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1 Abstract
It is commonly asserted that when extrinsic mortality is high, individuals should invest
early in reproduction. This intuition thrives in the literature on life-history theory and
human behavior, yet it has been criticized repeatedly on the basis of mathematical mod-
els. The intuition is indeed wrong; but a recent theoretical criticism has confused the
reason why it is wrong, thereby obscuring earlier and sounder criticisms. In the present
article, based on the simplest possible model, we sought to clarify these issues. We con-
firm earlier findings that extrinsic mortality can affect the evolution of pace of life, not
because it leaves little time to reproduce, but through its effects on density-dependent
competition. This result highlights the importance of accounting for density-dependence
in theoretical models and data analyses. Further, we find little support for the recent
claim that the direction of selection on a reaction norm in a variable environment can-
not be easily inferred from models made in homogeneous environments. In conclusion,
although life-history theory is still imperfect, it has provided simple results that deserve
to be understood.

2 Introduction
Life history theory is widely used to interpret in an adaptive way a number of inter-
individual differences observed within the human species, that can be linked to varia-
tions in individuals’ environments. In particular, consistent data show that people living
in harsh environments (poor, dangerous, and/or uncertain environments; the notion of
harshness being partly ambiguous) invest more, and earlier, in reproduction, and less in
the growth and maintenance of their biological capital (see Pepper and Nettle 2017 for a
review). In the context of life history theory, this observation is interpreted as the plastic
expression of a “fast” strategy supposed to be adaptive in harsh environments.

Not all the dimensions of the physiology and behavior of people living in harsh con-
ditions are well characterized empirically and, above all, not all have a clear adaptive
explanation. Life history approaches still require many developments to account for the
whole logic of human intra-specific variability (see Mathot and Frankenhuis 2018 for a
review). But there is at least one intuition in this literature, that has –bibliometrically
if not scientifically– survived previous discussions: natural selection should have led to
the evolution of a reaction norm whereby individuals adapt their life history to the level
of extrinsic mortality they perceive in their environment, investing more in reproduction
and less in survival when mortality is high, and vice versa when it is low. When extrinsic
mortality is high (i.e., in a harsh environment), individuals have a greater chance of dying
before they have had time to reproduce and therefore, so the intuition goes, they must
invest early and intensively in reproduction, to increase their chances of reproducing be-
fore they die. That is, they must choose a fast pace of life. Conversely, when extrinsic
mortality is low, individuals are unlikely to die young, hence they can afford to invest
in growth and survival and to delay their reproduction. That is, they can choose a slow
pace of life. This intuitive understanding of the effect of extrinsic mortality was initially
spelled out by Williams (1957), and is commonly recalled in the evolutionary biology
literature, as well as in the literature on evolution and human behavior (see e.g., Ellis
et al., 2009; Nettle, 2010; Belsky et al., 2010; Griskevicius et al., 2011; Frankenhuis et al.,

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 16, 2020. ; https://doi.org/10.1101/777698doi: bioRxiv preprint 

https://doi.org/10.1101/777698
http://creativecommons.org/licenses/by-nc-nd/4.0/


2013; Mell et al., 2018).
Yet this intuitive understanding is not actually supported by evolutionary theory.

Careful models show that the effect of extrinsic mortality does not always go in this
direction, and more importantly that it does not occur for the intuitive reason posited in
Williams’ hypothesis. Several articles, including some classics, have well demonstrated
this (e.g. Abrams 1993; Williams et al. 2006; Caswell 2007; Dańko et al. 2017, 2018;
Moorad et al. 2019). Unfortunately, they are little known in the literature on human
behavior. To make matters worse, the only paper that has sought to communicate this
notion to the community of evolutionary psychologists and evolutionary anthropologists is
a preprint published on bioRχiv (Baldini, 2015) that brings up the problem withWilliams’
hypothesis, but also presents some claims that are not correct. Notably, Baldini (2015)
is based on a definition of extrinsic mortality that differs from the definition usually used
in the evolutionary literature (see also Del Giudice, 2019 in this special issue). Beyond
trying to debunk Williams’ hypothesis, Baldini (2015) also questions the possibility of
understanding plastic strategies in variable environnments from models of evolution in
constant environments. As we shall see, his conclusions on plasticity are misleading.

