second step is to formally
define what is a reconfiguration. A property of reconfigura-
tion, that we call safety, is identified to be important. When
satisfied, we show that our decentralized diagnosis approach
can easily be extended to reconfigurable systems.

1 INTRODUCTION

Real-world decentralized systems are designed to enable re-
configuration, i.e., the modification of the connections be-
tween the components and/or the addition or removal of com-
ponents. This is particularly the case when those systems are
networks of components such as telecommunication or power
transportation networks. The reason of a reconfiguration can
be the update of the system (substitution/addition of compo-
nents) or an emergency procedure to protect the system from
a failure in a subsystem (removal of connections). Another
benefit of on-line reconfiguration arises from its possible in-
tegration with diagnosis [5]. Thus a relevant reconfiguration
can be chosen to refine the discrimination between diagnoses
and then to gain amount of time and efficiency in finding the
right fault.

In those examples, it is clear that reconfiguring a system
should not stop the diagnosis task, even if it is done on-
line. However, most of the diagnosis approaches are topology-
dependent, as for example expert systems or chronicle-based
systems [3]. Model-based diagnosers [11, 10] are also gener-
ally unable to deal with this task since they rely on a global
system model which either is too large if it accounts for all
possible topologies, or too costly to compute on-line if the
model has to be changed during the diagnosis task. Due to
the great number of topologies of highly reconfigurable sys-

1 Irisa, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes
Cedex, France, {agrastie,cordier}@irisa.fr

2 University of New Caledonia, BP. 4477, 98847 Nouméa Cedex,
New Caledonia, largouet@univ-nc.nc

tems, it is thus not reasonable to rely on an explicit global
model especially when the model of future components is not
necessarily known at the time of its construction.

Decentralized approaches, as presented in [7, 9], are inter-
esting since they do not require to compute an explicit global
model and consider a system as a set of connected compo-
nents. Successfully used for diagnosis, they appear thus well
suited for on-line reconfiguration because of their modular ar-
chitecture: on the fly computation of local diagnoses is flexible
enough to add or remove components in the system. However,
until now it is generally assumed that the topology of the sys-
tem does not change on-line.

In this paper, we extend the decentralized approach in [9]
to reconfigurable discrete-event systems. The reconfiguration
actions are decided by an operator that informs the diagnos-
ing system which therefore knows exactly the topology of the
supervized system. A first step in this direction is to extend
the way a decentralized system is modelled. The idea is to mo-
del separately the behavior of the components and the system
topology. The notion of topology is formally introduced and
defines the connections between the components. It becomes
possible to change it in a modular way. Even if not explicited,
the system model is then well-defined as the synchronization
of models of connected components. A second step is to for-
mally define a reconfiguration®. A property of reconfiguration,
that we call safety, is identified to be important. When satis-
fied, we show that the decentralized diagnosis approach pro-
posed in [9] can easily be extended to reconfigurable systems.

This paper is organized as follows. In Section 2, we present
an illustrative example that we use throughout the whole pa-
per. Section 3 introduces the modelling of reconfigurable sys-
tems by stating some simplifying hypotheses. Section 4 defines
reconfiguration and presents the safety property. Section 5 il-
lustrates our contribution by examining successive reconfigu-
rations on a running example. Finally, the method used for
taking into account reconfigurable systems by the decentral-
ized diagnosis approach is sketched in Section 6.

2 AN ILLUSTRATIVE EXAMPLE

In this section we present an example of a system that support
different configurations. The device is composed of a pump P
and two pipes PI1 and PI2. The pump delivers the water while
the pipes carry it to other components (out of the studied
system).

3 The way this reconfiguration is chosen is out of the scope.i Such
design problems are discussed in [12] for example.

The pump has three modes of behavior: the OK behavior
and two faulty behaviors (leaking and blocked). Firstly the
pump can leak (fault f1) and then the output flow becomes
low. Secondly, the pump can block (f2) and the output flow is
null. In each mode, the pump can be stopped (action off) and
started again (action on) by an operator. During an action on
or off, the mode of the pump is not changed.

The pipes exhibit two modes of behavior, the OK behavior
(all the received water is delivered to the output) and a faulty
behavior (fault F') when the pipe is leaking: in this case, all
or part of the input flow is lost.

The output flow of each component can be high (denoted
by h), low (denoted by l) or zero (denoted by z).

