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Abstract

This paper addresses the problem of learning cooperative
strategies in swarm robotics. We are interested in heteroge-
neous swarms, in which each robot optimizes its individual
gain. For some tasks, the problem is that the optimal strategy
requires to cooperate and may be counter-selected in favor
of a more stable but less efficient selfish strategy. To solve
this problem, we introduce a mechanism of partner choice,
which conditions of operation are learned. This mechanism
proves surprisingly efficient, when the swarm size is large,
and the duration of interactions is long. Beyond evolution-
ary swarm robotics, the results we present are relevant for
other distributed on-line learning methods for robotics, and
as a possible extension of existing evolutionary biology and
social learning models.

Introduction
Nature abounds with impressive examples of swarm in-
telligence (Camazine et al., 2001), which have motivated
researchers in robotics to devise methods to obtain self-
organizing behaviors in collective of robots (Mataric, 1992;
Beni, 2005; Brambilla et al., 2012; Bayindir, 2016; Hamann,
2018).

However, designing the behaviors of a robot swarm poses
a challenge in itself as collective behaviors emerge from the
multitude of interactions between robots, and are therefore
difficult to predict and design. The use of automatic design
methods can circumvent this problem to some extent, but is
based on constraining assumptions as they generally assume
that (1) the collective payoff is known and available and (2)
the learning algorithm can be iterated in a centralized way.

This is the case in multi-agent reinforcement learning
methods for decision making under uncertainty (Amato
et al., 2015) and in evolutionary swarm robotics (Trianni,
2008). In the latter, these two assumptions enable to use ho-
mogeneous populations, ie. swarms of clones (Hauert et al.,
2014; Trianni et al., 2007). Learning with clonal popula-
tions have been shown to provide several advantages: it can
lead to purely altruistic behaviors (Waibel et al., 2011), it
can deal well with credit assignment (Waibel et al., 2009),
and it allows the acquisition of specialized behaviors even

though all robots share the same control parameters (Tuci
and Trianni, 2014; Ferrante et al., 2015).

In this paper, we lift the two previously mentioned hy-
potheses. We are interested in a population where all in-
dividuals are different and get individual payoffs (without
knowing about the global payoff). While we use a clas-
sic evolutionary algorithm scheme, this setup is relevant for
two other learning settings: individual learning facing col-
lective tasks (Fudenberg, 1998) and distributed on-line rein-
forcement learning (Bredeche et al., 2018; Heinerman et al.,
2015). In the class of problems addressed by either methods,
cooperation is possible only when the individual’s objective
is aligned with the global objective, which requires a care-
fully designed individual objective function.

As this may not always be the case, we address the fol-
lowing question in this paper: how to enable each robot in
a swarm to learn the socially optimal behavior when this
behavior is individually sub-optimal?

This problem has been extensively studied in game the-
ory and evolutionary biology (Axelrod and Hamilton, 1981).
Whenever the accomplishment of a task by a group of indi-
viduals is not aligned with each individual’s objective, max-
imizing one’s own payoff will interfere with the execution of
the collective task unless explicitly constrained otherwise.

Several mechanisms have been identified that allow the
alignment between the individual’s and the global objec-
tives (West et al., 2007). Among these mechanisms, part-
ner choice is revealed to be particularly efficient. If all in-
dividuals can choose with whom to cooperate, then it is in
everyone’s interest not only to choose the best partner, but
also to cooperate so as to be chosen. In other words, there
is a selection pressure that favours those individuals who are
able to make a good compromise between self-interest and
common interest.

Earlier results obtained in theoretical biology have shown
that for partner choice to be effective, the time spent search-
ing for a partner compared to the time spent interacting with
partners should be as short as possible (Debove et al., 2015).
However, all studies so far consider tightly controlled con-
ditions, either with learning partner choice occurring in a
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well-mixed population (McNamara et al., 2008) or with the
agents moving in a discrete grid world but without learn-
ing (Aktipis, 2011).

