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Abstract
This paper explores trivalent truth conditions for indicative conditionals, examining
the “defective” truth table proposed by de Finetti (1936) and Reichenbach (1935,
1944). On their approach, a conditional takes the value of its consequent whenever
its antecedent is true, and the value Indeterminate otherwise. Here we deal with the
problem of selecting an adequate notion of validity for this conditional. We show that
all standard validity schemes based on de Finetti’s table come with some problems,
and highlight two ways out of the predicament: one pairs de Finetti’s conditional (DF)
with validity as the preservation of non-false values (TT-validity), but at the expense
of Modus Ponens; the other modifies de Finetti’s table to restore Modus Ponens. In
Part I of this paper, we present both alternatives, with specific attention to a variant of
de Finetti’s table (CC) proposed by Cooper (Inquiry 11, 295–320, 1968) and Cantwell
(Notre Dame Journal of Formal Logic 49, 245–260, 2008). In Part II, we give an in-
depth treatment of the proof theory of the resulting logics, DF/TT and CC/TT: both
are connexive logics, but with significantly different algebraic properties.

We thank Jean Baratgin, Stefano Bonzio, John Cantwell, Emmanuel Chemla, Nicole Cruz de Echeverria,
Vincenzo Crupi, Didier Dubois, Luis Estrada-Gonzales, Robert Farrell, Branden Fitelson, Thomas Fer-
guson, Nissim Francez, Chris Gauker, Andreas Herzig, Andrea Iacona, Andreas Kapsner, Dan Lassiter,
Hannes Leitgeb, Christoph Michels, Julien Murzi, Jo Nathan, François Olivier, Hitoshi Omori, David
Over, Francesco Paoli, Guy Politzer, Graham Priest, Dave Ripley, Robert van Rooij, Hans Rott, Paolo
Santorio, Damian Szmuc, and Heinrich Wansing for various helpful exchanges, as well as audiences in
Amsterdam, Bochum, Munich, Regensburg, Dagstuhl, Paris, Turin, and Buenos Aires. We are particularly
grateful to Robert Farrell, Andrea Iacona, Paolo Santorio, and an anonymous referee from this journal for
detailed comments.
Funding for this research was provided by grants ANR-14-CE30-0010 (program TRILOGMEAN), ANR-
17-EURE-0017 (program FRONTCOG), and ANR-19-CE28-0004-01 (program PROBASEM) (P.E.), by the
Fonds zur Förderung der wissenschaftlichen Forschung (FWF), grant no. P29716-G24 for research carried
out at the University of Salzburg (L.R.), and by the European Research Council (ERC) through Start-
ing Grant No. 640638 (J.S.). Thanks also to the network European Non-Categorical Thinking (EUNoC),
which enabled this collaboration.

Extended author information available on the last page of the article.

(2021) 50: –213187

Published online 20 August 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10992-020-09549-6&domain=pdf
http://orcid.org/0000-0002-9114-7686
http://orcid.org/0000-0002-1932-5484
http://orcid.org/0000-0003-0083-9685


P. Égré et al.
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1 Introduction

Choosing a semantics for the indicative conditional of natural language “if A, then
C” (henceforth, A → C) usually involves substantial tradeoffs. The most venerable
account, endorsed by Frege and Russell and going back to Philo of Megara, identifies
the indicative conditional with the material conditional ¬A∨C and has several attrac-
tive features: it is truth-functional, allows for a straightforward treatment of nested
conditionals, and satisfies various intuitive principles such as Conditional Proof and
Import-Export. However, the material conditional account severs the link between
antecedent and consequent. Suppose Mary was not in Paris yesterday; then “if Mary
was in Paris yesterday, then she will be in Turin tomorrow” is true regardless of
Mary’s travels plans. The inferential dimension of conditionals, and in particular the
link between truth and justified assertion, is completely lost in this picture.

Seeking a way out of this predicament, Stalnaker [80, 82] proposed to give up
truth-functionality and to strengthen the truth conditions of the indicative conditional
as follows: A → C is true if and only if C is true in the closest possible A-world
(if there is one), namely the closest world in which the antecedent is true. This pro-
posal has many virtues but also some limitations, on which we say more in the next
section.

A second strategy admits that the truth conditions of the indicative conditional may
not be truth-functional, or perhaps agree with those of the material conditional (e.g.,
[44]), but in any case they are a matter of secondary importance. What matters, ulti-
mately, is the assertability or “reasonableness” of a conditional A → C. This notion
is often explicated in probabilistic terms, by analyzing the conditional as express-
ing a supposition that precedes the evaluation of the consequent, and by focusing on
the probability of C given A, in symbols Pr(C|A). This strategy is popular among
cognitive scientists (e.g., [33, 64]), and among philosophers who focus on the evi-
dential and inferential dimension of a conditional (e.g., [1, 2, 22, 24, 28, 49]). To our
mind, however, it would be preferable to have a theory that explains how asserta-
bility conditions are related to, and can be motivated from, the truth conditions of
a conditional.

This paper is an attempt to connect the dimensions of truth and assertability in a
principled way, and to construct a semantics that preserves the most attractive features
of both propositional and non-propositional accounts. Due to well-known impossibil-
ity results (e.g., [38, 51]), this means that we have to leave the familiar framework of
bivalent logic. Our starting point is the intuition voiced by de Finetti [23], Reichen-
bach ([74], p. 168) and Quine [69] (crediting Ph. Rhinelander for the idea), that
uttering a conditional amounts to making a conditional assertion: the speaker is com-
mitted to the truth of the consequent when the antecedent is true, but committed to
neither truth nor falsity of the consequent when the antecedent is false.

The idea that a conditional with a false antecedent has no classical truth value is
sometimes summarized in what Kneale and Kneale [48] have named the “defective”
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Fig. 1 “Defective” bivalent table (left) and trivalent incomplete expansion (right)

truth table, where the symbol “#” marks a truth value gap (Fig. 1), and whose first
appearance may be found in Reichenbach ([73], p. 381).1 When the gap is handled
as a value of its own (we represent it by 1/2, for “indeterminate”), and so as a possible
input for semantic evaluation, then the “defective” two-valued conditional naturally
leads to truth conditions within a trivalent (= three-valued) logic. For de Finetti,
asserting a conditional of the form “if A then C” is a conditional assertion: an asser-
tion that is retracted, or void, if the antecedent turns out to be false. In this respect, it
is akin to making a conditional bet on C given A. When A is realized and C is false,
the bet is lost; when A is realized and C is true, the bet is won; when A is not real-
ized, however, the bet is simply called off (more on this in Section 2). The trivalent
table proposed by de Finetti for the conditional is given in Fig. 2. The same table
is put forward by Reichenbach [74], who calls it quasi-implication. Like de Finetti,
Reichenbach considers that some conditionals are void when the antecedent is false,
though Reichenbach’s interpretation of the third truth value differs, being driven by
measurement-theoretic considerations in quantum physics.2

The truth table given by de Finetti and Reichenbach mirrors an interpretation
on which the conditional is indeterminate when its antecedent is not true ( �= 1).3

However, understanding the conditional as a conditional assertion is compatible with