As will be seen later in the models (subsection 3.1), two
non-deterministic cases are considered for a pipe when it is
leaking and when it receives a low flow (from the pump or
from the other pipe). Its output flow is lower than its input
flow. We consider that it can be measured either as a low or
zero flow, according to the importance of the leaking.

Q)

— PN — — P12 —

Topi Top2
L
P2 @a P2 — PI1 — —P — PI2 —
components Top3 Top4

of the device

Figure 1. Possible topologies of the system

Our system delivers water to an external component. The
modularity of the system enables us to use it for different
tasks. For example, the pump can be used with a unique pipe
(PI1) as depicted in the topology Topl of Figure 1. If a leak
occurs on PI1, PI1 can be replaced by the pipe P12 as depicted
in the topology Top2. If a new functionality is required, the
second pipe is connected, as depicted by the topologies Top3
or T'op4, at the end of the first one. Those evolutions of topol-
ogy are called reconfigurations.

Some reconfiguration actions are not allowed in some states
of the system. For example, the action of connecting a pipe
to the pump cannot be realized while it is delivering water. It
is first necessary to stop the pump.

Considering an on-line diagnosis task as monitoring the flow
out of a pipe, the on-line reconfiguration should not stop the
diagnosis task and it should take into account the evolution
of the topology in the model.

3 MODELLING RECONFIGURABLE
SYSTEMS

This section concerns the modelling of reconfigurable systems.
It must first be noted that, since physical components (or
connections between them) can be modified on-line, the de-
centralized way of modelling a system as presented in [7, 9] is
adequate for reconfigurable systems. The decentralized model

proposed in [9] is consequently extended in order to allow a
more precise description of the way components are physically
connected by connection points (or ports). In the following,
we successively examine the component model, the topology
model and the system model. To simplify the presentation,
we make some hypotheses which are given along the text.

3.1 Component model

A component is a (physical or abstract) element. Each com-
ponent may have connection points (sometimes called points).
Each point may be linked by a connection to a point of an-
other component (the former point is called internal point) or
to the system environment (external point).

Communications (flow, messages, etc.) between compo-
nents are made through connections. By abuse of language
the content of a communication is called a message. A mes-
sage is said to be internal when it is sent by another compo-
nent. It is said to be exogeneous when it is sent by the system
environment. It can be supposed, without loss of generality,
that no more than one exogeneous message can be received
by a component at the same time. Consequently, we have the
following hypothesis:

Hypothesis 1 Each component has a unique connection point
with the environment. This only external point is denoted

ext
p .

A component is modelled as a discrete-event system, which
means that its state is only changed on the reception of a
message. As usual, we make the following assumption:

Hypothesis 2 A component can receive only one (internal or
exogeneous) message at the same time.

The component behavior is described by a finite state ma-
chine 3.

Definition 1 (Component Model) The model of the com-
ponent is described by the finite state machine X =
(Q,E, P, T,Q°) where:

e () is the set of component states,

e [is the set of messages,

P is the set of (connection) points, p°** € P is the external
point,

TC(Qx(PxE)x(PxE)"xQ) is the set of transitions,
Q° is the set of initial states.

A transition t = (¢, (p,e), {(p1,e1),...,(Pr,ex)}, ¢') can
be read as follows: in the state ¢, the component receives the
message e on the point p. Then, it goes in the state ¢’ and
emits the messages e; on the points p; (i € {1,...,k}).

In order to allow reusability, two or more components may
have the same component model. A component ¢ is associ-
ated with its model by the function Mod, where Mod(ci) =
Yk, an instance of a component model . The difference be-
tween two different instances of ¥, ¥; and ¥;, is that labels
are distinct and indiced by respectively ¢ and j.

To illustrate the definition of component model, the models
of a pump and of a pipe are given in Figure 2 and Figure 3.
The transition label p:e|{(p;:e;)} means that the transition
is triggered by the reception of a message e at the connection
point p and that each message e; is sent to the connection
point p;.

in:h[{out:h}

in:z|{out:z}
ext:off[{out:z}

in:l[{out:l}

in:I{out:l} % in:h|{out:h}

ext:on|{out:h}

t:f1 in: X i .
{eoxut:l}l ext:le{out:z} in:z|{out:z} in:l|{out:1}
ext:F| ext:F| ext:F|
o {out:z} {out:l}
@ e><t:f2|{out:z}@> @ g indl{out:1} ®
ext:on| ?}xt:on| in:z|} in:l{out:z} \>
. in:h|{out:I
fourd - indifout:z} :E:H}g%ut:l}}
ext:off| ext:off| in:h[{out:1}
{out:z} {3 in:l|{out:1}

@ ®

in:z|[{out:z}

Figure 2. Model of a Figure 3. Model of a pipe

pump

3.2 Topology model

As seen before, a component is modelled as a discrete-event
system, which means that its state changes on the reception
of a message and that the component reacts by sending mes-
sages. It is then clear that the behavior of connected com-
ponents is constrained by the way they communicate. This
constraint is called synchronization and is described by a syn-
chronization set.