We propose an implementation of the mechanism of part-
ner choice for evolutionary swarm robotics, the use of which
is learned by the robots depending on the interactions be-
tween robots and the task to be performed. We also pro-
pose a study of the necessary conditions for partner choice
to enable the learning of a socially optimal cooperative strat-
egy when such a strategy is not naturally stable (i.e. not
a Nash Equilibrium). In agreement with theoretical results
from evolutionary biology, we show that the use of partner
choice in a robot swarm can shift the Nash Equilibrium from
using a sub-optimal defective strategy to using a cooperative
strategy. However, we also show that severe constraints over
the number of encounters and the duration of interactions are
key order parameters to enable the learning of socially opti-
mal cooperative strategies.

Methods
Environment
We define a collective foraging task where N robots move
and consume resources in a circular arena (see Fig. 1). The
environment in which the robots move is continuous. The
robots are subject to a simple kinematic model, and can con-
trol their translation speed and angular speed. Resources are
small objects spread randomly throughout the arena, and can
be consumed only if two robots are into contact with the re-
source at the same moment. Once a resource is consumed, it
disappears and a new resource appears at a random location
in the environment to ensure that the density of resources in
the environment remains constant over time.

In order to consume a resource, both robots in a pair must
invest some amount of energy, which is learned and may dif-
fer from one robot to another (see Section Learning). Each
robot receives a payoff based on its own investment and that
of its partner, for each resource harvested. This means that
each robot has to make a compromise between the effort
made to harvest the resource and the expected payoff.

We define the experimental setup so that a robot may ei-
ther cheat (minimizing its own investment while maximiz-
ing its gain) or cooperate (maximizing the gain of the pair).
This is achieved by defining a payoff function such that the
Nash Equilibrium corresponds to a selfish behavior, while
the social optimum where robots cooperate is not stable (see
Section Payoff function).

Payoff function
When two robots interact with each other, they earn a gain
determined by the investment of the two agents. The gain of
an agent ai investing xi with its partner aj investing xj is
determined by the function P (xi, xj) described in the equa-
tion 4.

Figure 1: The environment is a circle arena. Blue dots are
robots. Green dots are resources. Robots can see the re-
sources, and when two robots are close enough (light grey
area), they may interact together to forage the resource. The
Roborobo simulator is used (Bredeche et al., 2013).

PG(xi, xj) =
a

2
(xi + xj) (1)

PD(xj) =
b

2
(xj) (2)

C(xi) =
1

2
x2i (3)

P (xi, xj) = PG(xi, xj) + PD(xj)− C(xi) (4)

This function is a mixture of a public good (PG, modu-
lated by a) and a prisoner’s dilemma (PD, modulated by b)
and a quadratic cost C. For ai to maximize its individual
gain (P (xi, xj)), the optimal investment is xd = a

2 , which
corresponds to the defective behavior. For the group to max-
imize their total gain, both agents must invest x̂ = a + b

2 ,
which corresponds to the cooperative behavior. By using a
combination of two classical social dilemma games, we en-
sure that (i) the optimal selfish individual investment xd is
greater than zero (which remove possible boundary effects)
and (ii) there is a clear-cut difference between cooperative
and selfish strategies.

Figure 2 plots the payoff function with different partner’s
investment values. The maximum payoff for the focal robot
is always obtained for xd = a

2 , notwithstanding the con-
tribution of the partner. However, if both agents play the
same strategy, the maximum payoff for the group is found at
x̂ = a+ b

2 . We define xd as the contribution corresponding
to a defective strategy, and x̂ as corresponding to a coopera-
tive strategy.

In the following, we fixed a and b so that the focal robot
will have to invest a value of x̂ = 6.5 in order to hope to ob-
tain the best possible collective gain, but this gain will only
be obtained if her partner consents to the same effort (cf.
green curve). However, in the presence of a cooperative part-
ner, it is more interesting for the focal robot to cheat by in-
vesting less. In this case, the optimal investment value of our
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cheating robot is xd = 2.5 (cf. orange curve). Nevertheless,
in this case, the partner has no interest in cooperating, and
both of our cheaters will eventually get a sub-optimal gain
(cf. blue curve). Therefore, the latter situation arises that the
only possible Nash Equilibrium is sub-optimal: robots could
both get more and a robot cannot deviate from this strategy
without a loss.