Here our objective is to expose in the simplest possible way the main points that need
to be understood, by scholars in evolutionary psychology and evolutionary anthropology,
regarding the effect of extrinsic mortality on the evolution of pace of life, including in
a plastic species living in a variable environment. Our analysis is simpler than previous
works, which rested on the mathematics of age-structured populations which may obscure
some simple messages. However, we concur with the conclusions of these previous works.
In particular, in line with Dańko et al. (2018), we stress that the importance of taking
density dependence into account is still under-appreciated in broad discussions of life-
history evolution –although accounted in a number of specific models– and that too little
effort is put to document pathways of density-dependence in natural populations. The
same problems have been met in the study of spatially structured populations (Leturque
and Rousset, 2004).

Our aim is thus to build a minimal model that captures the key findings of this
literature in the simplest possible way (in particular the results of Dańko et al. 2017). In
a nutshell these findings are the following. (1) Extrinsic mortality does not directly affect
the evolution of life history traits. (2) Extrinsic mortality only affects the evolution of life
history indirectly through its effect on the intensity of competition. A higher extrinsic
mortality reduces the intensity of competition whereas a lower mortality leads to more
competition. (3) This modification of the intensity of competition can affect in turn
the evolution of life history and this effect can be understood in a principled manner (4)
Quantitatively speaking, the effect of extrinsic mortality on life history in a plastic species
living in a variable environment may be different from its effect in a hard-wired species
living in a constant environment. (4) But, qualitatively, the directions of the effects are
the same in both cases.
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3 Modelling approach

3.1 Measuring the effect of selection in a homogeneous environ-
ment

The objective of the following analysis is to measure the effect of natural selection on
a quantitative trait that controls the pace of life of individuals, or more generally a
quantitative trait that affects both their fecundity and survival. For example, it could
be a trait that increases fertility at the expense of life expectancy, or it could be a
trait that consists in investing into survival at the expense of fertility. We start by
considering a species living in a homogeneous environment, and we will see afterward
how this approach can be generalized to account for the case of a plastic species living in
a variable environment.

We consider a population consisting of n different genotypes. At time t the genotype
i is in density Ni(t) with i ∈ J1, nK. Total population density at t is therefore N(t) =∑n

i=1 Ni(t). In what follows, for the sake of simplicity, we will sometimes drop the
explicit dependency on time, but it always remains implicitly present. Each genotype
is characterized by the value of a quantitative genetic trait zi that potentially affects
both mortality and fertility. In fact, the model is general in the sense that z could really
represent any genetic trait.

Note that we deliberately choose not to consider an age-structured population. This
will limit the scope of our results and we will point this out when this is the case. The
advantage of such a simplification, however, is that it allows the reader to see the effect of
extrinsic mortality in the most straightforward way possible. Related to this hypothesis,
we also assume that the intensity of density-dependent competition is merely a function of
total population density. In nature, different age classes or phenotypes may have different
contributions to density-dependent competition –for example, adults versus immatures–
but we ignore this source of complexity here.

1. We assume that an individual with a trait value z has a constant mortality rate over
his lifetime, given by the function d(z,N) = µ + m(z,N) where µ is the extrinsic
mortality, defined as the additive component of mortality that is independent of an
individual’s age, condition or strategy (see Dańko et al. 2017), and m(z,N) rep-
resents the intrinsic mortality rate that depends both on the individual’s strategy,
z, and also potentially on the intensity of competition in the population (hence on
the total density N). Note that, in the sake of simplicity, we assume that density-
dependent competition only affects the intrinsic mortality of individuals. Extrinsic
mortality is supposed to be a fixed constant independent of demography.

2. We assume that an individual with trait z produces offspring at a constant fertility
rate over his lifetime, given by the function b(z,N), which also potentially depends
both on the individual’s strategy, and on the intensity of density-dependent com-
petition. The form of the functions b(·) and d(·) need not be specified.

We consider a continuous-time model, as inspired by the epidemiological application of the
Price equation developed by Day and Gandon (2005). The dynamics of the n genotypes
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in the population are given by the following system of differential equations
1

Ni

Ṅi = r(zi, N) for all i (1)

where r(z,N) = b(z,N)−d(z,N) is the net growth rate of each genotype. The frequency
of each genotype being qi ≡ Ni

N
, the dynamics of genotypic frequencies are given by the

system

q̇i =
Ṅi

N
− qi

Ṅ

N
= qi(ri − r̄) (2)

where the dot accents denote time derivatives (that is, for any variable x, ẋ = dx
dt
), and

r̄ ≡
∑n

i=1 riqi is the average ri over the genotype distribution. The average value of z at
time t is z̄ ≡

∑n
i=1 ziqi, which therefore changes due to natural selection at a rate given

by

˙̄z =
n∑
i=1

ziq̇i =
n∑
i=1

ziqi(ri − r̄) = cov[z, r]. (3)

At each instant, the average value of z changes, under the effect of natural selection, at a
rate given by the covariance between z and the instantaneous growth rate of genotypes,
r. The trait z increases to the extent that is is associated with a larger growth rate, and
vice versa. Equation 3 is a simple version of the so-called Price equation (Price, 1970).

