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Updating our beliefs about inconsistency: The Monty-Hall case

1 Introduction

Since the sixties, various researchers have come to the conclusion that participants in

psychological studies revise their probability judgments differently from the way

experimenters do using Bayes' rule.  People seem unable to revise their degrees of belief in a

Bayesian manner (for a review see Gilovich et al. 2002).  They are thus thought to be

inconsistent.  However this conclusion appears debatable when one sheds light on the notion

of Bayesian consistency.  In such light, the methodology underlying the above-mentioned

studies does not seem concerned by individual consistency. It rather amounts to an analysis of

accuracy. The experimenter plays the role of an expert who forms ”correct predictions”

(Baratgin & Politzer 2006).  The Monty-Hall Puzzle constitutes a much-studied paradigm

emblematic of this literature. The standard version originates from a popular television game

show “Let's Make A Deal” programmed in 1963 in North America. It involves only three

numbered doors and equal prior probabilities (from now on we will refer to it as standard

MHP)1. This paper will focus on a generalized probabilistic version of the Monty-Hall Puzzle

(that we will note MHPnn-2). It corresponds to a four stages story that reads as follows2:

Stage (i) A TV host shows you n numbered doors No.1, ...No.n, one hiding a car and the

other n-1 hiding goats. Let carNo.i be the event “the car is behind door No.i”. Let

                                                  
1 It was phrased as a problem of choice where the host after picking door No.3 to reveal a goat, asks
participant: “should you switch your original choice No.1 to No.2?”. Despite a choice is required in
this version, participants must first of all make a probabilistic judgment. An older version called the
Three Prisoners Problem is cast in a probabilistic format (Gardner 1959). This paper focuses on the
mere probabilistic judgment disregarding the further question whether to switch. We will indifferently
make references to the Three Prisoners Problem or to the Monty Hall Puzzle under the same notation.
The question of choosing whether to switch door can be treated independently from the probability
judgment question.  Chun (2003) for example analyses standard MHP as a decision problem.
Conversely numerous experimental studies focus on the sole question of choice whether to switch
door (see for example Gilovich et al. 1995; Granberg & Brown 1995; Friedman 1998).
2 This version is an adaptation of standard MHP (see for example Gillman 1992).
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€ 

P(carNo.i) =
ai
A

, i = 1, ..., i = n, with 

€ 

A = ass=1

s=n
∑  be the corresponding prior probabilities given

at this stage.  The version with equal prior probabilities will be noted standard MHPnn-2.

Stage (ii) You get to pick a door, winning whatever is behind it.  You choose door No.1,

say.  What is the probability that the car is behind door No.1?

Stage (iii) The host, who knows where the car is, tells you “I will show you n-2 doors (out of

the n-1 other doors) that hide goats”.

Stage (iv) Then the host opens doors No.3, ... to No.n to reveal goats (a message that we

note ‘goatNo.3...n’ with single quotation marks), and asks you what is now the probability that

the car is behind door No.1?

Solving MHPnn-2 requires comparing the probabilities that the car is respectively

behind doors No.1 or No.2 given that, the host (who knows where the car is) has chosen to

open doors No.3... to No.n  (out of the n-1 other possibilities) revealing goats behind.

In the various experiments on the Monty Hall Puzzle, participants’ modal probabilistic

response is 

€ 

a1
a1 + a2

(noted from now on MR). It departs from experimenters’ “Bayesian

solution” called “EBS”, which general form in MHPnn-2 establishes to 

€ 

a1
a1 + (n−1)a2

  (see for

a review of studies on standard versions (with equal prior probabilities) Krauss & Wang

(2003); and for experiments that propose a version with unequal prior probabilities see:

Ichikawa (1989); Ichikawa & Takeichi (1990); Johnson-Laird, Legrenzi, Girotto & Sonino-

Legrenzi (1999); Granberg (1996); Yamagishi (2003)).

Most psychologists, economists and lawyers consider these studies as mounting

evidence of the inconsistency of human beings (Piattelli-Palmerini 1994; Friedman 1998;

Caplan 2000; Risinger & Loop 2002; Kluger & Wyat 2004).  The purpose of this paper is to
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analyze the rationale for such a conclusion. The aim here is not to conduct a thorough review

of the literature testing the experimental robustness of MR but rather to discuss the underlying

idea of participants’ inconsistency.  In order to validate this often drawn conclusion,

experimenters should make sure that participants share their representation of MHPnn-2.

Alternatively, the response usually made by participants may be seen as consistent with

respect to a different representation of the puzzle3.  In this view, specific normative4 solutions

can be determined for each particular representation  (experimenters’ and participants’

ones).

This paper is organized in three sections.  First, experimenters’ representation of

MHPnn-2 is presented. “EBS” is the correct solution in a traditional situation of probability

revision where the message ‘goatNo.3...n’ focuses attention on a given subset of the original set

of hypotheses. Second we explain that MR corresponds to a correct solution in an updating

interpretation of the situation of revision where the message modifies the structure of the

original problem. We show by paying attention to MHPnn-2’s statement that pragmatics

reasons can explain the biased interpretation of the revision message. In a third part, we show

that the different explanations proposed in the literature to descriptively account for

participants’ responses can be derived from an updating framework.

2 Experimenters’ representation of MHPnn-2

                                                  
3 The hypothesis that participants’ response could be consistent with a representation of the
experimental paradigm different from what experimenters expect is rarely envisaged in the literature
on probabilistic revision.  However a significant time ago various authors in the field of formal logic
retained this idea to study the possible interpretations of the conditional.  Indeed when participants
interpret a conditional as a biconditional (If p then q leads one to infer that If not-p then not-q), they
correctly proceed to an Affirmation of the Consequent although this affirmation would be considered
as an error by experimenters (Geis & Zwicky 1971; Ducrot 1972; Fillenbaum 1976).
4 The term “normative” is taken here in the sense of a theoretical model considered as a referential
norm for “rational” judgment.  This is the case, for example, of the Subjective Expected Utility Theory
in the framework of decision theory, or of the Bayesian model in the context of probabilistic
judgment. The question asked within this methodology is whether man is “consistent” in his
judgments and decisions with respect to the norm.
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2.1 Basics postulates

Any empirical study is based on experimenters’ belief that participants accept with

certainty the data provided in the statement of the problem. In MHPnn-2, participants are

supposed to distinguish the four stages (i), (ii), (iii) and (iii) and to accept the explicit and

implicit rules related to these stages. The explicit rules are5:

Rule 1: The host has a distribution of preference (

€ 

P(carNo.i) =
ai
A

, with 

€ 

A = ass=1

s=n
∑ ) when he

initially places the car behind one door.