For clarity, we use the following terms in the rest of the
paper: a robot investing xd = 2.5 will be said to play a
defective strategy. A robot investing x̂ = 6.5 will be said to
play the "optimal cooperative strategy". Any robot playing
x > 2.5 will be said to play a cooperative strategy, even if it
is not the optimal one.
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Figure 2: Payoff function with different partner’s invest-
ment value. The individually optimal investment is xd = a

2
whatever the constant value the partner invests, which corre-
sponds to a defective strategy. If both robots invest the same
value, then the socially optimal investment is x̂ = a + b

2 ,
which corresponds to a cooperative strategy behavior.

Partner Choice
We give our robots the ability to perform partner choice as a
cooperative mechanism to solve the social dilemma we just
described. Partner choice makes it possible to escape the
sub-optimal selfish behavior of partners by enforcing indi-
viduals to act as "good" partners, rather than just optimizing
their own self interest. This is made possible by setting up
a game during which potential partners announce their re-
spective investment in advance, allowing everyone to decide
whether or not to continue the cooperation. As a result, it
can supposedly lead to shifting the Nash Equilibrium to the
socially optimal strategy (ie. both partners must cooperate).

Partner choice has been studied in theoretical biology.
(Debove et al., 2015) explored learning partner choice in re-
peated ultimatum games with both field studies with humans
and numerical simulations. They showed that the efficiency
of partner choice depends on the meeting probability of
an agent (β) and the split probability of an interaction (τ ).
Both β and τ are expressed from the viewpoint of a focal
agent. The meeting probability β determines how fast an

agent will find a potential partner (whether it then chooses
to interact or not). If the pair interacts, the split probability
τ is used to determine when the interaction ends (smaller τ
means longer interactions).

If the meeting probability is large compared to the split
probability, i.e. β/τ is large, then partner choice is a vi-
able strategy and can emerge. Indeed, for partner choice to
be effective, when an agent refuses to interact with a part-
ner, it must do so because its expectation of gain in finding
a better partner outweighs the gain missed by rejecting the
interaction with the wrong partner and the implied cost paid
by looking for a new partner. Thus, if search time is short
(ie. larger β) compared to interaction time (ie. smaller τ ), it
is profitable to spend more time searching for a good partner
than interacting with more uncooperative partners.

The β parameter is determined by the ability of the robots
to meet on a resource and varies as the robots evolve, but
also depending on the density of robots in the arena, and es-
pecially the robots that are also seeking for a partner. Both β
and τ are fixed in theoretical models. This is not the case in
our robotic model, as the meeting probability β is indirectly
controlled by how experimental conditions are set (in partic-
ular the number of robots and the size of the arena) and by
how the robots move, which is learned.

Robotic Behaviors
We consider a swarm of heterogeneous robots, meaning that
robots may act differently when facing a similar situation
depending on their personal learning experience.

Each robot alternates between two behaviors. Firstly, a
foraging behavior, which is learned. It is in charge of both
exploration and partner choice. It will be described in Sec-
tions Controller and Representation and Learning; Secondly,
a wandering behavior, which is hard-coded, that simply
moves the robot forward while avoiding obstacles of any
kind (walls, resources and other robots alike). This behavior
is used for some time after a resource has been successfully
harvested (see details below).

Partner choice is implemented such that when two robots
meet on a resource, each robot executes the following algo-
rithm:

1. The robot announces to its potential partner the effort it is
willing to make to capture the resource. This is when the
robot can choose to cooperate (to maximize the overall
gain) or cheat (to maximize its own gain at the expense of
its partner);

2. Based on the effort announced by its potential partner, the
robot decides whether to pursue the interaction further;

3. If (and only if) both robots agree to continue the interac-
tion, the resource is harvested and each robot’s payoff is
computed accordingly. The robot’s payoff then depends
on both its own investment and the overall investment. As
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such, two robots may have different payoffs depending on
each individual effort.

Whether the interaction is successful or not, the resource
disappears and is relocated elsewhere. In case of a success-
ful interaction, both robots switch to the ad hoc wandering
behavior for a certain period of time which depends on the
split probability τ (cf. Section Partner Choice), before re-
turning to its nominal (learned) behavior. The larger the τ
value, the faster the robot should start to search for a new
resource.

