Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere
Télédétection par lidar de l'incandescence induite par laser sur des particules absorbant la lumière dans l'atmosphère
Abstract
Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LIIlidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.
Fichier principal
A. Miffre et al. Lidar remote sensing of LII, Opt. Exp. 2015.pdf (1.46 Mo)
Télécharger le fichier
Origin | Files produced by the author(s) |
---|