Rule 2: The host cannot open the door chosen by participants (and conventionally chosen as

No.1).

Rule 3: The host never opens a door (among the n-2 doors he or she will open) that hides the

car. This rule implies:

Rule 3.1: If the car is behind door No.i (with i = 2, ..., i = n), the host is bound to show

goats behind the n-2 doors No.2, ...,No.i-1, No.i+1, ..., No.n.

Rule 3.2: if the car is behind door No.1, the host is bound to show goats behind n-2

doors chosen among the n-1 doors No.2..., No.n. In accordance with the experimental

literature, we consider the additional following rule:

Rule 3.2.1: In the specific case where the car is behind door No.1, to show

goats, the host has no preference among the n-1 doors No.2, ..., No.n to choose n-2 doors.

Hence experimenters in MHPnn-2 form the following first postulate.

                                                  
5 These rules are immediate translations of the rules applied to MHP and standard MHPnn-2 by all
experimenters. In Appendix 1 we discuss the difficulty of transposing the rule 3.2 in a general MHPnk
(untreated by psychologists) where k doors with goats behind are opened (k ≤ n-2).
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Postulate 1. Participants consider the four stages and accept the implicit and explicit rules 1,

2, 3, 3.1 and 3.2 implied by MHPnn-2’s statement.

The second set of experimenters’ beliefs, largely accepted in the great majority of

experimental paradigms on probabilities revision (see Baratgin & Politzer 2006), seems a

natural consequence of Postulate 1. Experimenters think that participants adhere to their two-

fold representation of MHPnn-2. To the mental construction of the various stages of MHPnn-2

(fixed system) based on the three first stages on the one hand and to the correct

comprehension of the message of revision given in stage (iv) on the other hand.

Postulate 2. Participants share experimenters’ representation of MHPnn-2 derived from by

postulate 1. They specifically have the same structure of believe (representation of system)

and the same interpretation of the message of revision.

Let’s next analyze experimenters’ double representation.

2.2 A bi-probabilistic level

The semantics of possible worlds as used in Economics and Artificial Intelligence

helps to model the belief structure experimenters expect from participants surrounded by

uncertainty (Walliser & Zwirn 1997; Billot & Walliser 1999; Fagin et al. 1999; Walliser &

Zwirn forthcoming). Due to uncertainty, participants envisage a plurality of worlds derived

from the alternative situations proposed by the experimental paradigm that they consider as

possibly real. In most experiments on probability revision, participants are requested to

form several layers of uncertain beliefs related to the various properties and meta-properties

characterizing the object of prediction (for a review, see Baratgin & Politzer 2007a)6. After

                                                  
6 For instance, in the well-known “medical diagnosis” problem (Hammerton 1973), participants (cast
as physicians) are requested to form a belief about a patient. They consider the different symptoms
(mammography positive, negative), the possibly related diseases (breast cancer or not) and the belief
whether the patient suffers from the disease. Various other paradigms are designed in the same way,
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the original participant’s choice of door No.1, MHPnn-2 can be modeled as a “two-level

hierarchy belief structure” (Walliser & Zwirn 1997, forthcoming).

For experimenters the participant in MHPnn-2 has to form uncertain beliefs on the n-2

doors to be opened by the host which depend on his (or her) uncertain beliefs on the door that

he (or she) believes to hide the car. In experimenters’ view, participants after to have picked

the door No.1 construct three layers of beliefs:

- A layer 0 illustrates the basic properties of the door (whether to be opened by the

host). It comprises the n-1 possible combinations offered to the host at stage (iii) when

choosing n-2 doors out of n-1. It corresponds to the following n-1 worlds {’goatNo.2.4…n’,

‘goatNo.2.3.5.6…n’, ..., ‘goatNo.2…n-1’, ‘goatNo.3…n’},

- A layer 1 accounts for the secondary properties of the door (whether to hide the car).

It comprises the n possibilities offered to the participant at stage (ii).  It corresponds to the

following n worlds {carNo.1, ..., carNo.n},

- A layer 2 defines the door of prediction (the door originally picked by the

participant). It corresponds to the world {No.1}.

By Postulate 1, participants know that the host’s choice to open n-2 doors that hide

goats at stage (iii) depends on their choice at stage (ii). Hence, participants define a causal

relation between the two layers 0 and 1. Similarly, participants know that the host’s choice to

initially place the car is limited to n doors. Hence, participants define a populational relation

between layers 1 and 2.

Experimenters assume that participants translate these relations into two objective

distributions of probability elaborated from the explicit and implicit rules of MHPnn-2. The

                                                                                                                                                              
see for example the “cab problem” (Kahneman & Tversky 1972), and the “engineer-lawyer problem”
(Kahneman & Tversky 1973).
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distribution of probability from layer 2 to 1 is explicitly defined by rule 1. It is represented by

the prior probabilities P(carNo.i) (with  i = 1, ..., i = n). The distribution of probability (called

likelihoods) of layer 1 to 0 is precisely defined by rules 2, 3, 3.1 and 3.2. If the car is behind

door No.1, the host uses an indifference strategy and the n-1 worlds of layer 0 have the same

probability of 1/(n-1) of being opened to show a goat. If the car is behind door No.i (with i >

1), the host can open only the n-2 doors No.3...i-1.i+1...n.

We thus establish the first property of experimenters’ representation of MHPnn-2.

Property 1. Experimenters’ structure of belief of MHPnn-2 is a bi-probabilistic structure (see

Figure 1a)7 where the distributions of probabilities are consistent with rules 1, 2, 3, 3.1 and

3.2.