Definition 2 (Synchronization set) A synchronization set, de-
noted |, between two models of components ¥; =
<C?17 El, Pl, Tl, Q‘f) and Yo = <Q2, EQ, PQ, TQ, QS) is a sub-
set of the pairs of messages of the two finite state machines:
| C FEi x Es.

In our example, the synchronization set indicates that the
flow emitted by the pump is connected to the input flow of
the pipe (for example, a low flow in output of the pump corre-
sponds to a low flow in input of the pipe). The synchronization
set is then the identity function, i.e., {(h, k), ({,1), (z,2)}.

A connection is described by the connected points and the
synchronization set which has to be satisfied.

Definition 3 (Connection) A connection co is defined as a n-
uplet ((c1,p1), (c2,p2),|) such that:

® o1 # e,
o Vk € {1,2},%x = (Qx, Ex, Pr, Tk, Q%) = Mod(ck),px €
P,

e | is a synchronization set between Mod(c1) and Mod(c2).

By definition, a component cannot be connected to another
component by its external point: Yk € {1,2}, pr # pg*"
The set of connections in the system is called the topology

(or the configuration).

Definition 4 (Topology model) The topology model of a sys-
tem Top is a set of connections between the components
of the system such that no point is connected more than
once: Vco,co' € Top, co = ((c1,p1),(c2,p2),]), co' =
((cllypll)v(cl%pé)vr)v co # COI7 Vi € {172}7j € {172}7 Ci =
C;- = Di # p;-.

3.3 System model

The model of the system depends on the model of each of
its components and of the topology model. We first present
simplifying hypotheses. Then, the decentralized model of the
system and the explicit behavior it describes are defined. It
can be noticed that these definitions are direct extensions of
the definitions which are given in [9]. The main difference is
the addition of the explicit topology of the system which was
only implicit in [9]. The explicit description of the topology
is necessary when dealing with reconfigurable systems. It can
also be noted that this topology model is a simplified form of
the link models proposed in [7].

3.3.1 Simplifying hypotheses

The system is modelled as a discrete-event system which
means that it evolves on the occurence of exogeneous mes-
sages. We make the following hypothesis:

Hypothesis 3 The system can receive only one exogeneous
message at the same time.

The next hypothesis states that we focus on synchronous
systems. To consider communications with delays and/or
losses during the transmission of messages in our system, the
communication channel should be modelled as a component
connected to the components it connects.

Hypothesis 4 Communications between components are in-
stantaneous.

As said previously, components are modelled as discrete-
event systems, which means that, when a component receives
an exogeneous message, it may react by sending messages to
other components, which may themselves react. This propa-
gation of messages has to satisfy some finiteness properties,
which explains the following hypothesis:

Hypothesis 5 The propagation of a message through the com-
ponents can be described by a tree of visited components. In
this tree, a component can only be visited once.

3.3.2 Decentralized model of the system

Definition 5 (Decentralized Model of the System)
A decentrali-zed model of the system is
(Comp, Mod, Top) where:

a n-uplet

e Comp is the set of components of the system,
e Mod maps each component to its model,
e Top is the topology of the system.

3.3.3 Explicit behavior of the system

The decentralized model of the system completely defines the
behavior of the system. This behavior is implicit, but can be
explicitly computed as follows.

We introduce the notion of e-transition, which corresponds
to the fact that no message is received by a component. The
state of the component is not modified by an e-transition.

Definition 6 (Free product) Let ¥; = (Qs, Es, Pi, Ti, QF) be
the models of the n components c;, the free product of
n finite state machines Y; is a finite state machine ¥ =
(Q,E,P,T,Q°) where:

¢ Q=Q1 X XQn,
E=E U - UE,,

e P—P,U---UP,,

e T = (ThU{e}) x ... x (Tn U{e}) is the set
of transitions (q1,...,qn) (ma,.mn) (q1,---,qn) =
(1 2540, gn = ¢l), where ¢ —5¢q) is a transi-

tion of T; or an e-transition,

e Q°=Q%x...xQ°.