To simplify the analysis, we now consider the case where the variability of z is small.
In this case, we write the trait value of each allele as a deviation from the average trait
value, i.e. zi = z̄ + ζi. We then express the change in z̄ due to selection (Eq. 3), to the
second order in ζi. Assuming that all allelic effects scale as a common factor ζ, in the
Appendix we show that, for small ζ, it simplifies into

˙̄z =
∂r(z,N)

∂z

∣∣∣∣
z=z̄

var(z) +O(ζ3) (4)

where var(z) =
∑n

i=1 qiζ
2
i is the variance of z in the population, and O(ζ3) is at most

a positive constant multiple of ζ3 as ζ → 0. In other words, to the second order, the
change, due to selection, of the average value of z is simply proportional to the derivative
of the growth rate r with respect to z. In what follows, we simply call this value the
selection gradient on z, given by

S(z̄, N) ≡ ∂r(z,N)

∂z

∣∣∣∣
z=z̄

=
∂b(z,N)

∂z

∣∣∣∣
z=z̄

− ∂m(z,N)

∂z

∣∣∣∣
z=z̄

. (5)

It is important to realize that this equation is not dynamically sufficient. It only
shows the instantaneous effect of selection on z at any given time, provided one knows
the mean trait value, z̄, and the population density, N , at this time. This effect, however,
does change over time, as z̄ and N necessarily change, and equation 5 does not tell us
how. As a result, it cannot be used to derive the dynamics of z̄ from an initial condition.
It is nevertheless useful because it allows us to understand the effect of selection on a life
history trait in a simple and general way. It does not imply any specific form of density-
dependent competition –in fact it is valid even in the total absence of density-dependent
competition– and it does not even assume that the population is at a demographic equi-
librium. From this expression, our objective will be to understand how, and under what
conditions, the selection gradient may depend on the extrinsic mortality of individuals.
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3.2 Measuring the effect of selection in a variable environment

We can now clarify the extent to which the evolutionarily stable reaction norm in the
case of a plastic species facing a variable environment can be inferred from the hard-wired
evolutionarily stable strategies in different homogeneous environments, a question also
discussed by Baldini (2015). To do so, we extend the above approach to consider the case
where the environment is variable, either in space or time. For example, in some places
or at certain times, extrinsic mortality is high, while it is low in others.

We assume that individuals are plastic in the expression of their life history trait z.
In an environment of type ε they express a trait value zε. For simplicity, we neglect
(i) the cost of plasticity and (ii) the possible existence of a delay in the expression of
plasticity. We simply assume that, in each type of environment, individuals are able to
instantaneously express a life-history strategy specific to that environment, by modifying
their allocation to survival and reproduction. Importantly, we also assume that the
fecundity and mortality of individuals living in an environment of type ε only depend (i)
on the properties of ε, and (ii) on the density N ε of competitors in this very environment.
That is, individuals are not affected by the environments in which they do not live (or only
indirectly via N ε). Under these assumptions, our objective is to evaluate the direction of
natural selection on each value of zε.

An individual placed in an environment of type ε has fecundity bε(zε, N ε) and mortal-
ity µε + mε(zε, N ε), where N ε measures the intensity of density-dependent competition
in the environment of type ε. As in the case of a homogeneous environment (Equation
5), the instantaneous direction of selection on zε is given by

Sε(z
ε, N ε) =

∂bε(zε, N ε)

∂zε
− ∂mε(zε, N ε)

∂zε
. (6)

4 Results

4.1 Selection in a constant environment

The first thing we observe in equation 5 is that µ does not appear in the expression of
S, hence that the selection gradient on the trait z cannot depend on extrinsic mortality
(except through an effect on the other parameters in this equation; “indirect effect”,
see below). In other words, the level of extrinsic mortality experienced by individuals,
in itself, has no effect on selection for any trait, which is a standard result obtained
by several classic papers (Abrams, 1993; Williams et al., 2006; Caswell, 2007) and see
Moorad et al. (2019) for a review.