1De Finetti presented his paper in Paris in the same year 1935, with explicit reference to Reichenbach [73],
but criticizing the latter’s objective interpretation of probability. To the best of our knowledge, Reichen-
bach’s 1935 book does not quite present de Finetti’s three-valued table, but some variants instead. However
Reichenbach ([74], p. 168, fn.2) traces quasi-implication back to his previous opus. In our view, the de
Finetti conditional may therefore be called the de Finetti-Reichenbach conditional, but for simplicity and
partly for established usage, we stick to calling it the DF conditional. See also Milne [60], Calabrese [11],
Baratgin, Over, and Politzer [3] and Over and Baratgin [63] on the history of the defective table.
2Closer to the interpretation of the third truth value that features in Bochvar [8], Reichenbach considers
that some conditionals are meaningless when the antecedent concerns an event whose precise measure-
ment is impossible (for instance, we cannot in general simultaneously measure position and momentum of
a particle with arbitrary degree of precision). Reichenbach treats the third truth value as objectively inde-
terminate rather than as expressing a notion of subjective ignorance, as de Finetti does. In motivating this
interpretation, Reichenbach refers explicitly to the Bohr-Heisenberg interpretation of quantum mechanics.
3Related proposals include, in the philosophical tradition, Jeffrey [45], Belnap [5], Dummett [27], Manor
[56], Farrell [35], McDermott [57], Huitink [41], Rothschild [75] and Kapsner [46]. In the more math-
ematical tradition, they include work on conditionals objects by Schay [76], Calabrese [10], Goodman
et al. [39], Dubois and Prade [26]. We note that the DF table was reintroduced several times in the past
decades, very often without prior notice of either de Finetti or Reichenbach, and sometimes with separate
motivations in mind, viz. Blamey [6], who calls it transplication, to highlight its hybrid character between
a conjunction and an implication, or recently Kapsner [46], who came up with the scheme specifically to
deal with connexiveness. More on this will be said below.
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Fig. 2 The truth table for de Finetti’s trivalent conditional

various trivalent truth tables. This concerns especially the second line, that is, the
interpretation of conditionals with indeterminate antecedents (viz. the antecedent
might be a conditional with false antecedent). Two notable proposals, the first due to
Cooper [21] and Cantwell [13], the second to Farrell [34], are given in Fig. 3.

Which trivalent table is the most adequate? Baratgin et al. [3] approached this
question experimentally. They asked participants to evaluate various indicative con-
ditional sentences as “true”, “false” or “neither”, by manipulating the truth value of
the antecedent and consequent (making them clearly true, false, or uncertain). They
conclude that the original de Finetti table is better-supported than its competitors and
that participants’ judgments are well-correlated with the de Finettian bet interpreta-
tion of conditionals. However, the focus on (intuitions about) truth tables neglects the
inferential properties of conditionals, that is, how we should reason with them. For
that, we need an analysis of the notion of logical validity. Indeed, the same truth tables
can support radically distinct entailments, depending on how validity is defined.

In trivalent logic, several notions of validity can be considered, and they yield sig-
nificantly distinct predictions [30]. Consider validity as preservation of truth (i.e., the
value 1) from premises to conclusion in an argument. Following the terminology of
Cobreros et al. [19], we call this strict-to-strict validity, or SS-validity. An alterna-
tive is to define validity as the preservation of non-falsity ({1, 1/2}), also known as
tolerant-to-tolerant or TT-validity. Other schemes considered in the literature are the
intersection of SS and TT (see Dubois and Prade [26], McDermott [57]), as well as
so-called mixed (strict-to-tolerant, tolerant-to-strict) consequence relations (ST, TS).
All schemes have advantages and drawbacks, but some combinations of a conditional
operator with a validity scheme appear better than others.

In this paper, we bring together the research strands on validity in trivalent logic
and trivalent semantics for indicative conditionals. More precisely, we conduct a

Fig. 3 Truth tables for the Cooper-Cantwell conditional (left) and the Farrell conditional (right).
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systematic investigation of the main trivalent semantics for defective conditionals,
and isolate the most promising combinations of truth tables and validity relations. To
the best of our knowledge, no such systematic comparison has been conducted so far.
In particular, apart from Cooper [21], we are not aware of any axiomatization of the
logics based on a trivalent semantics for the indicative conditional.

We fill this gap in our paper and proceed in two main parts. Part I of this paper
focuses on semantics: it reviews the main motivations for the de Finetti condi-
tional (Section 2) and expounds the problems it faces when selecting an adequate
trivalent consequence relation. This is what we call the “validity trilemma” for
the de Finetti conditional (Section 3): the de Finetti conditional must either fail
to support any sentential validity, support unacceptable arguments, or fail Modus
Ponens. We present two ways out of this predicament. The first bites the bullet
and associates de Finetti’s conditional with a notion of tolerant-to-tolerant validity
that fails Modus Ponens (Section 4). The second consists in modifying de Finetti’s
table so as to restore Modus Ponens for the same notion of validity. We specify
the class of trivalent conditionals that support Modus Ponens and are adequate for
TT-validity (“Jeffrey conditionals”), and we distinguish, among those, the condi-
tional introduced independently by Cooper and Cantwell (Section 5). We end Part
I of this paper with a comparison between the two logics that ensue from those
considerations, DF/TT (de Finetti-TT) and CC/TT (Cooper-Cantwell-TT). They are
both connexive logics, but they also share similar limitations; in particular both
retain the Linearity principle of two-valued logic. We consider modifying the truth
tables for trivalent conjunction and disjunction within CC/TT as a way of address-
ing these concerns (Section 6). In Part II, we further this comparison with an
in-depth investigation of the proof theory and algebraic properties of those two
logics.

2 The de Finetti Conditional

2.1 Philosophical Motivation

Ramsey [71] was likely the first philosopher to connect an assertion of a proposition
A with an implicit disposition to bet on A, and to interpret an indicative conditional
A → C as a conditional assertion where we suppose the antecedent, and reason on
that basis about the consequent. De Finetti combined both ideas by postulating an
isomorphism between the conditions that settle the truth of a (conditional) proposi-
tion, and the conditions that settle the winner of a (conditional) bet. Evaluating the
truth or falsity of a conditional proposition, assertion or event requires supposing the
antecedent in such a way that a conditional bet on C given A can only be won or lost
if A is true; if A is false, the bet will be called off.

Hence, while the truth value of an ordinary, non-conditional proposition A is set-
tled by either A or ¬A, the truth value of a conditional proposition or assertion— de
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Finetti uses the notation C/A— is settled by the corresponding pair A∧C and A∧¬C

([23], p. 568, emphasis in original):4

“C’est ici qu’il paraı̂t indiqué d’introduire une logique spéciale à trois valeurs,
comme nous l’avions déjà annoncé : C et A étant deux événements (proposi-
tions) quelconques, nous dirons triévénement C/A (C subordonné à A), l’entité
logique qui est considérée

1. vraie si C et A sont vrais;
2. fausse si C est faux et A est vrai;
3. nulle si A est faux

(on n’a pas de distinction entre “non A et C” et “non A et non C”, le
triévénement ne devant être fonction que de A et C ∧ A).”

This approach explains the intuition that upon observing A∧C, we feel compelled
to say that the (previously made) conditional assertion C/A was right, that it has been
verified.5 Similarly, the conditional assertion C/A is falsified by the observation of
A∧¬C: we have been proven wrong by the facts. The indicative conditional A → C

shall, in the rest of this paper, be understood as a conditional assertion C/A whose
truth conditions correspond to the conditions that determine the result of a conditional
bet. We now define a corresponding class of conditional operators:

Definition 2.1 (de Finettian operators) A trivalent binary operator is called de Finet-
tian if it agrees with de Finetti’s truth conditions when the antecedent is determinate,
that is, when the antecedent takes the value 1 or the value 0.