The free product computes the behavior of the system without
any constraint on the connections.

Let t be a transition (t1,...,tn), with ¢ =
(gis (pirei), {((pin, i),y (Pikseip))), qi) or ti = e
We denote t = (q,eed,eeqg,q’), where ¢ = (qi,...,qn),
qd = (¢,...qn), eed is the set of the messages received

by the components and eeg the set of the messages sent
by the components. They are computed by these formule:
eed = Ui{(pi,ei)} and eeg = Ui].{(pi,j,ei,j)} (Vi such that

t; is not an e-transition).

Definition 7 (Synchronization on a connection) A transition
t = (q,eed,eeqg,q') is synchronized on a connection

((c5,15), (e, pr), 1) if:

e (Jej, (pj, e;) € eeg) = (Fex, (P, ex) € eed A (e, ex) €),
o (Je, (pr,ex) € eed) = (Jej, (pj,e;5) € eeg A (ej,¢ex) € |).

The synchronization on a connection checks that any emitted
message is received and conversely.

Definition 8 (Synchronization on a topology) A transition
t = (q,eed,eeg,q’) is synchronized on the topology Top of

the system if:

e it is synchronized on each connection of the topology,

d V(p7e)’ (p’e) € eed = (301,p1,62,|, ((Cl’p1)7(027p)’|) €
Top) V(3i,p = pi™),

e Alp, (3i,ps™ = p) A (e, (p, e) € eed)

The first proposition of Definition 8 ensures that the messages
are synchronized on the connections. The second proposition
ensures that every received message belongs to a connection
or is received on an external point. Note that a message can
be sent even if no component received it when the connection
point is deconnected. The third proposition ensures that a
transition contains exactly one exogeneous message.

Definition 9 The explicit behavior of the system
(Comp, Mod,Top) is the finite state machine ¥ =
(Q',E,P,T',Q°) from the free product ¥ = (Q,E, P, T,Q°)
such that Q' C Q is the set of states and T’ C T is the set of
synchronized transitions of F.

4 RECONFIGURING DISCRETE EVENT
REACTIVE SYSTEMS

A system is a network of connected components and the set of
current connections is called the topology (or the configura-
tion). The modification of a topology is called a reconfigura-
tion. The addition of a new connection is called a connection

action while the removal of a connection is called a decon-
nection action. A system is said to be reconfigurable when its
topology may be reconfigured.

Definition 10 (Deconnection action) A deconnection action
aq removes a connection from the system. The deconnec-
tion action is denoted by the connection that is removed:

aq = ((c1,p1), (c2,p2),).

Definition 11 (Connection action) A connection action ac
adds a connection to the system. The connection action is de-
noted by the connection that is added: a. = ((¢1, p1), (c2, p2), |

).

A reconfiguration is a set of connection and deconnection
actions. We consider that these actions are instantaneous. It
means that no event can occur between two actions.

Definition 12 (Reconfiguration) A reconfiguration R in a
topology Top is a pair (DAr, CAr) where DAx is a deconnec-
tion action set (DAr C Top) and CAR is a connection action
set, such that: R(Top) = (Top\ DAr) U CAx is a topology.

R(Top) is the topology of the system after the reconfigura-
tion.

We consider that a reconfiguration cannot be executed in
any state of the system components. For example, it is clearly
not safe to disconnect the output of a pump while it is de-
livering water. More precisely, the safety of a reconfiguration
depends on the connection points concerned by the recon-
figuration. For instance, we can imagine a pump with two
connection points, one connected with a pipe and the other
with a container; the pump has to be stopped when connected
to a new pipe but has not to be stopped when connected to
a new container.

It is why, before formally defining the reconfiguration safety,
we extend the component model and associate with each con-
nection point the set of states in which a reconfiguration is
allowed.

The component model is extended by the addition of G as
follows:

Definition 13 (Extended model of a component) The model
of the component c is described by the finite state machine
¥ =(Q,E,P,T,G,Q°) where:

e () is the set of component states,

FE is the set of messages,

P is the set of (connection) points, p°** € P is the external
point,

TC(Qx(PxE)x(PxE)*xQ) is the set of transitions,
G € (P — {p®'} — 29) is a function that associates with
each internal connection point the set of states that support

a reconfiguration,
e (Q° is the set of initial states.