Here we find a discrepancy with Baldini (2015) who observes that, even in the ab-
sence of density-dependent regulation –thus without any effect of demography, what he
calls “extrinsic mortality” does affect the evolutionarily stable life history, in a direction
opposite to the standard view. This result, however, is actually a consequence of using a
definition of extrinsic mortality that is inconsistent with previous works. Extrinsic mor-
tality is standardly defined as the additive component of mortality that is independent
of an individual’s age, condition or strategy, which amounts to a minimum mortality
below which individuals cannot fall. By contrast, Baldini’s extrinsic mortality parameter
is the individuals’ maximum mortality rate: the mortality rate that would be suffered
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by individuals who would not invest any resource at all in their survival. Thus defined,
“extrinsic mortality” increases the marginal return on investment in survival, forcing in-
dividuals to invest more in survival and reproduce later, thus giving the impression of an
effect opposite to the standard predictions. On the contrary, if defined properly, in the
absence of density-dependent regulation extrinsic mortality merely has no effect on the
evolution of life history traits.

However, the selection gradient on the trait z can depend indirectly on extrinsic
mortality. Once again, it must not be forgotten that equation 5 is not dynamically
sufficient, that is, it describes only the effects of extrinsic mortality over one time step
on the selection gradient for given population density N , but not the effects that the
expression of the trait z in previous time steps may have on N , and then on the selection
gradient. The indirect effects are those not accounted by the dynamically insufficient
result, in contrast to the direct effect of z for given N . All other things being equal, if
extrinsic mortality increases then, N , is likely to decrease since individuals live shorter
lives on average. In principle, it is therefore possible for extrinsic mortality to affect the
evolution of life-history strategy indirectly, via its effect on N (since N appears in eq. 5).
This effect could in principle be modelled under various scenarios, but we do not attempt
to do so here. Our objective is simply to show that, if such an effect exists, then extrinsic
mortality may have an effect on selection through this means.

4.1.1 If pace of life and competition have independent effects, then extrinsic
mortality plays no role in the evolution of pace of life

Let us first assume that the trait z and density-dependent competition affect fertility and
mortality independently from each other, i.e., that they have additive effects. We write
the fertility of a genotype z as b(z,N) = b0(z) − αN , and its mortality as d(z,N) =
µ + m0(z) + βN , where α and β measure the intensity of the effect of competition,
respectively, on fertility and survival.

In this case, the selection gradient on z is simply given by S(z,N) = b′0(z)−m′0(z) and
is therefore independent of demography. This is logical since, in this situation, density-
dependent competition affects all genotypes identically. As a result, extrinsic mortality
cannot have any effect on the evolution of z. A particular case of this situation occurs
in the total absence of density-dependent regulation (α = β = 0). In this case, extrinsic
mortality also plays no role in the evolution of z (see also Moorad et al. 2019).

4.1.2 If pace of life interacts with competition, then extrinsic mortality can
affect its evolution

Let us now assume that the trait z and density-dependent competition interact with one
another. We thus write the fertility of a genotype z as b(z,N) = b0(z)− αN − γb0(z)N ,
and its mortality as d(z,N) = µ + m0(z) + βN + δm0(z)N , where γ and δ measure the
interaction effects between z and N , respectively on fertility and mortality. If γ >0,
then competition reduces more strongly the fertility of an individual who invests a lot
in reproduction (if γ < 0, it is the opposite). If δ >0, then competition increases more
strongly the mortality of an individual who invests little in survival (if δ < 0, it is the
opposite).
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The direction of selection on z is given here by S = b′0(z)(1−γN)−m′0(z)(1+δN). All
other things being equal, selection is of course always positive on fertility and negative
on mortality. What matters, however, is to measure the relative strength of selection
on these two components. If selection is particularly strong on fertility, fast strategies
are favoured. While, if selection is particularly strong on survival, slow strategies are
favoured. Here the relative strength of selection on fertility and mortality is given by the
ratio F = (1− γN)(1 + δN)−1 which is therefore a measure of the strength of selection
in favour of a fast pace of life. From this expression we find that, if it leads to a reduction
of the intensity of density-dependent competition (lower N), extrinsic mortality can, in
principle, affect the evolution of pace of life in two opposite directions.

1. Increased extrinsic mortality can favour a faster strategy with higher investment in
fertility and lower investment in survival (higher F ) in two cases:

• If competition reduces the benefit of investing in reproduction, by impacting
especially strongly individuals with high fertility (γ > 0). This is typically
the case if competition reduces the survival of immature offspring. Strictly
speaking, our model does not capture this situation since we do not consider
an age structure but, in an approximate way, an excess mortality of immatures
results in a reduction of the number of offspring recruited in the next adult
generation, per young produced. That is, it reduces the benefits of investing
in reproduction.