While wandering, the robot no longer participates in the
cooperative game as it only avoids obstacles (for example,
this corresponds to time taken to process the resource (e.g.:
digesting or retrieving the resource). At each time step, each
wandering robot has a probability of τ to switch back to the
foraging behavior. The wandering behavior is used to sim-
ulate the expected duration of an interaction, which value is
thus 1/τ . τ is fixed for a given experiment, and the influence
of several particular values will be explored in Section Re-
sults. In the particular case where τ = 0 (ie. interaction time
is infinite), then robots that both accepted to interact will be
wandering around until the end of the current generation.

Controller and Representation
The robots’ control architecture is decomposed, for each
robot, into three parts: (1) The investment value represents
what the robot is willing to pay to cooperate. It is defined in
x ∈ [0, 10]; (2) Control parameters for the partner choice
module. It is used when a robot pairs with another to har-
vest a resource, to decide whether to accept interaction or not
depending on each partner’s investment values; (3) Control
parameters for the movement module. It is used to move
the robot around (e.g. avoid obstacles, finding a resource,
finding a partner).

Both modules are artificial discrete neural networks, using
a tanh activation function. The details of the inputs of each
network are given in Table 1. Both networks takes an addi-
tional bias value of 1.0 as input. The bias neuron projects on
the hidden and output neurons.

The partner choice module is active only when a robot
pairs with another on a resource. It takes three input values:
the robot’s investment value, that of its partner, and a bias
neuron. The hidden layer is composed of 3 neurons, and
the network produces a single output value (a ∈] − 1, 1[),
which determines if cooperation is accepted (a > 0) or not
(a <= 0). The hidden layer is composed of three neurons.

The movement module takes 8 ∗ 4 sensory input neurons
and a bias neuron as input. These are projected on one hid-
den layer with 10 neurons. Then, two output neurons are
defined in (−1, 1), and scaled to determine the proper trans-
lation and rotation speeds. The 8 ∗ 4 sensory inputs are
provided by 8 sensors, placed uniformly around the robots.
Each sensor gives four elements of information: (a) distance

Input Value
Movement module

Per sensor (×8)
Distance to Robot [0, 1) if in range else 1
Distance to Wall [0, 1) if in range else 1

Distance to Resource [0, 1) if in range else 1
Partner on the Resource 0 or 1
Partner choice module

Partner’s investment [0, 10)
Robot’s own investment [0, 10)

Table 1: Neural Networks inputs

to nearby robot (if any), (b) distance to wall (if any), (c)
distance to resource (if any) and (d) if a resource is detected,
presence of another robot on the resource (= 1) or not (= 0).

Learning

Learning is performed for all individuals, using an evolu-
tionary algorithms as a direct policy search method (Don-
cieux et al., 2015). Neural weights and investment value are
optimized according to an objective function that rewards
the ability to forage resources. Each robot is described by
its own unique genome containing 369 values, decomposed
as follow: (1) the neural weights of for the movement mod-
ule, i.e. 352 real values, with each value initialized in the
range [−1, 1) and bounded in [−10, 10] throughout learning;
(2) the neural weights for the partner choice module, i.e. 16
real values, initialized and bounded similarly; (3) the invest-
ment value gx, a real value defined in [0, 1). At run time, the
investment level x of the robot is set to x = 10× gx.

The fitness function for each robot used is formalized in
Eq. 5.

Fi =

n∑

j=0

P (xi, xj) (5)

The fitness value Fi for a given robot i is computed as
the sum of its payoffs P (xi, xj) obtained during evaluation,
with xi the robot’s investment value (which remains con-
stant through evaluation), and xj the investment of its part-
ner at interaction jth.