Equivalently, an operator is de Finettian if it agrees on the first and third row of
the table in Fig. 2: it takes the value indeterminate when its antecedent is false, and
the value of its consequent when its antecedent is true. From the class of de Finettian
operators, de Finetti selects the truth conditions that assign value 1/2 to the conditional
whenever the antecedent is itself indeterminate. Note that this grouping of indetermi-
nate with false antecedents is not covered by the above epistemological motivation;
in fact, this choice is a classical point of contention between trivalent logics of con-
ditionals. De Finetti’s choice resembles Bochvar’s scheme for trivalent operators
(a.k.a. the Weak Kleene scheme), where the value 1/2 is carried over from any part
of a sentence to the whole sentence [8]. Similarly, he assumes that a conditional

4In the English translation of R. Angell, the quote goes: “It is here that introduction of a special logic of
three values seems indicated, as we have already announced: C and A being any two events (propositions)
whatever, we will speak of the tri-event C/A (C given A), the logical entity which is considered:

1. true if C and A are true;
2. false if C is false and A true;
3. null if A is false

(one does not distinguish between “not A and C” and “not A and not C”, the tri-event being only a function
of A and C ∧ A).”
5See also Cantwell [13], and the “hindsight problem” in Khoo [47].
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is undefined as soon as antecedent or consequent are undefined. As we know from
the theory of presupposition projection [4], however, Bochvar’s choice is not the
most adequate to account for the transmission of indeterminate values from smaller
to larger constituents, and therefore it should not be viewed as mandated by the rest
of de Finetti’s motivations for the conditional. In fact, de Finetti himself does not
handle conjunction and disjunction à la Bochvar/Weak Kleene, but in line with the
Strong Kleene scheme (see below).

2.2 Main Benefits of the Approach

De Finetti’s trivalent approach has the potential to avoid the paradoxes of material
implication and yields a variety of benefits.6 First of all, it is very simple and has a
clear motivation: asserting a conditional amounts to making a conditional assertion;
conditionals express dispositions to bet just as ordinary assertions do. The trivalent
approach treats conditionals as expressing propositions, in agreement with their lin-
guistic form and assertive usage; only, their truth conditions cannot be expressed in
bivalent logic. This is a substantial advantage over non-propositional views that have
to explain the gap between linguistic form and philosophical theorizing.

Second, de Finettian conditionals keep the epistemic notion of assertability and the
semantic notion of truth separate, while allowing for a fruitful interaction: degrees of
assertability can be defined directly in terms of the truth conditions. For a probability
function Pr on a propositional language, and assuming X is a Boolean sentence or a
simple conditional,7 we define the degree of assertability to be:

Ast(X) = Pr(X is true|X has a classical truth value) (A)

(see also McDermott [57]; Cantwell [12]; Rothschild [75]). Trivalent semantics
accommodates the familiar norm of asserting what is probably true by extending it to
cases where the antecedent might be undefined. This collapses to the classical picture
Ast(X) = Pr(X is true) for bivalent propositions. For X = A → C, and assuming
that C is bivalent, we obtain

Ast(A → C) = Pr(A → C is true|A → C has a classical truth value)

= Pr(A ∧ C is true|A is true)

= Pr(C|A)

We thus obtain Adams’ Thesis (sometimes also called “The Equation”, and read as
a thesis about the probability of A → C), a plausible principle for the assertability of
conditionals supported by patterns observed in natural language [2, 26, 29, 33, 62, 64,
81].8 Similarly, the suppositional reading of conditionals as expressing conditional
degrees of belief (e.g., Ramsey [71]; Edgington [28]) can be naturally grounded in
trivalent semantics. Other theories, notably Spohn [79]’s, accept Adams thesis, but

6In particular, paired with SS-validity, the de Finetti conditional supports neither the entailment from ¬A

to (A → C), nor the entailment from C to(A → C). For TT-validity, the situation is very different (see
below).
7We refer to Section 6 for a discussion of compounds of conditionals.
8For recent criticisms of Adams’ Thesis, see Douven and Verbrugge [25] and Skovgaard-Olsen et al. [78].
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view it as dependent on a more fundamental notion of conditional belief, captured by
rank-ordering instead of probability. That theory too is compatible with de Finetti’s
trivalent approach.9

The close relationship between truth and assertability allows us to explain intu-
itions which conflict at first with the trivalent view. For example, a sentence such
as:

(ı) If Mary is in Paris, then Mary is in France.

would typically be judged as true, whereas trivalent semantics regard this as an empir-
ical question: when Mary is in Berlin, the sentence has indeterminate truth value.
However, the trivalent view can offer an error theory since (ı) is maximally assertable
regardless of Mary’s whereabouts (Pr(C|A) = 1). When we call sentences such as (ı)
“true”, what we really mean is that they command consent, that they are “maximally
assertable” (see also Adams [2]). Since assertability conditions are fully defined in
terms of truth conditions, this defense is arguably not ad hoc. In sum, on this view
indicative conditionals are factual— their truth and falsity is a matter of correspon-
dence with the world— as are predictions about future events, while their assertability
is epistemic and is represented probabilistically.

Thirdly, the de Finetti conditional satisfies the following identity:

A → (B → C) ≡ (A ∧ B) → C (Import-Export)

Here, “≡” means that the truth values of A → (B → C) and (A∧B) → C coincide
according to the de Finetti tables. Equation Import-Export expresses the idea that
right-nesting a conditional is just the same as adding a further supposition. Gibbard
[38] proved that there is no truth-conditional operator → that (i) satisfies (Import-Ex-
port); (ii) validates A → C whenever A classically entails C; (iii) is strictly stronger
than the material conditional. In Stalnaker’s and Lewis’s possible world seman-
tics, (Import-Export) thus fails. McGee [59] proposed a modification of Stalnaker’s
semantics that restores (Import-Export) and is stronger than the material conditional,
giving up (ii).10 However, it involves syntactic restrictions on the sentences appearing
as antecedents. The advantage of de Finetti’s conditional is that it can satisfy Import-
Export without any syntactic restrictions, and within a truth-conditional framework.
Depending on which notion of validity it is paired with, it may or may not obviate the
conditions of Gibbard’s theorem. As we will see, however, even when it falls prey to
Gibbard’s result, it need not have all properties of its material counterpart.

9Compare Spohn ([79], p. 1083)’s definition of conditional rank with the probabilistic derivation of Ast
above. The conditional rank of C given A is κ(C|A) = κ(A ∩ C) − κ(A), provided κ(A) < ∞. As
highlighted by Spohn, a bridge is given by a logarithmic transformation.
10See McGee [58, 59] on the failure of Modus Ponens in that logic. See also Ciardelli [18] for a recent
proposal. Mandelkern [55] observes a certain tension between Import-Export and classical conjunction,
suggesting to restrict Import-Export accordingly. However, our findings show that the canonical extension
of classical conjunction to trivalent logics (i.e., Strong Kleene truth tables) is perfectly compatible with
Import-Export. The observed tensions may therefore be a peculiar feature of bivalent logic.
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Fig. 4 Truth tables for negation and conjunction

3 Comparing Schemes for Validity

We now introduce and compare the main notions of validity that can be used in rela-
tion to de Finetti’s conditional. By so doing, we expose a problem for the de Finetti
conditional: all of the basic schemes available for validity in trivalent logic appear to
overgenerate or to undergenerate relative to general principles of conditional reason-
ing. Note that we place no restriction on nested conditionals in what follows, allowing
for both right-nested and left-nested conditionals.11

3.1 Evaluations and Validity

Throughout the paper, we let L be a propositional language featuring denumerably
many propositional variables (indicated as p0, p1, . . .), whose logical connectives
include ¬ and ∧ (the others, ∨ and ⊃, are defined as usual). We call L→ the language
obtained from L by adding a new conditional connective, in symbols →, to the prim-
itive stock of logical constants of L. We use uppercase Latin letters (A, B, C, . . .) as
meta-variables for L- and L→-sentences, and For to denote the set of formulae of the
language L→. With a slight notational abuse, we will write �, A rather than � ∪ {A}
(for � a set of L→-formulae and A a L→-formula), in order to improve readability.