• If competition increases especially strongly the mortality of individuals who
invest little in their survival (δ > 0). This can happen if individuals with
low somatic investment are particularly sensitive to competition, and have a
mortality rate that increases sharply in the presence of competitors.

This first situation seems reasonable and is likely to be frequent, for two reasons.
First, the negative impact of competition on reproduction has good reasons to
be stronger for individuals who invest a lot in reproduction (i.e. γ is likely to be
positive). An individual who produces many offspring is likely to lose a large number
of them to competition, in absolute terms, because she simply has more of them
to lose. Second, the individuals who invest the most in reducing their mortality
in general are likely to be well prepared to cope in particular with the effects of
competition on mortality (i.e. δ is likely to be positive). For these two reasons, it
is understandable that this effect –that a larger extrinsic mortality favours a faster
strategy– is considered to be the most standard.

2. However, it is by no means the only possible effect. It is quite possible, under
certain conditions, that the effect of an increased extrinsic mortality may go in the
other direction, favouring slower strategies. This can occur in two cases:

• If competition has a particularly strong impact on the mortality of individuals
who invest heavily in their survival (δ < 0).

• If competition increases the benefit of investing in reproduction by impacting
less strongly individuals with high fertility (γ < 0).
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In practice, the first effect may occur, for example, if larger individuals, who survive
better, are also more sensitive to resource depletion due to competition. The second
effect, on the other hand, seems more of a theoretical possibility than a plausible
situation in practice.

In summary, the key notion to remember is that extrinsic mortality can only affect
the evolution of life history via its possible effect on competition and by no other means.
To get an intuitive understanding of the effect of mortality implies to get an intuitive
understanding of the effect of competition, nothing more. If a trait is an adaptation
to intense competition that allows individuals to better thrive under this circumstance,
for example by producing fewer but less fragile offspring, by investing in the ability to
survive in a dense population, or by investing in the ability to compete for resources,
then this trait is particularly favoured when extrinsic mortality is low. Conversely, if a
trait is adapted to an environment with a low level of competition, but makes individuals
especially sensitive to the presence of conspecifics, for example by producing numerous
but fragile offspring, or by investing little in somatic features that allow to better compete,
then this trait is favored when extrinsic mortality is high.

4.2 There is more to harshness than extrinsic mortality

We showed that extrinsic mortality can affect the pace of life only through its effect on
density-dependent competition. But harsh environments can affect life-history evolution
through other, more direct ways, as our model also shows.

To see this, let us consider the direction of selection on a trait z that reduces mortality
at the expense of fecundity –i.e. a “slow” trait. Without loss of generality, suppose that
z ∈ [0, 1] and that z has a linear effect on fecundity, with b(z,N) = b0 − z − αN + γzN ,
while mortality is given by d(z,N) = µ + m0(z) + βN + δm0(z)N where m0(z) is a
decreasing function of z. The direction of selection on z is then given by S = −(1 −
γN)−m′0(z)(1 + δN). Beyond the effect of density-dependent competition ( γ and δ ), S
also depends on −m′0(z), that is the marginal benefit from mortality reduction achieved
by giving up one unit of fecundity. The higher this benefit (i.e. the more strongly
negative is m′0(z)) the more advantageous it is to invest in survival. Thus, even in the
complete absence of density-dependent effects, it is quite possible that a feature of harsh
environments related to the level and type of mortality risks may influence the life-history
of individuals.

For example, one might speculate that harsh environments are not really characterized
by a higher extrinsic mortality. Rather, harsh environments could be ones in which it
is more costly to protect against mortality risks because they are more severe. In this
case, −m′0(z) would be lower in harsh environments, making it less worthwhile to invest
in survival, thereby favoring faster strategies, even in the absence of density-dependent
effects.

One could speculate on the contrary that harsh environments are full of hazards but
these are hazards against which it is fairly easy to protect oneself. In this case, the
marginal benefit of investing in survival is greater and individuals may thus reduce their
investment in fecundity. This is the effect captured in Baldini (2015), which actually
considers maximum mortality despite calling it extrinsic mortality. On the other hand,
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it should be noted that, in this case, nothing can be said regarding the actual mortality
of individuals at evolutionary stability without further specifying the shape of m0(z).
Individuals will invest more in survival in harsh environments, but there is no certainty
that they are able to fully compensate for the excess mortality.

More generally, this leads us to underline the fact that harsh and benign environments
might differ not so much in terms of their extrinsic mortality (here µ) but in terms of the
trade-off between mortality and fertility (here the function m0(·)). We will come back to
this point in the Discussion.