Fitness proportionate selection, which can maintain di-
versity in collective evolutionary robotics setups, is used to
build a new population. Mutation is applied to the genome
of the selected individuals. Each gene gk of a robot has a
probability µ = 0.01 to mutate. If the gene is selected for
mutation, then it has a probability of 0.1 to mutate accord-
ing to a uniform distribution U([−10, 10)) and a probability
of 0.9 to mutate according to a normal distributionN (gi, σ)
with σ = σw = 0.1 for the weight genes and σ = σx = 0.1
for the investment gene. The new generation then performs
the task and the process is repeated forG = 200 generations
(see Table 2 for a list of all the parameters).
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Param Description Value
Payoff
a Public good weight 5
b Prisoner’s dilemma weight 3

Environment
T Number of iterations per generation 100 000
G Number of generations per run 200

Arena diameter 400px
Robot size 4px
Robot sensor range 96px
Robot max speed 2px/iteration

ω Number of ressources 30
Ressource radius 3px
Ressource footprint radius 10 px

τ End of interaction probability
Evolution hyper-parameters
µ mutation probability 0.01
σw mutation strength of weight genes 0.1
σx mutation strength of investment gene 0.1

Table 2: Experimental parameters

Results
Experimental setup
The environment is a circular arena with a diameter of
400px. The robots are 4px1 diameter disks. The robots have
8 equally distributed sensors with a range of 96px giving
them information about their surroundings, such as the pres-
ence of other robots, of a resource or of a wall. The robots
move through the environment at a maximum translation
speed of 2px/iteration and a rotational speed of 30◦/iteration.
N robots are spread randomly in the environment and 30 re-
sources are randomly scattered throughout the arena. Each
generation lasts T = 100 000 iterations. The environment is
represented in Figure 1.

The results presented below are obtained by observing of
the final generation (i.e.: 200th generation). We ran 24 sim-
ulations per condition in all experiments. The code used to
generate all results is freely available2.

In this Section, we explore whether cooperation can eas-
ily be learned, or not. Our hypothesis is that while part-
ner choice should enable cooperative behaviors that is so-
cially optimal, such cooperative behavior may be hindered
by other factors such as the number of opportunities to meet
other robots.

In the following, the influence of several factors are ex-
plored that may facilitate (or not) the emergence of partner
choice and cooperation behaviors:

• the effect of population size (Section Learning Coopera-
tion and Population Size). Hypothesis: a robot does not
have time to search for a "good" partner if the population
is small, as all pairing will be quickly made;

1px is short for pixels, the basic unit length used in the simulator
2http://pages.isir.upmc.fr/~bredeche/

Experiments/ALIFE2020_coopPC_code.zip

• the effect of the duration of interactions by changing the
split probability τ (Section Learning Cooperation and In-
teraction Length). Hypothesis: exploration will be fa-
vored when interactions are long as there is a strong cost
to cooperate with a "bad" partner.

Section Learning Cooperation and Population Size also
presents the main control experiment, i.e. removing entirely
partner choice, to demonstrate that partner choice is indeed
mandatory to attain efficient cooperative foraging under the
right experimental conditions.

In addition, three control experiments are described that
explore the sensibility of results with respect to our particu-
lar experimental settings:

Section Effect of Mutation Strength (Control) explores
the impact of both weaker and stronger mutation strengths
applied on the investment gene σx. In particular, a weaker
mutation may hinder the possibility to innovate towards bet-
ter cooperators. We show that this is not the case: results are
robust w.r.t. mutation.

Section Population Size vs Generations (Control) ex-
plores the influence of the parameters chosen for the evo-
lutionary algorithm. Given a constant evaluation budget, a
different balance between the number of generations (which
is fixed to 200) and the population size may have an im-
pact. For setups that use a small population, it is possible
that better results may be obtained by using more genera-
tions. To evaluate this, we adjust the setup with the smallest
population to an evaluation budget that matches that of the
setup with the larger population, by augmenting the number
of generations. We show that the evolutionary algorithm is
robust w.r.t. the parameters used.

Section Wandering and Relocation (Control) focuses on
the possible bias due to the particular implementation of the
ad hoc wandering behavior. The wandering behavior acts
as a diffusion process for the robots, but it is clear that dif-
fusion is neither anisotropic nor provides uniform relocation
due to the multiple collisions that can occur with obstacles in
the arena. We show that using an unrealistic "teleportation"
behavior instead, which ensures pure uniform relocation, ac-
tually does not change the results obtained before, thus con-
firming that our particular implementation of the wandering
behavior does not bias the outcome.