For all trivalent semantics of the conditional that we consider, negation and con-
junction are interpreted via the familiar Strong Kleene truth tables (introduced by
Łukasiewicz [52], also featuring in de Finetti [23]) (Fig. 4).

We can now proceed to define evaluations and consequence relations for the de
Finetti conditional.

Definition 3.1 (Classical, SK-, and DF-evaluation)

– A classical evaluation is a function from L-sentences to {1, 0} that interprets ¬
and ∧ by the functors f¬ and f∧ restricted to the values 1 and 0.

– A Strong Kleene evaluation (or SK-evaluation) is a function from L-sentences to
{1, 1/2, 0} that interprets ¬ and ∧ by the functors f¬ and f∧.

– A de Finetti evaluation (or DF-evaluation) is a function from For to {1, 1/2, 0}
interpreting ¬, ∧, and → by the functors f¬, f∧ and f→DF .

11In that we depart from the treatments of Adams [2] or Dubois and Prade [26], in which conditional
sentences involve a single conditional connective relating Boolean antecedent and consequent.
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Given an evaluation, we can distinguish two levels of truth for a sentence, namely
T-truth (for tolerant truth) and S-truth (for strict truth), following Cobreros et al. [19]
and Cobreros et al. [20].12 Identifying the value 1 with the True, the value 1/2 with the
Indeterminate, and the value 0 with the False, then S-truth is for a sentence to be true,
whereas T-truth is for a sentence to be non-false. The two notions obviously coincide
relative to classical evaluations, but they come apart relative to trivalent evaluations.

Definition 3.2 (T-truth and S-truth)

– An evaluation v : For �−→ {1, 1/2, 0} makes a sentence A strictly true (or S-true)
provided v(A) = 1.

– An evaluation v : For �−→ {1, 1/2, 0} makes a sentence A tolerantly true (or
T-true) provided v(A) > 0.

Following Chemla et al. [17] and Chemla and Égré [16], we single out five notions
of validity in a trivalent setting, depending on whether validity is defined as the
preservation of truth, non-falsity, or as some combination of those. Those five notions
of validity are not the only conceivable ones in trivalent logic, but there is a sense in
which they form a natural class.13 In particular, the five schemata under discussion
are all monotonic, and they are all the monotonic trivalent schemata (see Chemla and
Égré [16] for a proof), meaning that an inference remains valid by the inclusion of
more premises. We leave open whether a nonmonotonic scheme for validity might
offer a good fit for the original de Finetti table.14

Definition 3.3 (SS-, TT-, SS∩TT-, ST- and TS-validity) For every {�, A} ⊆ For, for
every X-evaluation (where X stands for SK, DF, etc.), we say that:

– � |=X/SS A, provided every X-evaluation that makes all sentences of � S-true
also makes A S-true.

– � |=X/TT A, provided every X-evaluation that makes all sentences of � T-true
also makes A T-true.

12Zardini [85] talks of levels of goodness for a sentence, and Cobreros et al. [20] talk of levels of asserta-
bility, rather than truth. Given our separation of truth and assertability in the previous section, we avoid
this terminology.
13See Chemla et al. [17] for general arguments regarding the oddness of SS ∪ TT in particular. In the
present case, taking the union of SS and TT would obviously not solve the overgeneration problem raised in
the next section, in particular regarding the entailment to the converse conditional. Cooper [21] restricts TT
to bivalent atomic valuations – what Humberstone (42, §7.19, 1044 and following) calls “atom-classical”
valuations – and so do Dubois and Prade [26]. Farrell [34] sketches another variant, which we can set aside
on the same grounds (see next footnote).
14Farrell [34] introduces a notion of sentential validity that may be generalized into a nonmonotonic notion
of argument-validity. On his definition, A is valid provided it is TT-valid, and there is a valuation that
gives A the value 1. We may generalize this to: � |= A provided � TT-entails A and there is at least one
valuation that gives the formulae in � and A the value 1. On that definition, p |= p, but p,¬p �|= p (we
are indebted to a remark by T. Ferguson in relation to that fact). We note that like standard TT-validity,
this nonmonotonic restriction still fails Modus Ponens. As such, it would not add a separate route from the
one described with standard TT-validity.
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– � |=X/(SS ∩ TT) A, provided every X-evaluation that makes all sentences of � S-
true also makes A S-true, and every X-evaluation that makes all sentences of �

T-true also makes A T-true.
– � |=X/ST A, provided every X-evaluation that makes all sentences of � S-true

also makes A T-true.
– � |=X/TS A, provided every X-evaluation that makes all sentences of � T-true

also makes A S-true.

Relative to L and to SK-evaluations, SS-validity determines the so-called Strong
Kleene logic, whereas TT-validity determines Priest’s logic LP. SS∩TT corresponds
to the so-called Symmetric Kleene logic, whereas TS and ST correspond to the
so-called Tolerant-Strict and Strict-Tolerant Logics (also called the logics of q-
consequence and p-consequence: [19, 37, 54]). In general, our definitions of validity
are relative to the choice of a type of evaluation function (e.g., classical, SK, DF);
however, in the rest of this section, we always refer to DF-evaluations, in line with
our focus on the de Finetti conditional.

An interesting feature of the DF/TT-logic is that it implies mutual entailment
between its conditional and the material conditional. The following inferences are
DF/TT-valid:

¬A ∨ B |=DF/TT A → B A → B |=DF/TT ¬A ∨ B

Moreover, we also have:

|=DF/TT (¬A ∨ B) ↔ (A → B)

where ↔ is de Finetti’s biconditional, that is, A ↔ B is defined as (A → B)∧(B →
A). In fact, all of Gibbard’s conditions (i) to (iii) are met by de Finetti’s conditional
in DF/TT, and the mutual entailment between de Finetti’s conditional and its material
counterpart may be seen as an instance of Gibbard’s collapse result.

Remarkably, however, although ⊃ and → are equivalent in DF/TT-logic, they
don’t obey the same principles. For instance, only → validates the following
connexive principle:

A → B |=DF/TT ¬(A → ¬B) but ¬A ∨ B �|=DF/TT ¬(¬A ∨ ¬B).

3.2 A Trilemma for de Finetti’s Conditional

Among the previous schemes, which one is the most adequate relative to de Finetti’s
conditional? We begin with applying the SS-validity scheme over DF-evaluations,
and similarly, mutatis mutandis, for the other schemes. It is easy to see that:

A → B |=DF/SS A ∧ B

That is, the conditional entails conjunction. This property is not intuitive, but perhaps
less bad than it seems since the trivalent approach is based on de Finetti’s idea of
identifying the truth conditions for conditionals with the conditions for winning a
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conditional bet. Worse is that the de Finetti conditional entails its converse on an
SS-validity scheme:15

A → B |=DF/SS B → A

The SS-scheme is thus very distant from an intuitive notion of reasonable infer-
ence with conditionals since supposing A and asserting B is very different from
supposing B and asserting A. The TT-scheme avoids this problem since

A → B �|=DF/TT A ∧ B A → B �|=DF/TT B → A

McDermott [57] therefore proposes the SS ∩ TT-scheme to preserve the idea that
validity is preservation of the value 1, but to weed out the implication from a condi-
tional to the conjunction and to its converse. Dubois and Prade [26] adopt the same
notion of validity, which they restrict to atom-classical valuations.16 The SS ∩ TT
consequence relation suffers, however, from the drawbacks of both of its constituents,
as evidenced by the following observations:

�|=DF/SS A → A A, A → B |=DF/SS B

|=DF/TT A → A A, A → B �|=DF/TT B

DF/(SS ∩ TT) fails both the Identity Law (A → A) and Modus Ponens: the first
because DF/SS has no sentential validities (as is the case in the Strong Kleene logic
SK/SS), the second because Modus Ponens is not valid in DF/TT (as is the case for
the material conditional in Priest’s LP = SK/TT). As a result, the logic DF/(SS ∩ TT)

ends up being very weak.17

Consider now the so-called “mixed consequence” schemes, namely TS and ST, in
which the level of truth varies from premises to conclusion [19]. DF/TS squares well
with the degrees of assertability defined in Section 2 since Ast(A) ≤ Ast(B) for all
underlying probability functions if and only if either A and B are logically equivalent,
or A |=TS B ([12], p. 166). Hence, the logic connects well to epistemology, and it also
eschews the conjunction- and converse-conditional fallacies. Unfortunately, Modus
Ponens and the Identity Law fail (like other sentential validities), not to mention other
oddities of the logic, in which A �|=DF/TS A. In DF/ST, on the other hand, Modus
Ponens and the Identity Law are retained, but also the entailment of the conditional
to conjunction and to its converse remain.