-------------------------------------------------------------

Insert Figure 1 about here

-------------------------------------------------------------

2.3 A focusing situation of revision

We can note that the bi-probabilistic structure of MHPnn-2 can be collapsed into an

equivalent probabilistic structure of one level with the 2(n-1) possible combined worlds (see

Figure 1b): {carNo.1∧’goatNo.2.4…n’, carNo.1∧’goatNo.2.3.5.6…n’, ..., carNo.1∧’goatNo.2…n-1’,

carNo.1∧’goatNo.3…n’, carNo.2∧’goatNo.3…n’, carNo.3∧’goatNo.2.4…n’, ..., carNo.n∧’goatNo.2…n-

1’}. Hence we have the following relations between the two structures:                   (1)

P(carNo.1) = P(carNo.1∧’goatNo.2.4…n’) + P(carNo.1∧’goatNo.2.3.5…n’) + ...

                                     + P(carNo.1∧‘goatNo.2…n-1’) + P(carNo.1∧‘goatNo.3…n’)

                                                  
7 As in Walliser and Zwirn (forthcoming) a physical world is represented here by a square and a
psychical world is represented by a circle. Here experimenters have a subjective belief that
participants’ beliefs match this objective structure and in level 2, the 2-world is represented by a
circle.
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P(carNo.2) = P(carNo.2∧ ‘goatNo.3…n’)

...

P(carNo.n) = P(carNo.n∧‘goatNo.2…n-1’).

In the last stage (iv) of MHPnn-2, participants learn that the host has opened doors No.3,

... to No.n showing goats behind following the protocol described in stage (iii) (among the n-1

possible doors No.2, ...and No.n). In experimenters’ opinion, this message indicates that the

subsystem where the world ’goatNo.3...n’ is true should be extracted from the initial system

(bi-probabilistic structure of Figure 1). Participants should form their beliefs about this

extracted subsystem according to message ‘goatNo.3…n’ by keeping the same distribution of

probabilities P. They are expected to focus their attention on such subset. Practically, this

subset comprises the two worlds {carNo.1∧’goatNo.3…n’, carNo.2∧’goatNo.3…n’}, the other n-2

following worlds being temporally left out. Thus participants should arrive to a one level

belief hierarchy corresponding to a simpler probabilistic structure where the basic worlds are

combined over layers 0 and 1 of the initial structure (see Figure 1c). This operation, called the

synthetic rule by Walliser and Zwirn (forthcoming) exactly corresponds to the Bayesian

conditioning rule8 under the one probabilistic level structure (see Figure 1d)9. It operates a

change of reference class but is not a true revision process (de Finetti 1949, 1972). It is

appropriate in the focusing type situation of revision (Dubois & Prade 1992; Dubois et al.

                                                  
8 The two traditional equivalent specifications of Bayes’ rule are:

Form 1, “Bayes’ identity”:

€ 

P(carNo.1 |'goatNo.3...n' ) =
P(carNo.1) × P('goatNo.3...n'|car No.1)

P('goatNo.3...n' )
. This

specification can naturally be deduced from the bi-probabilistic structure of figure 1.

Form 2, “conditional probability”: 

€ 

P(carNo.1 |'goatNo.3...n' ) =
P(car No.1∧'goatNo.3...n' )

P('goatNo.3...n')
. This

specification can naturally be deduced from the one-probabilistic structure of figure 1b.

€ 

with P('goat No.3...n') = P(car No.i)P('goat No.3...n'|car No.i)
i=1

i=n

∑
                                  = P(car No.1)P('goat No.3...n'|car No.1) + P(car No.2)P('goat No.3...n'|car No.2)
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1996; Dubois & Prade 1997; Walliser & Zwirn forthcoming). In such focusing situation the

message concerns an object drawn at random from a population of objects (fixed universe).

For instance a clinician who knows about the distribution of the diseases and the links

between these diseases and the symptoms in a class of population and who collects the

symptoms on a patient, changes his (or her) reference class in order to focus on the cases that

share the same symptoms as the ones he (or she) has collected.

Consequently we thereby establish our second property of experimenters’

representation of MHPnn-2.

Property 2. Experimenters’ representation of revision in MHPnn-2 is a focusing situation

for which the Bayes’ rule of conditioning applies.

MHPnn-2 can be illustrated in a focusing framework as a problem of balls, urns and

meta-urns in which the message concerns an information on a ball that has been extracted

(Walliser & Zwirn forthcoming). Such problem is advantageously worded in a populational

format making explicit the bi-probabilistic level hierarchy and the situation of revision (see

below the section 4.2.4).

The urns and balls problem10: There is a meta urn No.1 that contains A urns. There are: a1

urns labeled carNo.1, ..., ai urns labeled carNo.i, ... and an urns labeled carNo.n (with

€ 

A = ass=1

s=n
∑ ). Each a1 urns labeled carNo.1 contains n-1 balls labeled from 2 to n. Among the

A- a1 other urns, each urn labeled carNo.i contains n-1 balls labeled i. Each a2 urn labeled

carNo.2 contains n-1 balls labeled 2, ... each ai urn labeled carNo.i contains n-1 balls labeled i, ...

and each an urn labeled carNo.n contains n-1 balls labeled n. One urn is randomly extracted

from the meta urn and you must assess the probability that it is labeled urn carNo.1.  Next one

ball is extracted at random from this urn and you learn the message (at layer 0) “this ball is

                                                                                                                                                              
9 For a demonstration see Appendix 2 in Walliser & Zwirn (forthcoming)
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not labeled 3, ... to n” (corresponding to ‘goatNo.3...n’). What is now your belief that the

selected urn is carNo.1 (P(carNo.1‘goatNo.3...n’))?

In the urns and balls problem, the message “a urn is selected and a ball is extracted, which is

not labeled 3, ... to n” is without ambiguity a focusing message. It implies that the selected

urn is not any of the urns carNo.3 , ... to carNo.n and that the probability that it is labeled carNo.1

is a1/a2(n-1) times the probability that it is labeled carNo.2.