Learning Cooperation and Population Size
To test how partner choice enables the emergence of coop-
erative behavior, we set τ = 0 and the evaluation duration
to T = 100 000. This supposedly corresponds to a favorable
setup as robots will benefit from a long search time and a
very engaging commitment (i.e. only one pairing is possi-
ble) if they accept to interact. Figure 3 provides the results
for different population sizes, from 50 to 1000 robots.

At N = 50, robots plays the defective strategy. With
50 robots in the arena, the robots are unable to meet and
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sample enough partners to be selective before the end of the
generation. Moreover, the robots are racing to find a partner
quickly. Indeed, with τ = 0, the more the task advances in
time, the fewer robots are available in the arena and thus the
more β decreases throughout the evaluation.

On the other hand, robots evolve a cooperative behavior
for N sufficiently large as larger population also implies a
higher probability of encounters β. With a population of
N = 1000, the average investment level is close to the so-
cial optimum.
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Figure 3: Evolution of cooperation with partner choice for
a split probability τ = 0 and mutation strength for the in-
vestment gene σx = 0.1. For each setup, 24 independent
runs are performed (less is shown due to overlaps). Results
are compiled from 168 runs obtained from 7 different ex-
perimental setups. For each setup, learning is performed for
200 generations with a given population size (x-axis). The
values for population size are: 50, 100, 200, 300, 500, 750,
1000. In addition, the blue line shows the average values for
each setup with a confidence interval CI0.95.

To validate the importance of partner choice in the evo-
lution of a cooperative behavior, we build a control experi-
ments where we deactivate the robots’ ability to know their
partner’s investment in order to accept or not accept an inter-
action. In this condition, whatever the number of robots in
the environment, the average investment level always con-
verge to xd, that is a defective behavior (see Fig. 4). In
this situation, robots have no way to be selective and can-
not choose a cooperative robot over a non-cooperative one.
Thus, cooperative robots are not preferentially selected as
partners and there is no incentive to invest more than the
individual optimum.

Learning Cooperation and Interaction Length
Figure 5 shows how the value of the split probability τ af-
fects learning cooperation. When the split probability τ is
null or low (τ < 10−3), the robots invest in a collectively
optimal way and adopt a cooperative strategy. The robots
plays systematically a defective strategy when τ ≥ 10−3.
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Figure 4: Evolution of cooperation without partner choice
for a split probability τ = 0 and mutation strength for the
investment gene σx = 0.1. Technical details are identical to
those of Fig. 3 (see caption).

Thus, decreasing the split probability (ie. increasing the in-
teraction time) has a positive effect on the acquisition of a
cooperative strategy by partner choice, in accordance with
previous theoretical results.
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Figure 5: Evolution of cooperation with partner choice for
a population size of 1000 robots and a mutation strength for
the investment gene σx = 0.1. For each setup, 24 inde-
pendent runs are performed. Results are compiled from 144
runs obtained from 6 different experimental setups. For each
setup, learning is performed for 200 generations with a given
split probability τ (x-axis). The values for τ are: 0, 10−5,
5×10−5, 10−4, 10−3, 10−2. In addition, the blue line shows
the average values for each setup with its 95% confidence
interval.

Effect of Mutation Strength (Control)
Previous results in theoretical biology have shown the im-
portance of variability in the level of investment in the pop-
ulation (McNamara et al., 2008). In a population with in-
creased phenotypic diversity, each individual can select part-
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ners from a pool of individuals with different strategies. Co-
operators may then be chosen over non-cooperators, just be-
cause they are available. As a consequence, this can boot-
strap the emergence of cooperative strategies.

We test the influence of phenotypic variability (which, in
our case, is directly linked to the investment value gx), in-
duced by smaller or larger mutation rates. To do so, we mod-
ify the strength σx of the Gaussian mutation on the gene en-
coding the robot investment level.

Figure 6 shows that differences are minor in the average
investment level between the different simulations when us-
ing larger and smaller mutation strengths (to be compared
with the original results in Fig.3). However, there is less
variability between simulations when the mutation level is
high (σx ≥ 0.1), which can be explained by a more rapid
convergence towards the optimal investment level.