We may summarize these observations in the form of a trilemma:

Fact 3.4 Irrespective of whether SS, TT, ST, TS, SS ∩ TT is chosen for validity, a
logic on (L→, f→DF) must either (1) fail Modus Ponens; or (2) fail the Identity Law

15Reichenbach ([74], p. 152) claims the contrary, but because he seems to focus on the fact that A → B

and B → A have different tables. He does not appear to see that they take the value 1 exactly in the
same place, despite electing SS-validity as his default notion of validity, in particular to guarantee Modus
Ponens.
16More precisely, Dubois and Prade [26] adopt an order-theoretic definition of validity, which coincides
with SS ∩ TT in the three-valued case.
17It remains weak even if valuations are atom-classical, as in Dubois [26]: no conditional object of the
form p|p is valid in their logic, where B|A is the analog of A → B in our language. They do retain a
weak version of Modus Ponens, however, namely A|�, B|A � B|�, by restricting A and B to Boolean
formulae.
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(and other sentential validities); or (3) validate the inference from a conditional to its
converse.

The trilemma at a glance:

DF/· MP Identity → |= ←
SS � × �
TT × � ×
ST � � �
TS × × ×

SS ∩ TT × × ×
Ideal case � � ×

The interest of this trilemma is that it involves schemata that depend on no other
connective than the conditional. In what follows, we explore two main ways out of
the trilemma: both select TT-validity as comparatively the best choice for validity, but
the second moreover involves a modification of the de Finetti table so as to restore
Modus Ponens.

4 Giving upModus Ponens: DF/TT

Given that no validity scheme satisfies the three desiderata of making the DF condi-
tional validate Modus Ponens, avoid the entailment to its converse, and validate the
Identity Law, one way out of the trilemma is to follow Quine [70]’s maxim of “min-
imum mutilation”, and to elect as optimal the scheme or schemes that violate the
fewer of those constraints.18

Three of the schemes violate two constraints, but DF/TT and DF/ST violate only
one. However, DF/ST badly overgenerates (by validating the entailment to the con-
verse), whereas DF/TT mildly undergenerates (by failing Modus Ponens, but still
satisfying Conditional Introduction, see below). Arguably therefore, DF/TT appears
to be the less inadequate of all options: it retains the Identity Law and avoids the
entailment to the converse conditional, only at the expense of losing Modus Ponens—
a principle that is given up in other logics such as Priest’s LP (i.e., SK/TT) for the
material conditional.19

Two more facts are worth highlighting about DF/TT. Firstly, despite the fail-
ure of Modus Ponens, the conditional supports Conditional Introduction, namely
�, A |= B implies � |= A → B. In DF/SS, the situation is reversed, since Condi-
tional Introduction fails despite Modus Ponens holding. Secondly, DF/TT supports

18As in Optimality Theory (see Prince and Smolensky [68]), we also assume that constraints can be
rank-ordered in terms of their comparative importance. We don’t state the ordering explicitly here, the
discussion makes it clear enough.
19Note that unlike McGee’s logic [59], which fails Modus Ponens for complex conditionals, DF/TT can
fail Modus Ponens for simple conditionals, composed of atomic sentences, unless valuations have to be
two-valued on atoms. See Bledin [7] for more on the validity of Modus Ponens for indicatives.
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full commutation of the conditional with negation, a schema widely regarded as
plausible in natural language (see Cooper [21]; Cantwell [13] and Section 4.1 below).

Fact 4.1 For every �, A, B in For:

Conditional Introduction If �, A |=DF/TT B, then � |=DF/TT A → B.

Commutation with Negation ¬(A → B) ≡DF/TT A → ¬B.

Proof

– Suppose � �|=DF/TT A → B. Then there exists a DF-evaluation v such that for
all C ∈ �, v(C) > 0, but v(A → B) = 0. Hence v(A) = 1, and v(B) = 0, and
�, A �|=DF/TT B.

– Consider any DF-evaluation v such that v(A → ¬B) = 0. Then v(A) = 1,
v(¬B) = 0, so v(B) = 1, and v(A → B) = 1, hence v(¬(A → B)) = 0, and
the converse entailments hold.

Despite blocking the entailment to the converse conditional, DF/TT validates sev-
eral sentential schemata that are intuitively controversial. Farrell [34] for example
points out that it validates the problematic schema (B ∧ (A → B)) → A, a sentential
version of the fallacy of affirming the antecedent. More generally, we have:

Fact 4.2 For every A, B in For:

|=DF/TT (A → B) → A

Proof For the principle to fail, there must be a DF-evaluation v such that
v(A → B) = 1 and v(A) = 0. But then v(A → B) = 1/2, contradiction.

Given the conditions the de Finetti conditional puts on TT-validity, however, this
schema does not necessarily constitute an unwelcome prediction. Firstly, it does
not hold in argument form (that is, A → B �|=TT A), consistently with the fact
that TT-validity does not satisfy Modus Ponens. Secondly, consider the left-nested
conditional sentence:

(2) If Peter visits if Mary visits, then Mary will visit [indeed].

This seems intuitively acceptable, in line with the suppositional reading of the
conditional.

The upshot is that DF/TT loses some classical inferences based on the conditional
(like Modus Ponens), and introduces some conditional sentences as validities that are
not classical (viz. Fact 4.2), though not necessarily problematic under a suppositional
reading.

If, on the other hand, we wish to retain Modus Ponens as a central property of
the conditional along with the Identity Law, then the trilemma presented in Fact 3.4
implies that either some further notion of validity must be sought for the de Finetti
conditional, or the de Finetti conditional itself is not adequate. However, we have
already argued that the notions of validity considered in this section exhaust the most
natural class of consequence relations over trivalent evaluations. For this reason, in
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the next section we explore that second option and explore alternatives to the de
Finetti conditional.

5 RetainingModus Ponens: CC/TT

In this section, we show that under a TT-definition of validity, de Finetti’s table can be
modified, and his motivations preserved, so as to preserve Modus Ponens and to avoid
the previous trilemma. We first isolate the class of what we call Jeffrey conditionals.
Within that class, we discuss some reasons to favor the Cooper-Cantwell conditional,
used independently by Cooper [21] and Cantwell [13] in combination with the TT-
scheme.

5.1 Jeffrey conditionals

In a short and underappreciated paper, Jeffrey [45] highlighted the following con-
dition for a trivalent operator to satisfy Modus Ponens when TT is used for
validity:

Fact 5.1 Under a TT-notion of validity, a trivalent conditional operator f→ validates
Modus Ponens only if f→(1, 0) = f→(1/2, 0) = 0.

Proof Assume f→(1, 0) �= 0 or f→(1/2, 0) �= 0. Then it is possible to have
v(A) > 0, v(A → B) > 0 and v(B) = 0, which invalidates Modus Ponens.