2.4  Experimenters’ Bayesian solution (“EBS”) for MHPnn-2

Bayesian conditioning amounts to a re-standardization of the probabilities of the

remaining worlds compatible with the focusing message ‘goatNo.3...n’ (see Figure 1e). We

have:

€ 

P(carNo.1 |'goat No.3...n') =
P(carNo.1∧'goat No.3...n')

P(carNo.1∧'goat No.3...n') +P(carNo.2∧'goat No.3...n')
=

a1
a1 + (n−1)a2

   (2)

€ 

P(carNo.2 |'goat No.3...n') =
P(carNo.2∧'goat No.3...n')

P(carNo.1∧'goat No.3...n') +P(carNo.2∧'goat No.3...n')
=

(n−1)a2
a1 + (n−1)a2

(3)

and hence the relations: 

€ 

P(carNo.1 |"goat No.3...n")
P(carNo.2 |"goat No.3...n")

= a1
(n -1)a2

              (4)

We get theorem 1:

Theorem 1:  (i) For a2 strictly superior to the mean of set of values ai (with i > 2),

€ 

 P(car No.1 |'goat No.3...n') < P(car No.1) =  a1

A
  and

 (ii) in the specific case where a2 corresponds to the mean of set of values ai (with

i > 2),

€ 

P(car No.1 | ('goat No.3...n') = P(car No.1)  

                                                                                                                                                              
10 This problem may be worded as the generalization of the traditional problem of “the three small
boxes” (Bertrand 1889).
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Proof. By elementary calculation:

€ 

 P(car No.1 |'goat No.3...n') ≤ P(car No.1) ⇔ a1 + (n −1)a2 ≥ ai
i=1

i= n

∑ ⇔ a2 ≥

ai
i= 3

i= n

∑
(n− 2)

 In particular, for standard MHPnn-2, we have11: 

€ 

P(carNo.1 |'goat No.3...n') =
1
n

                          (5)

€ 

and P(car No.2 |'goat No.3...n') =1- 1
n

                       (6)

3 Participants’ point of view

3.1 The situation of revision brings about a new hypothesis to account for MR

Although MR is commonly analyzed as evidence for the “inconsistency” of

participants, some authors have yet sketched two possible explanations for MR as a consistent

response. First, from a Bayesian point view, rules 1 and 3 are questionable because

participants’ MR could be consistent if based on subjective prior probabilities and likelihoods

different from experimenters’ beliefs12. For example, if participants believe that when the car

is behind door No.1, the host always opens doors No.3 ... to No.n (P(’goatNo.3...n’| carNo.1) =

1), then MR would correspond to a Bayesian solution13 albeit different from experimenters’.

                                                  
11 In standard MHP, we have: P(carNo.1|’goatNo.3’) = P(carNo.1) = 1/3 and P(carNo.2|’goatNo.3’) = 2/3.
12 For a general discussion of this point in the experimental literature on probability judgment see
Baratgin & Politzer (2006), for a general Bayesian solution to standard MHP taking into account the
possible host’s strategies see for example Wechsler, Esteve, Simonis, and Peixoto (2005). For a
discussion on the hypothesis that despite answering “MR” to standard MHP participants may actually
have the same representation of the task as experimenters, but assume a different host’s strategy than
those given by implicit and explicit “rules” see for example Nickerson (1996).
13 In standard MHP and standard MHPnn-2, for example the rule 3.2.1 seems intuitive because if the
host has originally no preference for a specific door when he/she initially places the car, he/she is
expected to have no preference when choosing to open n-2 doors with goats behind. Yet, it seems
more debatable in MHP and MHPnn-2 versions because initially the host has a preference on the doors
(unequal prior probabilities).
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Second, one can question Postulate 1 that considers message ‘goatNo.3...n’ as certain14 and

Property 1 that forces to stick to the additivity framework15. However these two explanations

actually appear limited, as participants seem to adhere to experimenters’ Property 1 in the

numerous experiments on standard MHP and MHP versions.  When participants are indeed

explicitly required to state their prior probabilities, they actually share experimenters’ priors

(Ichikawa & Takeichi 1990; Baratgin & Politzer 2003; Franco-Watkins et al. 2003). Besides

when experimenters explicitly specify the strategy of the host, participants nevertheless give

MR (Shimojo & Ichikawa 1989; Ichikawa & Takeichi 1990; Granberg & Brown 1995;

Krauss & Wang 2003; Burns & Wieth 2004)16. Consequently an explanation for MR still

needs to be found.

Let’s next analyze whether participants adhere to experimenters’ Property 2. The

relevant literature shows that experimenters who regard MR as erroneous generally fail to

consider that participants’ interpretation of the host’s message might not conform to the only

situation they envisage, namely a focusing situation of revision. Yet participants in MHPnn-2

can infer pieces of information that differ from those meant by the experimenter. This

approach is new to psychological research because, other situations of revision than focusing

have scarcely ever been studied (for review, see Baratgin & Politzer 2007a). In few studies,

participants learn a message that specifies or invalidates an initial belief regarding a universe

also considered as fixed. In this situation, called “revising”, Bayes' rule remains the adequate

rule (among other possible ones) for an individual to change his (or her) degrees of belief.

                                                  
14 In the situation where the message would be dubious, Jeffrey’s rule would be adequate (for a
solution to standard MHP in this situation see Loschi et al. 2006).
15 This postulate is traditional in the field of studies on probability judgment. It assumes that
participants’ degrees of belief are quantitative and obey to Kolmogorov’ s axioms. However the
plausibility of this hypothesis is debatable (Baratgin & Politzer 2006). Some authors have proposed a
solution for standard MHP in a formalism different from traditional additive probability (see Appendix
2).
16 However no experimental study analyzes whether participants have a precise distribution of
probability between layers 1 and 0.  In this case, participants’ representation of MHP would be a
“distribution of events” (see Appendix 2 on this question).
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For instance in the urns and balls problem the message “there are no balls labeled 3, ... to n in

the extracted urn” is a revising message that changes our belief into the certitude that it is urn

carNo.2 that has been extracted. This operation amounts to eliminating the possible urns with

balls labeled 3, ...  to n and changes our beliefs on the remaining urns (here the only urn

carNo.2) according to Bayes’ rule. Such process appropriate to a bi-probabilistic structure is

called “maximal rule” (Walliser & Zwirn forthcoming). In contrast to the focusing and

revising situations, individuals may also have to revise their degrees of belief when the initial

universe - now considered as dynamic - has changed according to the information conveyed

by the new message. Such situation, called “updating”, has a clear definition supported by

both a set of axioms for belief revision (Katsuno & Mendelzon 1992) and for probability

revision (Walliser & Zwirn 2002). In the updating situation of revision, the message specifies

a change of the universe, which is considered as time evolving. The updating message is easy

to illustrate when it stems from an action or an intervention that modifies the initial

knowledge of the original universe. Some possibilities may be removed by an exterior action.