In our example, the set of states in which the pump (see Fig-
ure 2) may be reconfigured, is given by Gp(out) = {1,4,5,6}
(out is the only internal connection point). These states
are those where there is no outflow. For the pipe (see Fig-
ure 3), which has two internal connection points, we have

Gpr(in) = {1,4}, and Gpr(out) = {1,4,5}, 1 and 4 being
states where there is no inflow, and 1, 4 and 5 being states
where there is no outflow.

A safe reconfiguration is defined as follows:

Definition 14 (Safe reconfiguration) A reconfiguration R is
safe if V((c1,p1), (c2,p2),|) € DAr U CAR, the current state
of the component ¢; is in G;(p:), Vi € {1, 2}.

The safety property of a reconfiguration ensures that the
state of any component is not changed by the reconfiguration.
For instance, it seems normal to require that the pipe is empty
and the pump is stopped when deconnecting a pipe from a
pump. Otherwise, it is difficult to predict what happens to
the pump and to the pipe (where is the water flowing?). If we
accept only safe reconfigurations, we have:

Property 1 The state of any component of a system is not
changed by a reconfiguration.

This safety property of a reconfiguration is important since
one knows exactly what happens to a system when it is recon-
figured. It allows consequently to extend the (decentralized)
on-line diagnosis in order to take into account reconfiguration
actions in an easy way as sketched in Section 6.

5 ILLUSTRATION

In this section, we illustrate the way our model react to
the occurrence of reconfiguration actions and external events
in a simulation way. Starting from the very beginning (a
set of unconnected components), a sequence of interleaved
(re)configuration actions and external events is simulated and
the way these events are taken into account by the model is
commented. We also show the modification of the global mo-
del in different topologies due to the reconfigurations.

5.1 One pipe delivering water

Let us suppose that we start from scratch. The components
are still not connected and are in their initial states: the pump
is OK and off (state 1) and the two pipes are OK and empty
(state 1). The model system is then (Comp, Mod, Top), where
Comp = {P,PI1,PI2}, Mod is such that the models of the
pump and the two pipes are instances of the models given in
Figure 2 and Figure 3 and Top = 0.

Let us suppose now that we want to deliver water to a
container that is close to the pump. The operator has first to
connect the pump to a pipe (we choose PI1) and to start the

pump.
A first reconfiguration consists in connecting
the pump and the pipe. Ri1 = (DAr, = {},

CAR, = {((P,p:out), (PI1,pil:in),|)}). (| is the syn-
chronisation set presented in subsection 3.2, i.e., the identity
function.) No connection is removed and a connection
between the output of the pump (P) and the input of
the first pipe (PI1) is added. It can be checked that this
reconfiguration is safe with respect to the current (initial)
states of the components. After reconfiguration, the model
of the system is described by (Comp, Mod,Top'), where
Top' = (TopU CARr,) = CAR,.

The behavior of the system depends only on the behaviors
of the pump and of the pipe. The synchronization is realized
on the connections regarding the flow through these two com-
ponents. The global model of the system, which depends only
on the pump and the connected pipe, is given on Figure 4
(the internal messages are removed for simplification).

The state of the pump is 1 and the state of the pipe PI1
is 1. In order to start the pump, a first action is executed to
put on the pump which corresponds to sending the message
on on the p®®* point of the pump. The pump goes into state
2 sending the message h on its point called out. The topology
indicates that this message is received by the input of the
pipe as h. The pipe then changes its state into 3 and sends
the message h to its output. Since the output of the pipe is
not connected, the message is lost. In the explicit model of
the connected system, this change corresponds to going from
the state (1,1) into the state (2,3) by the transition labeled
{(P::ext,on), (PI1:in, h)} | {(P::out, h), (PIl::out, h)}.

