Searching Worst Cases of a One-Variable Function Using Lattice Reduction - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Computers Année : 2005

Searching Worst Cases of a One-Variable Function Using Lattice Reduction

Résumé

We propose a new algorithm to find worst cases for the correct rounding of a mathematical function of one variable. We first reduce this problem to the real small value problem—i.e., for polynomials with real coefficients. Then, we show that this second problem can be solved efficiently by extending Coppersmith's work on the integer small value problem—for polynomials with integer coefficients—using lattice reduction. For floating-point numbers with a mantissa less than N and a polynomial approximation of degree d, our algorithm finds all worst cases at distance less than N^{\frac{-d^2}{2d+1}} from a machine number in time O(N^{{\frac{d+1}{2d+1}}+\varepsilon}). For d=2, a detailed study improves on the O(N^{2/3+\varepsilon}) complexity from Lefèvre's algorithm to O(N^{4/7+\varepsilon}). For larger d, our algorithm can be used to check that there exist no worst cases at distance less than N^{-k} in time O(N^{1/2+\varepsilon}).
Fichier non déposé

Dates et versions

inria-00000379 , version 1 (29-09-2005)

Identifiants

Citer

Damien Stehlé, Paul Zimmermann, Vincent Lefèvre. Searching Worst Cases of a One-Variable Function Using Lattice Reduction. IEEE Transactions on Computers, 2005, 54 (3), pp.340-346. ⟨10.1109/TC.2005.55⟩. ⟨inria-00000379⟩
158 Consultations
0 Téléchargements

Altmetric

Partager

More