But it is noteworthy that updating may occur without an explicit intervention. This would be

the case with the outbreak of a new disease that transforms the knowledge base of physicians,

or with new statistical data that radically alter a demographic model. In the urns and balls

problem, an updating message at layer 0 would correspond to the message “the balls that are

labeled 3, ... to n have been removed from all urns” (in MHPnn-2 this message is equivalent to

“the doors numbered 3, .. to n (with goats behind) has been removed” and noted  carNo.3...n).

The updating message indicates that the original problem has evolved.

You are now faced with a meta urn No.1 that contains that contains A urns. There are:

a1 urns labeled carNo.1, ..., ai urns labeled carNo.i, ... and an urns labeled carNo.n (with i = 1, ... to

n and 

€ 

A = ass=1

s=n
∑ ). The a1 urns labeled carNo.1 contain only one ball labeled 2, the a2 urns

carNo.2 always contain n-1 balls labeled 2 and each other urns carNo.i (i = 3, ... to n) are now
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empty. It implies that the selected urn is not any of the urns carNo.3 , ... to carNo.n and that the

probability that it is labeled carNo.1 is a1/a2 times the probability that it is labeled carNo.2. This

result corresponds to MR in MHPnn-2. The operation amounts to removing balls labeled 3 to n

from the possible urns and to changing their composition accordingly by Bayes’ rule. The

updating rule appropriate in a bi-probabilistic structure is called “minimal rule (Walliser &

Zwirn forthcoming) (see section 3.3.2). A correspondence exists between the situations of

revision at different layers (see for a generalized analysis Walliser & Zwirn, forthcoming). In

the urns and balls problem, after the updating message at layer 0 “the balls that are labeled 3,

... to n have been removed from all urns” , induces  the focusing message at layer 1 (urns

level): “the extracted urn from the large urn is not a urn of the type carNo.3, ... to carNo.n” (that

is equivalent in MHPnn-2 to message “the doors No.3, ... to No.n hide goats” noted

goatNo.3...n)17. Psychologists have never explicitly considered the situation of updating in their

numerous investigations. Studying this situation however appears necessary for a better

understanding of human probability revision (see for a review Baratgin & Politzer 2006).

Even though experimenters assume or instruct participants that the universe is fixed, it may be

the case that participants yet have a dynamic interpretation of it. So, when assessing the

coherence of participants’ judgment, experimenters must be aware of this possibility and

ready to use the appropriate formalism. A wrongful participants’ response given in a focusing

situation (for which Bayes’ rule is the only adequate measure) may actually reveal correct if

participants interpret the situation in an updating framework (for which Bayes’ rule does not

apply) and the response is consistent with the adequate revision rule for updating. We argue

that MR may be seen as consistent if participants typically infer the focusing message

‘goatNo.3...n’ as the updating message carNo.3...n.

                                                  
17 This situation is isomorphic to a problem with two sorts of urns; the urns  carNo.1 that contain only one ball
labeled 2 and the urns carNo.2 that contain n-1 balls labeled 2 Thus the updating message is also equivalent to an
updating message at layer 1 (urns level): “the urns No.3, ..., No.n have been removed from the meta urn”.
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3.2 A pragmatic explanation for the updating representation

The hypothesis that participants interpret MHPnn-2 as an updating situation of revision

can be supported by pragmatic analysis18.

In the two first stages (i) and (ii) of MHPnn-2, participants are required to pick a door

that hides a car among n doors presented in front of them. They make their initial choice of a

door (here No.1) without any special information related to this object.  Because of

uncertainty participants attach a prior probability to each door (here explicitly given by

experimenters).  In the framework of relevance theory (Sperber & Wilson 1995), the

communicative principle posits that any utterance conveys a presumption of its own (optimal)

relevance. In other words, participants assume that if the experimenter sends a message, it

deserves to be treated.  Thus for participants any new information given by the experimenter

carries a presumption of importance in relation with the aim of the problem (to know where

the car is).  In fact, participants can expect the new information to be highly important

(relevant) as they have initially chosen the door randomly and this is mutual knowledge

shared with the experimenter. In addition according to relevance theory, participants are more

inclined to pay attention to messages with important contextual effect and low cognitive effort

of treatment.  The focusing message ‘carNo.3...n’ corresponds to stages (iii) and (iv). At stage

(iii), the host warns that he will open n-2 doors (out of the n-1 remaining doors) that hide

goats. This message actually comprises two compacted pieces of information. The first

element is implicit. It corresponds to the host’s strategies to open n-2 doors among doors

No.2, ... to No.n that hide goats. It constitutes the key to construct the representation of the

puzzle (Figure 1a). The second element refers to the host’s explicit declaration to open n-2

doors among doors No.2, ... to No.n that hide goats. The comprehension of the first element

                                                  
18 Some studies on probability judgment have supported the hypothesis along which participants infer
a different representation of the task than experimenters do for various pragmatic reasons (see for
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requires a sizeable cognitive effort because participants must work out the n-2 complementary

possibilities that the host may show goats behind doors (No.2, No.4, ... and No.n), ..., or

(No.2, ... and No.n-1) then keep this in memory. The second element of the message requires

low a cognitive effort of treatment and is contextually powerful and expected (so would be

the case of the n-2 other possible messages). It carries a strong presumption of importance in

relation with the aim of the problem (to know where the car is). Participants induce that “n-2

of the n-1 doors (No.2, ..., No.n) will be eliminated”.  This should lead them to favor the two

remaining doors (n-2 doors are removed as well as the possibilities to have a car behind).

Participants nevertheless take into account the host’s implicit strategies and expect following

the host’s declaration to be promptly confronted with a “new simplified” problem with two

doors (No.1 and an other door) to which they may attach a new distribution of probability.