®)

p:ext:off|
{pi:out:z}

p:ext:on|
{pi:out:h}

p:ext:off|
{pi:out:z}

p:ext:on| p:ext:off| p:ext:on|
{pi:out:l} { {
p:ext:f2|{pi:out:z}

@ p:ext:f2|{pi:out:z}

@ p:ext:f1|{pi:out:I} @

pi:ext:F | .
{pi:out:} pizext:F | pizext:F | i:extF |
{pi:out:1} {pi:out:z} &
piext:f1|{pi:out:z} pext:f2|{}
— Y

- -ext:f1|{pi:out:l} p:ext:f2|{pi:out:z}]
p:ext:on| Hp:ext:ofﬂ p:ext:on| p:ext:off |
{pi:out:I} {pi:out:z}

p:exton| . p:ext:off|
(pi:out:l}’ ‘{piIOU‘fZ) pext:off|

p:ext:on|

&

p:ext:f2|{pi:out:z}

Figure 4. Model of the System

Let us now consider the occurence of a fault on the pipe,
which starts leaking. The state of the pipe is then changed to
6. Its outflow becomes low. If we consider the global model,
the system evolves to the state (2,6) since the leaking of the
pipe does not influence the state of the pump.

5.2 Two pipes delivering water

Let us now suppose that we want to provide water to another
container, which is farther from the pump than the previous
one. So, we decide to connect the second pipe to the first one.

Since the current state of the first pipe is 6, its output
connection cannot be reconfigured (the set of states in which
the pipe can support reconfiguration on its output connection
point Gpr(out) does not contain the state 6).

The pump has to be stopped. A message off is received on
the external point of the pump, which reacts by sending the
message z to the pipe. The new state of the pipe is then 4
and from that state the reconfiguration is now possible.

The reconfiguration is R. = (DAr, = {},
CARr, = {((PI1, pil::out), (P12, pi2::in),|)}). The resulting
topology is: Top” = Ra(Top') = {((P, p::out) (P11, pil:iin), |),
((PI1, pil::out), (PI2, pi2::in), |)}). The explicit model of the
system is too large to be given.

The pump may now be started again. A message on is sent
on its external point. The pump delivers a high flow to the
first pipe, which only delivers a low flow to the second pipe
since it is leaking.

Let us now consider that a failure occurs over the pump.
The message f1 is received by the external point of the pump.
The pump sends a low flow to the first pipe. As the model of
a leaking pipe is not deterministic as explained in Section 2,
(two transitions exit from state 5 in the model of Figure 3),
two output flows can be predicted at the output of the pipe.

This section illustrates how the system model takes into
account the reconfiguration actions. Due to Property 1, the
states of the system components are well-identified even when
reconfiguration actions happen on-line. It is then possible to
rely on it in a diagnosis perspective: observable events are
now collected and diagnosis candidates are looked for by con-
fronting them to those predicted by the model. Let us recall
that all reconfiguration actions are supposed to be controlled
by the operator and thus observable. In the next section, we
explain how our decentralized diagnosis approach, developed
for topology-stable systems [9] is currently extended to recon-
figurable systems. This diagnosis step is now under develop-
ment and will be the subject of a next paper.

6 FUTURE WORK: DIAGNOSING
RECONFIGURABLE SYSTEMS

Several frameworks have been proposed for a decentralized
approach to diagnosis of discrete-event systems [7, 6, 1, 9].
In our diagnosis decentralized approach [9], as in related ones
[7, 6], each component is observed by sensors that send ob-
servations to a single supervisor. The contribution proposed
by [9] consists in computing local diagnoses for subsystems
and then to efficiently merge these local diagnoses to obtain
a global diagnosis for the whole system. The main role of the
merge operation is to filter the diagnoses which do not satisfy
the synchronization constraints between components. To ex-
tend this approach to reconfigurable systems, it is sufficient
(thanks to the hypotheses we take and to the Property 1) to
correctly update the synchronization constraints when recon-
figuration actions occur. These synchronization constraints
are then used as before by the merge operation when com-
puting the global diagnosis from the local diagnoses.

When incrementally computing the diagnosis as in [9], the
observations are considered on successive temporal windows.
The current diagnosis is updated by taking into account the
flow of observations of the next temporal window. In the case
of reconfigurable systems, the definition of these temporal
windows, and especially the property of safety, has to be ex-
tended with respect to reconfiguration actions.

When dealing with on-line diagnosis, it is well-known that
the efficiency of the algorithm is a major problem. The rea-
son is that most of decentralized diagnosis approaches rely on
explicit representation of models (often automata), which is
prohibitive, even with partially compiled representations as
diagnosers. As in our recent works, we intend to use tech-
niques such as Partial Order Reduction [8] or Inversibility
[4] to improve the computation of diagnosis by exploiting the
structure of the model. In the same vein, symbolic representa-
tion or model-checking techniques [2], known to significantly
improve search on automata, could be used for the diagnosis
of potentially large reconfiguration systems.