4.3 Selection in a variable environment

In the case of a heterogeneous environment, from equation 6 we see that, in a local
environment of any given type ε, extrinsic mortality does not directly affect the selection
on zε. But it affects it indirectly via its effect on the intensity of competition (measured
by N ε). We can therefore qualitatively understand the effect of extrinsic mortality in a
heterogeneous environment, as we did in a constant environment. If extrinsic mortality
is particularly high in a given type of environment, this affects the direction of selection
on the life history strategy expressed in this particular type of environment (i.e. it exerts
a selective pressure on the reaction norm at this particular point), only to the extent that
this higher mortality leads to a relaxation of competition in this type of environment.
Conversely, if extrinsic mortality is particularly low in a given environment, it affects the
direction of selection, only to the extent that this lower mortality leads to an enhanced
competition in this type of environment.

We can therefore understand why the effect of selection in a variable environment may
not be the same, quantitatively, as in a constant environment. When the environment
is variable, the intensity of competition in a given type of environment does not depend
solely on extrinsic mortality in this type of environment. If the migration rate from one
environment to another is large, or if environment properties change rapidly through time,
then population density in a given type of environment may also be affected by extrinsic
mortality in other types. If extrinsic mortality is very high in a given environment, for
instance, individuals living in this environment may still experience a relatively intense
competition if they are surrounded –temporally or spatially– by other environments where
mortality is low. As a consequence of this demographic coupling between environments,
the difference between the life history strategies expressed by plastic individuals in two
different environments is likely to be lower than the difference between the hard-wired
strategies expressed by two populations evolving independently in different environments.

However, even though the magnitude of the effect of extrinsic mortality may not be
the same in a variable than a constant environment, the direction of this effect is always
the same, except under some unlikely scenarios. To see this, consider two environments
that differ in terms of their level of extrinsic mortality. Say, extrinsic mortality is higher
in environment of type ε1 than in environment of type ε2. We know from equation 6,
that extrinsic mortality in environment ε1 may only affect the direction of selection in
this environment via an effect on population density N ε1 . So, for the effect to reverse
in the presence of environmental heterogeneity, population density would have to be
larger in environment ε2 than in environment ε1, even though extrinsic mortality is
higher. This seems almost impossible in principle since, if anything, extrinsic mortality
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has a negative effect on population density. However, it is conceivable that this could
happen in specific scenarios where the migration rate of individuals is so high that the
recruitment of dispersing individuals is higher than the recruitment of philopatric ones,
or where the environment changes cyclically at a rate close to generation time since, in
both cases, population density in one environment would depend more on the extrinsic
mortality experienced by individuals in the other environment than in this one. But, apart
from these specific scenarios, when extrinsic mortality decreases in a given environment,
it may increase the intensity of competition less than in a fixed environment taken in
isolation, but it does not reduce the intensity of competition in this environment; and
conversely, if extrinsic mortality increases in a given environment, it does not increase
the intensity of competition, even if it does not reduce it as much as in an environment
taken in isolation. Therefore, even though the precise shape of the reaction norm cannot
be predicted quantitatively, the direction of its slope can be reasonably well predicted
qualitatively from the analysis of evolutionary stable strategies in constant environments.

Here as well, we observe a discrepancy with Baldini’s claims. But, as we pointed
above, those claims are not based on the standard definition of extrinsic mortality. This
matters here because the only quantitative result shown by Baldini in a heterogeneous
environment (his Figure 1) concerns the case where density-dependence is absent, which
is a situation where extrinsic mortality, if properly defined, has no effect on the evolution
of life history anyway.

5 Discussion
In this article we have sought to clarify the effect of extrinsic mortality on the evolution
of the ratio of investments in survival vs. reproduction, hereby referred to as the pace
of life. Three intuitions on this point are common in the literature (see e.g. Ellis et al.,
2009; Nettle, 2010; Belsky et al., 2010; Griskevicius et al., 2011; Frankenhuis et al., 2013;
Mell et al., 2018): (I1) An environment with high extrinsic mortality always leads to
the evolution of a fast pace of life (that is, a small investment in survival and a large
investment in reproduction). (I2) This effect is due to the fact that, if mortality is high,
individuals are likely to die before they have had time to reproduce. (I3) This effect is
true both if the environment is constant and the pace of life a hard-wired strategy and if
the environment is variable and the pace of life a plastic reaction norm.