The hypothesis that participants are in expectation of an evolving problem was tested in

Baratgin (1999; 2004) with a revised version of standard MHP limited to three stages. After

the first two stages (i) and (ii), the host delivers at stage (iii) an uninformative message (that is

the already known message of stage (i)): “at least one door (out of No.2 and No.3) has a goat

behind”. A redundancy effect was evidenced as a sizeable number of participants nevertheless

modified their initial degrees of belief and give in a large majority MR. In other words

although a message may actually be uninformative, it still may prompt participants to infer

information from it and to revise their perception of the problem into a simplified problem

with two doors (No.1 and an other door). Now, when participants receive the message

(resulting from the host’s action)  “the car is not behind doors No.3, ...to No.n”. They

consider it as the answer to the expectation to see n-2 possible doors removed. The message

benefits from an overwhelming contextual effect and amounts in participants’ view to

concretely eliminating doors No.3, ..., No.n from the set of possible doors (carNo.3...n).

                                                                                                                                                              
instance Dulany & Hilton 1988; Krosnick et al. 1990; Politzer & Noveck 1991; Macchi 1995; Politzer
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Participants are then left with two doors (door No.1 and door No.2) they nevertheless adhere

to Property 1 (the bi-probabilistic level structure). Consequently, participants are strongly

invited to increase their beliefs related to doors No.1 and No.219. From an experimental point

of view the analysis of the verbal responses of the majority of participants in standard MHP is

consistent with this pragmatic explanation: “we have shifted from a 3-doors problem to a 2-

doors problem after the host’s action ” (Baratgin & Politzer 2003).

Overall we conclude that participants interpret standard MHP as an updating problem

of revision and that “EBS” violates expectations resulting from ostensive communication.

The focusing situation does not really correspond to a dynamic process of probability

revision because in a focusing situation there are no truly invalidated worlds. On receiving the

message ‘goatNo.3...n’, participants should change the reference of the whole initial set of

possible worlds (see section 2.3) but stick to the same probability distribution P. This is

explicit in the urns and balls problem but on the contrary, the statement of MHPnn-2 suggests

an updating situation of revision.  At time t0 participants are invited to work out their prior

distribution on n doors (layer 1); at time t1 they integrate the new message resulting from the

host’s action (layer 0). This action modifies perceptibly the problem (two doors). Then the

experimenter asks participants a judgment of probability that can be interpreted as a true

revision of their initial probability distribution P leading to a updating revision. This hint

contained in the statement deters participants from envisaging the focusing situation.

3.3 MHPnn-2 in an updating interpretation

3.3.1 The general Imaging rule

                                                                                                                                                              
& Macchi 2005).
19 Hence “EBS” contradicts the principle of relevance in numerous cases (see Theorem 1). Notably in all
experiments where experimenters have proposed a version of MHP where a2 > a3 or a standard version of
MHPnn_2. “EBS” neither increases (nor changes for standard MHPnn-2) participants’ initial degrees of belief
attributed to carNo 1. The message ‘carNo.3...n’ would only lead participants to increase their initial degrees of
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 In MHPnn-2 if the message ‘goatNo.3...n’ is interpreted (albeit mistakenly) as the

updating message “the doors No.3, ...to  No.n have been removed by the host” ; it translates a

physical operation on the system, modifying its initial structure.  In this situation, the

adequate method of revision for a one probabilistic level is different and Lewis’ rule (or

Imaging) (Lewis 1976; Gärdenfors 1988; Lepage 1997) reveals the appropriate operation of

revision (see the Imaging generalized rule Walliser & Zwirn 2002). . Generally Bayesian

conditioning rule and imaging yield different solutions20. Imaging causes a revision of the

prior probabilities on the possible worlds in such a way that the posterior probabilities are

obtained by shifting the initial probabilities of invalidated worlds to newly validated worlds.

Each invalidated world sees its probability attributed to the closest set of worlds that remain.

One difficulty of Imaging lies in defining the notion of “closest” world.  Hence the few

authors who have envisaged an imaging solution to standard MHP have proposed two

different possible distances (Dubois & Prade 1992; Cross 2000). Yet these authors have

considered an Imaging operation with regards to the compacted probabilistic level of Figure

1b. Under this compacted representation there is no clue to choose a particular distance. Let

€ 

P
'goat No.3...n'

+ (carNo.1) and 

€ 

P
'goat No.3...n'

+ (carNo.2) be the probabilities obtained by Imaging after the

                                                                                                                                                              
belief attached to carNo.2. These results can be interpreted as a violation of logic (see Dubois & Prade 1992, for a
discussion in standard MHP).
20 It is easy to see that the difference with Bayes’ rule lies in the redistribution of the invalidated world
(carNo.1∧’goatNo.2’). Indeed Bayes’ rule can also be seen as a redistribution of invalidated worlds
proportionally to prior probability of remaining worlds. Consequently “BS” can be formulated as
follows:

€ 

P(carNo.1 |'goatNo.3...n' ) =
P(carNo.1∧'goatNo.3...n')

P(carNo.1∧'goatNo.3...n') + P(carNo.2∧'goatNo.3...n' )

€ 

= P(car No.1∧'goat No.3...n')

     +
P(carNo.1∧'goat No.3...n')

P(car No.1∧'goat No.3...n') + P(car No.2∧'goat No.3...n' )
1− P(car No.1∧'goat No.3...n') - P(car No.2∧'goat No.3...n' )( )

€ 

= P(carNo.1∧'goatNo.3...n')

+
P(carNo.1∧'goatNo.3...n')

P(carNo.1∧'goatNo.3...n') + P(carNo.2∧'goatNo.3...n' )
P(carNo.1∧'goatNo.2.4...n') + ...+ P(carNo.3∧'goatNo.2.4...n' )( )

 For a detailed axiomatic analysis of this difference see Walliser & Zwirn (2002)
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updating message ‘goatNo.3...n’. 