The fact that the variability of investment in the environ-
ment plays very little role in our task may be due to the pres-
ence of individuals with various levels of investment in the
initial population. The ability to be selective in the choice of
partner may therefore emerge before the population is com-
pletely homogeneous and thus generating phenotypic vari-
ability becomes an unnecessary feature.
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Figure 6: Evolution of cooperation with partner choice for
a split probability τ = 0 and mutation strength for the in-
vestment gene of σx = 0.0001 (top) and σx = 0.3 (bottom).
Technical details are identical to those of Fig. 3 (see cap-
tion), which showed results for σx = 0.1.

Population Size vs Generations (Control)
The difference in population sizes between low (50 robots)
and large (1000 robots) populations could be explained by
the smaller evaluation budget used with small populations.
Indeed, given the number of generations is constant (G =
200), the number of evaluations when considering a popu-
lation of 50 robots is 50 × 200 = 10000, while a popula-
tion with 1000 robots gets 1000 × 200 = 200000 evalua-
tions. This difference in the number of evaluations could
explain why cooperative behavior has evolved in the condi-
tions where N is large and not in those where N is small.

We test the impact of the number of evaluations by run-
ning a new control condition of 24 simulations with G =
4000 for a population of N = 50 robots, offering 200000
evaluations. Fig. 7 shows the difference between this new
setup (N = 50, G = 4000) and both the previous setup
with a similar population size but fewer generations (N =
50, G = 200) and the previous setups with similar num-
ber of evaluations but a larger population (N = 1000, G =
200).

The difference between the (N = 50, G = 200) setup
and the (N = 50, G = 4000) setup turns out to be marginal,
while the difference with the (N = 1000, G = 200) setup
using larger population remains largely significant. We con-
clude that adding more generations does not improve the
level of cooperation achieved for conditions with a small
population. These results confirm that smaller meeting prob-
ability β is responsible for blocking the emergence of coop-
erative behavior under these conditions.

Wandering and Relocation (Control)
In order to account for a possible bias due to the ad hoc wan-
dering behavior used, an unrealistic "off-grid" behavior is
introduced in place of the wandering behavior. The off-grid
behavior is a mechanism that simply removes a robot from
the environment after a successful interaction, and relocates
it at a random position after some time depending on the
split probability τ . It is actually closer to the abstract pro-
cess used in numerical simulation in evolutionary biology
models on partner choice, where space is ignored (Debove
et al., 2015).

Figure 8 shows results obtained with the off-grid behavior
for various values of split probability τ (instead of the wan-
dering behavior, as used for results previously shown in Fig-
ure 5). Using either the off-grid behavior or the wandering
behavior produces similar results. When the split probability
is low (τ < 1 × 10−5), robots tend to be more cooperative
(investment value > 2.5). When it is large (τ > 10−3),
robots’ investment values converge to the 2.5, which means
that defection is the rule with either behavior.

Using the off-grid behavior instead of the wandering be-
havior does actually provide an advantage for intermediate
investment values, as robots remain cooperative for larger
τ values. This can be explained by the fact that the arena
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Figure 7: Performance is compared using different budget
balance between population size and number of generations.
From left to right: (1) population=50, generations=200;
(2) population=50, generations=4000; (3) population=200,
generations=1000. Results from (1) and (3) are taken from
Fig. 3 and uses different number of evaluations, but the same
number of generations (200). Results from (2) are obtained
with an evaluation budget similar to (3), i.e. 50 × 4000 =
1000× 200 = 200 000, but with a population similar to (1),
i.e. 50 robots.

is less crowded than in the wander condition due to the re-
moval of robots from the arena. Indeed, a robot necessarily
crosses only potential partners, and is not blocked by robots
wandering around that cannot be available for interaction. In
other words, the β encounter probability is greater with the
off-grid behavior than with the wander behavior (see Sec-
tion Partner Choice).

Conclusion
We have shown that partner choice in evolutionary swarm
robotics with heterogeneous population is a key mechanism
to overcome deceptive social dilemma. We have also shown
that efficient partner choice can be learned, but that its suc-
cess strongly depends on environmental conditions. In par-
ticular, the number of encounters should be high, and the
impact of interaction during or after cooperation should be
long in duration.
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