In the present article, based on a simple model, we have sought to clarify the issue. We
have also contrasted our results to those of Baldini (2015) and explained the discrepancies,
but here we will emphasize the more positive messages from our model. We obtained the
following results:

(1) Strictly speaking, the three common intuitions above are false. In particular,
intuition I2 is profoundly wrong. When extrinsic mortality does affect the evolution of
pace of life, it is not for the intuitive reason that individuals have little time to reproduce,
but for another reason related to the effect of extrinsic mortality on competition (see
below). This point has already been known in the theoretical literature for a long time
(Abrams, 1993; Williams et al., 2006; Caswell, 2007; and see Moorad et al., 2019 for a
review).

(2) Theoreticians are not hopeless, however, when it comes to predicting and explain-
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ing the effect of extrinsic mortality. With our simple model, we showed that it is possible
to explain in a fairly intuitive and principled way the genuine effects of extrinsic mortality
on pace of life. On this point our results are also in line with the theoretical literature
(e.g. Abrams, 1993; Dańko et al., 2017), but the very simple nature of our model allows us
show the effect of extrinsic mortality in the most straightforward way possible. Extrinsic
mortality has no “direct” effect on the evolution of pace of life. However, it can affect it
indirectly through its effect on the intensity of competition. Reducing extrinsic mortality
always increases the intensity of competition because more individuals can be maintained
in the environment. Hence, reducing extrinsic mortality favours slower strategies if these
strategies allow to better thrive under intense competition and, on the contrary, faster
strategies if these strategies do better under intense competition. Overall, all the traits
that are adaptive under intense competition are favoured when extrinsic mortality is low
and, conversely, all the traits that are adaptive when competition is relaxed are favoured
when extrinsic mortality is high. This is undoubtedly different from intuition I2, but
it can be explained to non-theoreticians in a simple manner. In particular, it must be
stressed that whereas it is wrong to say that extrinsic mortality always favors a faster
strategy, in many cases it actually does. This is notably the case in the very frequent
situations where density-dependent regulation takes place via the fecundity of individuals
or, with similar effects, through the mortality of juveniles. In this case, a reduction in
extrinsic mortality leads to a reduction in the marginal return of investing in reproduction
relative to survival, which does favour a slower strategy.

(3) Intuition I3 is quantitatively wrong but still qualitatively true. Strictly speaking,
models of homogeneous environments do not allow measurement of the effect of selection
in variable environments. But the discrepancy between the two is only quantitative, not
qualitative. Provided the cost of phenotypic plasticity is negligible, the direction of the
effect of extrinsic mortality in a variable environment (but not the force of the effect) can
be predicted from a homogeneous environment model. For example, if a particular model
of homogeneous environment shows that the evolutionarily stable pace of life increases
with extrinsic mortality, then we can deduce that the evolutionarily stable reaction norm
in a variable envionment would also cause the pace of life to increase with extrinsic
mortality.

One may now wonder about the consequences of this clarification. What can be
said regarding the development of future research, both theoretical and empirical, on the
application of life history theory to the understanding of human intraspecific variability?
One first avenue of research would be to try and gain an empirical understanding of
the nature of density-dependence in human populations, and more specifically in human
populations whose ecology corresponds to the one in which we likely evolved. Another
avenue of research, however, would be to shift away from an exclusive focus on extrinsic
mortality, whose effects are limited and indirect, to adopt a broader perspective on what
really constitutes harshness.

First, the key difference – or one of the key differences – between harsh and benign
environments may well be a property related to mortality but not extrinsic mortality.
Extrinsic mortality is very strictly defined as the additive component of mortality that
is independent of individuals’ strategy. It does not represent the overall level of “danger”
in the environment, as one might think, but the amount of danger against which the
organism can do nothing, even if it were to invest an infinite amount of resources in
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protection. It can be argued that such an exogeneous mortality does not exist in real life,
as one can always invest to guard against all sources of danger (Kaplan and Gangestad,
2015). A different view of mortality in harsh environments, probably a more accurate
one, would therefore consist in saying that harsh environments are ones in which it
costs more to reduce mortality because they involve more severe dangers. Investments
in fecundity are thus comparatively more profitable there than investments in survival,
since mortality cannot be significantly reduced at a reasonable cost anyway. In this
case, unlike the case where it involves a higher extrinsic mortality, harshness does favour
a faster strategy regardless of any frequency dependent effect (see section 4.2). The
bottom line is that mortality is never really exogenous and is always the consequence of
an interaction between environments and strategies. So, this interaction should actually
be measured, and modelled, to understand the influence of environments on life histories.