€ 

P
'goat No.3...n'

+ (carNo.1) is called the image of P(carNo.1) on worlds

where ‘goatNo.3...n’ is true. When the updating message ‘goatNo.3...n’ is learnt, the probabilities

concerning the 2(n-2) invalidated worlds {carNo.1∧’goatNo.2.4…n’, carNo.1∧’goatNo.2.3.5.6…n’,

..., carNo.1∧‘goatNo.2…n-1’, carNo.3∧’goatNo.2.4…n’, ..., carNo.n∧‘goatNo.2…n-1’} are

redistributed over the other possible worlds that participants consider as the closest. The n-2

worlds {carNo.1∧’goatNo.2.4…n’, carNo.1∧’goatNo.2.3.5.6…n’, ..., ..., carNo.1∧‘goatNo.2…n-1’}

are incompatible with the world carNo.2 but perfectly compatible with the world carNo.1. Thus

it is natural to assume that the closest world to these n-2 worlds is carNo.1 and that the weight

P(carNo.1∧’goatNo.2.4…n’) + P(carNo.1∧’goatNo.2.3.5.6…n’) +...+ P(carNo.1∧‘goatNo.2…n-1’) is

reallocated over the single world carNo.1 (Dubois & Prade 1992; Cross 2000). As far as the

invalided worlds {carNo.3∧’goatNo.2.4…n’, ..., carNo.n∧‘goatNo.2…n-1’} corresponding to n-2

worlds carNo.i (with i = 3, ..., i = n, cf. relation 1)  are concerned, there are different

possibilities to define their “closest” world.  In a general Imaging (Gärdenfors 1988) the

weight of the invalidated worlds are redistributed over several remaining worlds. In MHPnn-2

each weight of the invalidated worlds, P(carNo.i) (with i = 3, ..., i = n) can be redistributed on

the two remaining worlds carNo.1 and carNo.2.

Let βi be the proportion of weight P(carNo.i) reallocated to world carNo.1 (for i = 3, ..., i

= n, βi ∈ [0, 1]). The general Imaging rule on considering the one probabilistic level gives:

 

€ 

P
'goat No.3...n'

+ (car No.1) = P(car No.1∧'goat No.3...n') +P(car No.1∧'goat No.2.4...n') +

                                          ... +  P(car No.1∧'goat No.2...n -1') + βiP(car No.i)
i=3

i=n

∑  

€ 

P
'goat No.3...n'

+ (carNo.1) = P(carNo.1) + β iP(carNo.i)
i=3

i=n

∑                                                                         (7)

and similarly 

€ 

P
'goat No.3...n'

+ (carNo.2) = P(carNo.2) + (1−β i )P(carNo.i)
i=3

i=n

∑                                                (8)

We thus establish theorem 2 for general imaging:
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Theorem 2.  (i) If there is at least one i with βi ≠ 0 then 

€ 

P
'goat No.3...n'

+ (carNo.1) > P(carNo.1)

and (ii) 

€ 

if β i = 0, for i = 3, ...,  i = n, then P
'goat No.3...n'

+ (car No.1) = P(car No.1)  .

However, as we have seen in section 2.2, the belief representation of MHPnn-2

corresponds to the bi-probabilistic level of Figure 1a and the one-probabilistic level of Figure

1b is only a consequence of this bi-probabilistic level. On considering the bi-probabilistic

level it is now possible to detail the appropriate redistributions of the weight of invalidated

worlds carNo.i (with i = 3, ..., i = n) and thus define (βi), i = 3, ..., i = n.

3.3.2 The “proportional Imaging rule” gives MR in MHPnn-2

In a general analysis of the revision rules for bi-probabilistic level, Walliser & Zwirn

(1997; forthcoming) propose the “minimal rule” as the appropriate updating rule. It consists

in revising in a Bayesian way the distributions of level 1 that are compatible with the

message, the other distributions being abandoned with a necessary homothetic adjustment of

the distribution at level 2 (see Figure 2a).

-------------------------------------------------------------

Insert Figure 1 about here

-------------------------------------------------------------

 This rule is obvious in the urns and balls problem (see section 3.1). We call this rule

the “proportional Imaging rule ” because it corresponds (in the probabilistic structure of one

level) to the reallocation of the weight of incompatible worlds over the remaining worlds

proportionally to their prior probabilities (see Figure 2b). In MHPnn-2, the weight P(carNo.i)

(for i = 3, ..., i = n ) must be reallocated over the worlds carNo.1 and carNo.2 proportionally to

their prior probabilities. In this case 

€ 

βi =
P(carNo.1)

P(carNo.1) +P(carNo.2)
 and is independent from i.
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The solution of MHPnn-2 by this proportional Imaging rule  (from now on “PIS”) leads to the

same result as the revision by Bayes’ rule after the simpler focusing message goatNo.3...n (see

also the urns and balls problem in section 3.1). Hence we have the following theorem 3.

Theorem 3. The proportional Imaging rule is mathematically isomorphic to a Bayesian

conditioning on the “naive set” {carNo.1, ..., carNo.n}21.

Proof.

 

€ 

P
'goat No.3...n'

+ (car No.1) = P(car No.1) + P(car No.1)
P(car No.1) +P(car No.2)

× P(car No.i)
i= 3

i= n

∑

                          = P(car No.1) 1+
P(car No.i)

i= 3

i= n

∑
P(car No.1) +P(car No.2)

 

 

 
 
 
 

 

 

 
 
 
 

€ 

P
'goat No.3...n'

+ (carNo.1) =
P(carNo.1)

P(carNo.1) +P(carNo.2)
= P(carNo.1|goat No.3...n) =

a1
a1 +a2

               (9)

Similarly: 

€ 

P
'goat No.3...n'

+ (carNo.2) =
P(carNo.2)

P(carNo.1) +P(carNo.2)
= P(carNo.2|goat No.3...n) =

a2
a1 +a2

      (10)

and we have the relation: 

€ 

P
'goat No.3...n'

+ (carNo.1)

P
'goat No.3...n'

+ (carNo.2)
= P(carNo.1)
P(carNo.2)

=
a1
a2

            (11)

In particular, for standard MHPnn-2, we have: 

€ 

P
'goat No.3...n'

+ (carNo.1) = P'goat No.3...n'

+ (carNo.2) =
1
2

              (12)

It is therefore obvious that: 

€ 

P
'goat No.3...n'

+ (car No.1) > P(car No.1) and P
'goat No.3...n'

+ (car No.2) > P(car No.2) .