We may therefore call a conditional operator Jeffrey if it extends the bivalent
“gappy” conditional as follows [45]:

Definition 5.2 A Jeffrey conditional is any binary trivalent operator of the form:

f→ 1 1/2 0
1 1 d1 0

1/2 d2 d3 0
0 1/2 d4 1/2

where di ∈ {1/2, 1} for 1 ≤ i ≤ 4.20

An operator can therefore satisfy Jeffrey’s constraint and be de Finettian at the
same time, namely comply with the truth conditions of de Finetti’s conditional when
the antecedent has a classical truth value (see Definition 2.1). We thus say that:

20Jeffrey contends that any completion of the gappy truth table must satisfy this schema; to prove this
claim he demands that any acceptable logic satisfy Modus Ponens, Transitivity (of the conditional), the
Deduction Theorem and Contraposition. His argument depends on choosing a negation operator mapping
designated values under the TT-scheme to a nondesignated value, and conversely (for more details on this
connection, see Chemla and Égré [15]).
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P. Égré et al.

Fig. 5 The de Finettian Jeffrey conditionals

Fact 5.3 A Jeffrey conditional is de Finettian provided it is of the form:

f→ 1 1/2 0
1 1 1/2 0

1/2 d2 d3 0
0 1/2 1/2 1/2

where d2, d3 ∈ {1/2, 1}.

Clearly, there exist four de Finettian Jeffrey conditionals (see Fig. 5). Two of them
are the Cooper-Cantwell (CC) and the Farrell conditional (F). We call the other two
J1 and J2. For each such table, we modify the notion of DF-evaluation accordingly
(call it a CC-, F-, J1-, and J2-evaluation respectively).

It is straightforward to see that Jeffrey conditionals (whether de Finettian or not)
eschew the trilemma faced by de Finetti’s:

Proposition 5.4 (Trilemma Resolution) Under a TT-notion of validity, any Jeffrey
conditional

– satisfies Modus Ponens and the Identity Law;
– invalidates the entailment of the conditional to its converse.

Proof

– Modus Ponens: Assume v(A) > 0 and v(A → B) > 0, then clearly v(B) > 0.
– Identity: All values on the diagonal of any Jeffrey conditional differ from 0.
– Avoiding the entailment to the converse: When v(A) = 0 and v(B) = 1/2,

v(A → B) > 0 but v(B → A) = 0: this invalidates the entailment from A → B

to B → A.

Like de Finetti’s conditional, all Jeffrey conditionals TT-validate Conditional
Introduction, but unlike the de Finetti conditional they satisfy the converse, namely
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the full Deduction Theorem. This property distinguishes TT-validity among all
possible consequence relations for Jeffrey conditionals:21

Proposition 5.5 (Deduction Theorem)
Any Jeffrey conditional TT-validates both directions of the Deduction Theorem, that
is for every J-evaluation,

�, A |=J/TT B if and only if � |=J/TT A → B (Deduction Theorem)

No Jeffrey conditional validates the full Deduction Theorem for SS-, TT ∩ SS, ST
and TS-validity.

Proof

Deduction Theorem for TT-validity:
(⇒) Suppose � �|=J/TT A → B. Then there is some J-evaluation v such that for all
C ∈ �, v(C) > 0 but v(A) > 0 and v(B) = 0. This implies that �, A �|=J/TT B.
(⇐) Suppose �, A �|=J/TT B: there there is some J-evaluation v such that for all
C ∈ �, v(C) > 0, v(A) > 0, but v(B) = 0. Hence, v(A → B) = 0, and
� �|=J/TT A → B.

Failure of Deduction Theorem for SS-, ST-, SS ∩ TT-, and TS-validity:
(⇐) For SS-validity, consider the evaluation v(A) = 1/2 and v(B) = 0. Then the
Jeffrey conditional A → B is false, but the entailment A |=SS B holds. The same
case shows failure of the Deduction Theorem for ST-validity. For SS ∩ TT- and
TS-validity, failure of the Deduction Theorem follows from the same argument
with the evaluation v(A) = 0 and v(B) = 1.

This result is important since our consequence relation is meant to capture a suit-
able logic of suppositional reasoning, in line with de Finetti’s original motivation.
Just as the truth table for the trivalent conditional is motivated by the idea of evaluat-
ing the consequent under the supposition of the antecedent, the consequence relation
should describe the inferences that are licensed by supposing the antecedent. There-
fore, a Deduction Theorem is an important adequacy condition for a logic of trivalent
conditionals, making a strong case for TT-validity in combination with Jeffrey condi-
tionals. Relatedly, it can be seen that no Jeffrey conditional supports (A → B) → A

as a valid schema relative to TT-validity (to see this, let v(A) = 0, v(B) = 1/2),
unlike de Finetti’s conditional (see Fact 4.2 and compare Farrell [34], whose moti-
vation for f→F lies precisely here). Finally, we saw that relative to TT-validity de
Finetti’s conditional is logically equivalent to the material conditional. By contrast,
every Jeffrey conditional relative to that same scheme is strictly stronger than the
material conditional. Relative to TT-validity, Jeffrey conditionals do not fall prey to
Gibbard’s collapse result, basically because they do not support Gibbard’s condition

21Compare with Chemla and Égré [15], who examine which conditionals of a specific form are admitted
by a given consequence relation in trivalent and higher-valued logic. Here we reverse this problem, by
looking at which validity scheme, if any, is most appropriate to a given conditional operator.
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(ii): when A classically entails C, A → C need not be valid. Being a super-logic
of Asenjo’s and Priest’s Logic of Paradox (LP), CC/TT reproduces all tautologies
of classical logics with the material conditional, but it invalidates several inferences
such as A ∧ ¬A |= C (consider v(A) = 1/2 and v(C) = 0; [67], p. 228). Since
CC/TT satisfies Conditional Introduction, this means that also the conditional schema
(A ∧ ¬A) → C fails although the premise classically entails the conclusion.

5.2 Negation and CC/TT

To choose between the various Jeffrey conditionals, we suggest to look at the inter-
play of the conditional with the other logical connectives. The interplay between
conditional and negation is especially relevant, since several of the most debated prin-
ciples involving indicative conditionals concern negation as well. One common fact
about Jeffrey conditionals is that they fail contraposition relative to Strong Kleene
negation:

Proposition 5.6 For any Jeffrey conditional, A → B �|=J/TT ¬B → ¬A.

Proof Suppose v(A) = 1, v(B) = 1/2. Then v(A → B) = 1/2, but
v(¬B → ¬A) = 0. Hence, A → B �|=J/TT ¬B → ¬A.

The failure of Contraposition may be seen as a welcome prediction. First of
all, to suppose A and to suppose ¬B are two different things. For example, when
v(A) = v(B) = 1, then A →B is obviously true, whereas ¬B →¬A is now
“void”—the conditions for evaluating its truth or falsity are not satisfied. There-
fore v(¬B →¬A) = 1/2. Second, contraposition does not always preserve meaning.
The contrapositive of a sentence like “if Sappho did not die in 570 BC, then she is
dead by now” would be “if Sappho is not dead by now, then she died in 570 BC”.
The latter obviously conveys a different thought. Hence the inference to the con-
trapositive is not warranted in all situations.22 Since all Jeffrey conditionals satisfy
the Deduction Theorem relative to TT-validity, this means they also fail to vali-
date Modus Tollens. Modus Tollens is not DF/TT-valid either, though Contraposition
is.