We can then go even further and ask whether the relevant distinction between harsh
and benign environments really has anything to do with mortality at all. Although it
is reasonable to assume that mortality plays an important role when comparing regions
of the world that differ with regard to, say, parasite pressure or predation rate, it is
not necessarily the case when it comes to comparing the ecology of people with different
socio-economic statuses within the same country. A large fraction of the higher mortality
of people with low SES in developped countries is a consequence of a life-history strategy
of investing less in survival and maintenance. This difference could thus perfectly well be
caused by differences between these environments that have nothing to do with mortality
in the first place.

In a recent unpublished work, Mell et al. (2019) obtained results along these lines
in the case of the evolution of time horizon. Individuals exposed to deprivation have
a propensity to discount future rewards more steeply than wealthier individuals. The
standard explanation is that this is a consequence of higher extrinsic mortality. But Mell
et al. (2019) suggest that this might actually rather be a consequence of wealth. Their
idea is that rewards are not mere points to collect and put in a safe but assets that
individuals can use to do useful things. Hence, delaying the collection of a reward creates
an opportunity cost in the sense that during the waiting time, the benefits otherwise
generated by the reward are lost. This cost is independent of mortality but it depends a
lot on the individual’s current wealth. If someone can significantly improve their living
condition –or prevent them from deteriorating– by using new resources wisely, they pay
a high waiting cost. And vice versa, for someone whose condition is already plateauing
anyway, waiting costs are low. It is therefore quite conceivable that an important property
of the strategy of individuals, namely their temporal preferences, is unrelated to mortality.
This could in fact be true more generally of other facets of people’s life history which could
be determined by wealth, rather than by environmental features pertaining to mortality
per se.

Lastly, life history is not just pace of life or time discounting. The life history strategy
of an individual also includes their investment in various forms of biological capital, and
it also includes the temporal variations of their investments over the lifetime, that is
their “shape of life” and not only their pace of life (Baudisch, 2011; Jones et al., 2014).
Understanding all these features requires still other models. Even more broadly, the
concept of life history strategy is sometimes used to encompass also a variety of behaviours
(e.g. religiosity, cooperation, etc.) that cannot be directly understood from models on
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pace of life or time discounting.
In conclusion, there are many difficulties and still some grey areas in the application

of life history theory to human variability, but one must not throw out the baby with
the bathwater by rejecting the entire theory on the grounds that it is not yet perfect.
Understanding human variation based on resource allocation theory is a research program
with an important goal and a solid rationale. We still need to better understand what
harshness really means, better understand the nature of the adaptive responses it has
selected for, and better prove empirically the very existence of phenotypic plastiticy, but
these shortcomings should not lead us to reject, as a matter of principle, the approach as
a whole.
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Appendix : Measuring the effect of selection to the sec-
ond order
Here we derive the instantaneous rate of change in the mean value of the trait to the
second order in trait variation. We write genotype i’s trait value as a deviation relative
to the mean, i.e. zi = z̄+ ζi, where z̄ =

∑
i qizi is the mean trait value, and therefore the

mean deviation is zero by definition (
∑

i qiζi = 0).
The instantaneous rate of change of the trait due to selection is

˙̄z = cov(r, z) = E[rz]− r̄z̄

where E[X] stands for the expectation of X taken over the entire population.
We have

E[rz] =
∑
i

qirizi =
∑
i

qiri(z̄ + ζi) = z̄
∑
i

qiri +
∑
i

qiriζi = r̄z̄ +
∑
i

qiriζi

Hence this gives

˙̄z = E[rz]− r̄z̄ =
∑
i

qiriζi

Quite generally for a function with a second derivative, for some zL
i between z̄ and zi, one

can write ri = r + ζirz,1(z̄) +
ζ2i
2
rz,2(zL

i ), with rz,k(x) = kth derivative of r with respect
to z evaluated for z = x (Taylor’s theorem with Lagrange form of the remainder). Then,
using

∑
i qiζi = 0,

˙̄z =
∑
i

qi

(
ζ2
i rz,1(z̄) +

ζ3
i

2
rz,2(zL

i )

)
If the second derivative is bounded in absolute value over the range of all zi values, then
this reduces to

˙̄z = rz,1(z̄) var(Z) +O(E(|Z3|)).

where we view each ζi as a realization of a random variable Z = z − z̄. Assuming that
all allelic effects scale as a common factor ζ, then var(z) = var(Z) = O(ζ2) dominates
E(|Z3|) = O(ζ3) for small ζ, so that, to leading order in ζ, the instantaneous change in
the mean trait value is given by the first derivative of r with respect to z (rz,1), multiplied
by the variance of z:

˙̄z = rz,1(z̄) var(z) +O(ζ3).

which is equation 4 of main text.
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