Future work will consider whether some of the assump-
tions we made can be relaxed. A first case could introduce
reconfigurations actions occurring at any time (for example
an observation sent by a sensor before a reconfiguration ac-
tion and received by the supervisor once the reconfiguration
is performed). Another case could be to consider more com-
plex reconfigurations as reconfiguration actions taking time
or connections with delays or loss of observations.

7 CONCLUSIONS

On-line reconfiguration refers to the modification of the archi-
tecture of a system involving the creation, removal or replace-
ment of elements while preserving the continuity of service.

In this paper we presented the foundations of a new ap-
proach to reconfigurable discrete-event systems modelling
with a further diagnosis objective. We first proposed to ex-
tend the decentralized approach to reconfigurable systems in
order to describe more precisely the connections between the
components. The system model relies on the model of each
component and on the topology model that describes the con-
nections between components through connection points. We
then introduced the reconfiguration formalism defined as a set
of connection and deconnection actions. Since a crucial issue
is to integrate on-line reconfiguration during the decentral-
ized diagnosis task, we stated five hypotheses and an impor-
tant property of reconfiguration called safety. Based on this
property, the new state of the system can be inferred with-
out ambiguity once a reconfiguration has been realized. Then,
the proposed modelling of reconfigurable systems can be used
with a few adjustments for on-line diagnosis of discrete-event
systems.

Our current work consists in adapting the decentralized al-
gorithm proposed by [9] to treat reconfiguration actions. The
most important for future work has been given at the end of
Section 6. The first item proposes to continue improving the
efficiency of the algorithm by using symbolic representations
and reduction techniques. The second item consists in relax-
ing our assumptions to diagnose more general reconfigurable
sytems where some observations are delayed or lost and when
reconfiguration actions take time. Finally, as a priority task
we plan to experiment this approach on telecommunication
networks as we did in [9].

References

[1] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and
C. Jard, ‘Fault detection and diagnosis in distributed systems:
an approach by partially stochastic Petri nets’, Discrete Event
Dynamic Systems, 8(2), 203-231, (1998).

(2]

(3]

[4]

[5]

(6]

[7]
[8]

[9]

[10]

[11]

[12]

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
I.. Petrucci, and Ph. Schnoebelen, Systems and Software
Verification. Model-checking Techniques and Tools, Springer,
2001.

M.-O. Cordier and C. Dousson, ‘Alarm driven monitoring
based on chronicles’, in 4th Symposium on Fault Detec-
tion Supervision and Safety for Technical Processes (Safepro-
cess’00), pp. 286 291, (2000).

M.-O. Cordier, A. Grastien, C. Largouét, and Y. Pencolé,
‘Efficient trajectories computing exploiting inversibility prop-
erties’, in 14th International Workshop on Principles of Diag-
nosis (DX-03), pp. 93 98, Washington, USA, (2003).

J. Crow and J. Rushby, ‘Model-based reconfiguration: Toward
an integration with diagnosis’, in National Conference on Ar-
tificial Intelligence, pp. 836-841, (1991).

R. Debouk, S. Lafortune, and D. Teneketzis, ‘Coordinated
decentralized protocols for failure diagnosis of discrete event
systems’, Discrete Event Dynamic Systems, 10(1-2), 33-86,
(2000).

G. Lamperti and M. Zanella, Diagnosis of Active Systems,
Kluwer Academic Publishers, 2003.

D. Peled, ‘On model checking using representatives’, in
5th International Conference on Computer-Aided Verification
(CAV-1993), pp. 409-423, (1993).

Y. Pencolé, M.-O. Cordier, and L. Rozé, ‘Incremental decen-
tralized diagnosis approach for the supervision of a telecom-
munication network’, in IEEE Conference on Decision and
Control, pp. 435 440, Las Vegas, USA, (2002).

L. Rozé and M.-O. Cordier, ‘Diagnosing discrete-event sys-
tems : extending the “diagnoser approach” to deal with
telecommunication networks’, Journal on Discrete-Event Dy-
namic Systems: Theory and Applications (JDEDS), (2002).
M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,
and D. Teneketzis, ‘Diagnosability of discrete event systems’,
TEEE Transactions on Automatic Control, 1555-1575, (1995).
M. Stumptner and F. Wotawa, ‘Reconfiguration using model-
based diagnosis’, in Tenth International Workshop on Princi-
ples of Diagnosis (DX-99), pp. 266-271, (1999).