On the other hand, as noted by Cooper [21] and Cantwell [13], the Cooper-
Cantwell conditional supports the full commutation of Strong Kleene negation
with the conditional, namely the logical equivalence between ¬(A →B) and
(A →¬B).23 In fact, it is the only Jeffrey conditional that does so:

22Of course, we are assuming double negation elimination inside conditionals — this seems entirely
unproblematic. Accounts where Contraposition holds, such as the refined material conditional view of
Jackson [43, 44], have to go to some length to explain away the counterintuitive feel of such examples.
23Prof. Farrell (p.c.) draws our attention to the fact that his table supports full commutation for conditionals
involving atomic sentences, when restricted to atom-classical valuations. Because the restriction to atom-
classical valuations is defended by Cooper, the two accounts mostly differ on nested conditionals.
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Proposition 5.7 Among all Jeffrey conditionals, only the Cooper-Cantwell condi-
tional validates the full commutation schema for negation. For de Finettian Jeffrey
conditionals, SK-negation is a separating connective:

J = · ¬(A → B) |=J/TT A → ¬B A → ¬B |=J/TT ¬(A → B)

CC � �
F × �
J1 × ×
J2 � ×

Proof From the definition of a Jeffrey conditional in Definition 5.2, the truth tables
for ¬(A → B) and A → ¬B look like this:

¬(A → B) 1 1/2 0
1 0 ¬d1 1

1/2 ¬d2 ¬d3 1
0 1/2 ¬d4 1/2

A → ¬B 1 1/2 0
1 0 d1 1

1/2 0 d3 d2
0 1/2 d4 1/2

For TT-entailment to go in both directions, necessarily, ¬d2 = 0, hence d2 =
1, and d1, d3, d4 must all equal 1/2, which yields the table for the Cooper-Cantwell
conditional.

For the other de Finettian Jeffrey cases: let v be an F-evaluation, or a J1-evaluation:
assume v(A) = 1/2 and v(B) = 1, then v(¬(A → B)) = 1/2), but v(A → ¬B) = 0.
Let v be a J1-evaluation, or a J2-evaluation: assume v(A) = 1/2 and v(B) = 1/2, then
v(A → ¬B) = 1, but v(¬(A → B)) = 0. Consider any J2-evaluation. To show that
¬(A → B) |= A → ¬B, assume that there is a v such that v(A → ¬B) = 0, but
v(¬(A → B)) > 0. Necessarily, v(A) > 0, but v(¬B) = 0, so v(B) = 1. But then
v(A → B) = 1, and v(¬(A → B)) = 0, contradiction.

In classical logic, only the commutation from outer to inner negation is valid. On
the other hand, inferences in natural language appear to support both directions in
many contexts. Ramsey [72], Adams [1], Cooper [21], Cantwell [13] and Francez
[36] give a theoretically motivated defense of the commutation scheme, while the
studies by Handley et al. [40] and Politzer [66] provide some empirical support. See,
however, Égré and Politzer [31], Olivier [61] and Skovgaard-Olsen et al. [77] for a
more complex picture.

5.3 Connexivity

We conclude this section by briefly relating our discussion of the TT-logics of de
Finettian and Jeffrey conditionals to a slightly wider logical context. A conditional
logic is called connexive if it validates the two following schemata:

¬(¬A → A) (Aristotle’s Thesis)

and

(A → C) → ¬(A → ¬C) (Boethius’ Thesis)
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(see Pizzi [65]; Wansing [84]). Both de Finetti’s conditional and the Cooper-Cantwell
conditional are connexive when paired with TT-validity (and Strong Kleene nega-
tion).24 Neither Aristotle’s Thesis nor Boethius’ Thesis are classical tautologies:
indeed, connexive logics are not subsystems of classical logic.25 On the other hand,
systems of connexive logic must lack some classical principle, lest they should be
trivial (of course, DF/TT and CC/TT are no exception). Informally construed, Aris-
totle’s Thesis requires that it is never the case that a formula is implied by its own
negation, while Boethius’ Thesis requires that if a conditional A → C holds, then it
is not the case that the conditional that results from the former by negating the con-
sequent, i.e. A → ¬C (which is equivalent to the negated conditional ¬(A → C) in
both DF/TT and CC/TT) hold. Now, since both DF/TT and CC/TT employ a tolerant-
to-tolerant notion of validity, the fact that they satisfy Boethius’ Thesis can hardly
be interpreted as saying that they show that a conditional is “incompatible” with its
negation (and similarly for Aristotle’s Thesis). Nevertheless, in requiring such a strict,
extra-classical connection between antecedent and consequent of a conditional, con-
nexive logics— including DF/TT and CC/TT— arguably ensure that the conditional
interacts reasonably well with negation. In fact, both conditionals validate

Conditional Excluded Middle |=·/TT (A → B) ∨ (A → ¬B)

Conditional Excluded Middle is a moot principle for counterfactuals [50, 83], but
a natural principle for indicative conditionals (e.g., [14])— especially if negation is
to commute with the conditional. In fact, every de Finettian Jeffrey conditional vali-
dates Conditional Excluded Middle. Among them, the Cooper-Cantwell conditional
stands out as the closest to de Finetti’s original connective since it also supports full
commutation with negation.

6 Comparisons and Limits

We have distinguished two trivalents logics of indicative conditionals, namely DF/TT
and CC/TT, whose proof theory and algebraic semantics we will explore in Part II
of this paper. Before doing so, let us summarize the commonalities between the
two logics, their principal differences, and draw comparisons with other logics of
conditionals.

6.1 Main Features

Four main features are common to DF/TT and CC/TT: they are truth-functional logics,
they share the same de Finettian semantic core, they are connexive, and both support
the law of Import-Export without restriction. The main difference between DF/TT
and CC/TT is that the former fails Modus Ponens, whereas the latter preserves it, so

24Kapsner [46] is a recent paper that restates de Finetti’s table specifically in relation to connexivity.
25Classical counterexamples are easily obtained by assigning value 1 to A in Aristotle’s Thesis, and value
0 in Boethius’ Thesis.
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that only CC/TT supports the full Deduction Theorem. This property is in line with
the fact that for TT-validity, the designated values are 1 and 1/2, and the Cooper-
Cantwell conditional is only evaluated as false when the antecedent is designated
and the consequent undesignated. Conversely, relative to Strong Kleene negation the
Cooper-Cantwell conditional fails Contraposition, whereas de Finetti’s conditional
supports Contraposition, but both fail Modus Tollens.

The preservation of Modus Ponens may be seen as virtue of CC/TT compared to
DF/TT. However, one common fact about both logics, given our assumption that they
share the same Strong Kleene disjunction, is that they fail the rule of Disjunctive
Syllogism (¬A, A∨B |= B). Clearly, this concerns the table for disjunction for a TT-
consequence relation (see Priest [67]; Cantwell [13]), independently of the particular
truth conditions for the conditional.

Because the Law of Import-Export is validated, in CC/TT only one of the para-
doxes of material implication is blocked, namely the schema ¬A → (A → B), but
in DF/TT it goes through. On the other hand, A → (B → A) holds in both logics,
consistently with the fact that A ∧ B → A is valid. This property squares well with
the proposed suppositional interpretation of the conditional. Given the way conjunc-
tion and disjunction are handled in DF/TT and CC/TT, we can therefore conclude that
whereas both logics are connexive, neither is relevantist, except for CC/TT in a weak
sense (by failing one of the paradoxes of material implication).

6.2 Limitations

We now discuss some limitations of our logics. Firstly, both CC/TT and DF/TT val-
idate the so-called Linearity principle (A → B) ∨ (B → A). This schema was
famously criticized by MacColl [53], who pointed out that neither of “if John is red-
haired, then John is a doctor” and “if John is a doctor, then he is red-haired” seems
acceptable in ordinary reasoning.

Secondly, there is a certain tension between our extensional semantics of condi-
tionals and the intensional use to which they are often put. Suppose Mary believes
the following conditional:

(3) If the Church is East of the City Hall, then the City Hall is West of the Church.

Intuitively the proposition that Mary believes appears analytically true. Nonethe-
less, on the de Finettian analysis its truth value depends on the position of the City
Hall with respect to the Church: the conditional may be evaluated either as true or
as indeterminate. The apparent analyticity of (3) has to be explained by reference to
its being maximally assertable, regardless of its actual truth value. In fact, also Lewis
([51], p. 315) observes that “there is a discrepancy between truth- and assertability-
preserving inference involving indicative conditionals; and that our intuitions about
valid reasoning with conditionals are apt to concern the latter, and so to be poor evi-
dence about the former.” In other words, while DF/TT and CC/TT aim at describing
a logic of suppositional reasoning and their analysis of (3) should be evaluated by
these criteria, reasonable inferences with conditionals, including “apparent analytic
truths”, may need to be analyzed in terms of a (probabilistic) theory of assertabil-
ity. This theory can again be anchored in, and motivated by, trivalent truth conditions
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for conditionals—see Section 2. Detailing the division of labor between semantics
(truth conditions, validity) and epistemology (degrees of assertability) is, however, a
project for future work.

Thirdly, some conjunctive sentences can never be true on DF/TT or CC/TT, because
one of the conjuncts will always be indeterminate. An “obvious truth” such as
(A →A) ∧(¬A →¬A) is always classified as indeterminate (we are indebted to
Paolo Santorio for this example). Likewise, a “partitioning sentence” of the form
(A →B) ∧ (¬A →C) will always be indeterminate or false ([9], pp. 368–370).
However, a sentence such as:

(4) If the sun shines tomorrow, John goes to the beach; and if it rains, he goes to
the museum.

seems to be true (with hindsight) if the sun shines tomorrow and John goes indeed to
the beach. Moreover, such examples challenge an extension of the assertability prin-
ciple (A) to sentences of arbitrary logical complexity. How can intuitively plausible
compound sentences have positive degree of assertability if they can never be true?

6.3 Quasi-Conjunction and Quasi-Disjunction

Apart from just biting the bullet, three reactions suggest themselves. The first option
is to stipulate that logical validities always have degree of assertability 1. This change
would make (A →A) ∧ (¬A → ¬A) maximally assertable, but it would be ad hoc
and also remain silent on the assertability of sentences such as (4). A second option is
to restrict principle (A) to non-compound conditionals and to analyze the assertability
of more complex sentences by means of a recursive account, based on the asserta-
bility of simpler senteces. We leave an elaboration of that idea for further work. The
third, possibly most elegant option is to introduce different truth tables for triva-
lent conjunction and disjunction (see Fig. 6), as proposed by Cooper [21] (see also
Dubois and Prade [26]; Calabrese [11]). These truth tables, where the conjunction of
the True and the Indeterminate is the True (and vice versa for disjunction), can be
motivated by the isomorphism between bets and truth values introduced in Section 2:
a system of bets should be classified as winning if it consists of a winning and a
called-off bet. Adopting this “quasi-conjunction” and “quasi-disjunction” invalidates
Linearity and resolves the problem with the truth and assertability conditions of par-
titioning sentences.26 In particular, (A →A) ∧ (¬A →¬A) is always true, and so
is (A →B) ∧ (¬A →C) when one of its conjuncts is true. However, when paired
with DF/TT, quasi-conjunction leads to a violation of Import-Export; so it should be
considered primarily as a modification of CC/TT.

Quasi-disjunction violates Disjunction Introduction (A |=A∨ B), and quasi-
conjunction the dual inference from ¬A to ¬(A ∧ B), but this feature is in line with a
relevantist solution to the paradoxes of material implication. More surprising is per-
haps that the material conditional ¬A∨C is now logically stronger than the indicative

26The terms quasi-conjunction and quasi-disjunction come from Adams [2]. Cooper’s nonstandard con-
nectives are not referred to under that name by Cooper, but they coincide with the connectives put forward
under that name by Dubois [26], who trace their definition to the works of Adams, Calabrese and Schay.
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Fig. 6 Truth tables for trivalent quasi-conjunction and quasi-disjunction, as advocated by Cooper [21]

conditional A → C— a feature that we investigate in Égré et al. [32]. On the pos-
itive side, the two connectives in Table 6 are dual to each other and thus satisfy
the de Morgan rules (see Humberstone [42], pp. 1044–1053). Conjunction Elimina-
tion (A ∧ B |= A) still holds for CC/TT, and so do most other desirable principles
(e.g., Import-Export, Distributivity, Conditional Excluded Middle). The results of
Section 5—the classification of Jeffrey conditionals, the Deduction Theorem, com-
mutation with negation, the connexive principles—also stay put since they do not
depend on the choice of the connective for conjunction and disjunction. An additional
benefit of operating with quasi-disjunction instead of Strong Kleene disjunction is
the validation of the rule of Disjunctive Syllogism in CC/TT (¬A, A ∨ B |= B).

Ultimately, the choice between these two versions of CC/TT depends on how the
distinctive features of the two resulting logics should be weighed against each other.
In any case, quasi-conjunction and -disjunction offer a principled way of responding
to philosophically minded objections that have long plagued advocates of trivalent
semantics for indicative conditionals.

7 Summary and Perspectives

De Finetti’s trivalent conditional was put forward by de Finetti to qualitatively model
the way in which conditional statements are probabilistically represented. Since its
discovery, the DF table has received a fair amount of attention from mathematicians
as well as psychologists, but there have been surprisingly few investigations of the
trivalent logics supported by the conditional as well as the variants in its vicinity. Our
main motivation for this paper has been to fill this gap.

We started with the observation that de Finetti’s truth table faces a trilemma when
confronted with the choice of a trivalent validity relation: give up the Identity Law
and other sentential validities, support the entailment from a conditional to its con-
verse, or give up Modus Ponens. We have argued that the latter option is the less
costly in relation to its alternatives, if the DF conditional is paired with a notion of
TT-validity. On the other hand, trivalent Jeffrey conditionals, which have the property
f→(1/2, 0) = 0, avoid this trilemma when endowed with the same TT-consequence
relation: they block the entailment to the converse conditionals, they support the Iden-
tity Law, and moreover they support the full Deduction Theorem (Modus Ponens and
Conditional Introduction), in line with the fact that the values 1 and 1/2 are designated
for consequence, and pattern in the same way for those conditionals.

Zooming in on Jeffrey conditionals, we see that the Cooper-Cantwell conditional
stands out in that it satisfies the full commutation schema for negation, a schema
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widely regarded as plausible in natural language, also supported by the de Finetti
conditional. Prima facie therefore, the Cooper-Cantwell conditional appears to strike
the best balance between logical and epistemological properties: like Farrell’s condi-
tional, but unlike de Finetti’s, it satisfies Modus Ponens. Its motivation for the middle
line of its truth table—to treat an indeterminate antecedent like a true one—is more
uniform than Farrell’s, and well-aligned with the TT-consequence relation.

As pointed out in the previous section, both CC/TT and DF/TT share features
which may be seen as problematic, such as the Linearity principle and the treatment
of partitioning sentences. A principled way out of these problems that merits fur-
ther attention is to modify CC/TT by changing the connectives for conjunction and
disjunction along the lines of Cooper [21]. From a methodological point of view,
however, we think it matters to any further work on conditionals to first focus on the
incorporation of de Finettian operators to the standard trivalent connectives, includ-
ing the usual (strong Kleene) conjunction and disjunction. In Part II of this paper, we
therefore propose a detailed treatment of the proof theory and algebraic semantics of
both CC/TT and DF/TT, in order to give a more informed assessment of both logics.
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