Solutions (9) and (10) exactly correspond to MR in MHP22 (Ichikawa 1989; Ichikawa

& Takeichi 1990; Granberg 1996; Yamagishi 2003). Proportional Imaging verifies theorem 2

                                                  
21 We make a parallel here with the remark of some theorists who have interpreted MR as the result of
a Bayesian conditioning on a “naive set” while “EBS” is the result of a Bayesian conditioning on a
more “sophisticated set” (Jeffrey 1988; Grünwald & Halpern 2003). In Appendix 3, we show that the
proportional Imaging rule is equivalent to Pearl (2000)’ s Bayesian conditioning after one intervention
(designed by Pearl as the “do” operator).
22 In standard MHP, we have: 

€ 

P'goatNo.3' ( carNo.1) = P'goatNo.3' ( carNo.2) =
1
2

.
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(i) and supports the pragmatic argument of section 3.2. It makes a good candidate to

experimentally describe and theoretically gauge participants’ judgment (see also section 4).

Finally “PIS” verifies the below theorem 4.

Theorem 4.   For any n > 2, 

€ 

P
'goat No.3...n'

+ (carNo.1) > P(carNo.1 |'goat No.3...n')  and

€ 

P
'goat No.3...n'

+ (car No.2) < P(car No.2 |'goat No.3...n') .

Proof. It is obvious because for n > 2; 

€ 

a1

a1 +a2

 >  a1

a1 +(n -1)a2

 and 

€ 

(n -1)a2
a1 +(n -1)a2

>
a2

a1 +a2

3.3.3 The “egalitarian Imaging rule”

It is noteworthy that when a1 is equal to a2, the proportional Imaging rule is isomorphic to the

egalitarian Imaging rule23, which redistributes on the worlds carNo.1 and carNo.2 half of the

weight of the cancelled worlds carNo.i (with i = 3, ..., i = n). The equidistance of the two

worlds carNo.1 and carNo.2 to worlds carNo.i has been suggested by Dubois and Prade (1992) in

standard MHP, and may be seen as the result of the n possible worlds being initially equally

likely. Let 

€ 

P'
'goat No.3...n'

+ (carNo.1)  be the revision of P(carNo.1) with this “egalitarian Imaging rule

”  (we use P’ to differentiate from proportional Imaging rule). The general solution by

egalitarian Imaging rule in MHP nn-2 (from now on “EIS”) gives:

€ 

P'
'goat No.3...n'

+ (carNo.1) =
a1
A

+
1
2
×
A- a1 − a2

A
=
A +a1 − a2
2A

=
1
2
1+ P(carNo.1) - P(carNo.2)( )           (13)

and 

€ 

P'
'goat No.3...n'

+ (carNo.2) =
A- a1 + a2
2A

=
1
2
1+ P(carNo.2) - P(carNo.1)( )                                        (14)

Thus we have the relation: 

€ 

P'
'goat No.3...n'

+ (carNo.1)

P'
'goat No.3...n'

+ (carNo.2)
= 1+P(carNo.1) - P(carNo.2)
1+P(carNo.2) - P(carNo.1)

=
1+a1 − a2
1+a2 − a1

  (19)

                                                  
23 The term Egalitarian Imaging rule is borrowed from Walliser & Zwirn (2002). This rule is also
analyzed in Lepage (1997).
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In the case of standard MHPnn-2 the solution gives MR:

€ 

P'
'goat No.3...n'

+ (carNo.1) = P' 'goat No.3...n'
+ (carNo.2) =

1
n

+
1
2
×
(n - 2)
n

=
1
2

                                                   (20)

3.3.4 The “simple Imaging rule ”

As suggested by Cross (2000) in standard MHP a second distance can be assumed in

the probabilistic structure of one level. Such distance considers that the worlds carNo.i (with i

> 1) are closer to one another rather than to carNo.1. In this case, the weights P(carNo.i) are

reallocated on the sole world carNo.2. Intuitively this distance can be understood as if the

weight of the worlds carNo.2∨...∨carNo.n should not change after the updating message

‘goatNo.3 ... .n’. This distance seems artificial with the bi-probabilistic level of Figure 1a but

can be analyzed as the appropriate rule in a different representation (with a supplementary

level) where the different doors No.i (with i >1) are gathered under a similar probability. For

instance the door No.1 is white and all others doors are black (see Figure 2c). In a focusing

framework this tri-probability level structure is isomorphic to the original bi-probabilistic

level but in an updating framework the minimal rule corresponds to the simple Imaging rule.

Let 

€ 

P"
'goat No.3...n'

+ (carNo.1)  be the revision of P(carNo.1) with this “simple Imaging rule ”

(we use P’ to differentiate from proportional Imaging rule).

 

€ 

P"
'goat No.3...n'

+ (car No.1) = P(car No.1) =  a1

A
                     (21)

€ 

P"
'goat No.3...n'

+ (car No.2) = P(car No.2) + P(car No.i)
i=3

i=n

∑ = P(car No.i) =
i=2

i=n

∑  A− a1

A
            (22)

Thus we have the relation: 

€ 

P"
'goat No.3...n'

+ (carNo.1)

P"
'goat No.3...n'

+ (carNo.2)
= P(carNo.1)

P(carNo.i)
i=2

i=n

∑
=

a1
A - a1

            (23)

The solution (from now on “SIS”) applied to MHPnn-2 verifies theorem 2 (ii).

More generally, we have the following theorem 4 (derived from theorem 1):
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Theorem 5.   ‘SIS” corresponds to “EBS” in MHPnn-2 in the specific case where a2

corresponds to the mean of the set of values ai (with i = 3, ...,  = n)

In standard MHPnn-2, “SIS” corresponds to “EBS”:

€ 

P"
'goat No.3...n'

+ (carNo.1) = P(carNo.1 |'goat No.3...n') =
1
n

 and                                                            (24)

€ 

P"
'goat No.3...n'

+ (carNo.2) = P(carNo.2 |'goat No.3...n') =
1
n

+
n − 2
n

=
n −1
n

                               (25)

4 Experimental hindsight

4.1 The updating interpretation underlies cognitive explanations for MR

Several cognitive explanations to account for MR have been put forward in

psychological experimental studies conducted on MHP and standard MHP as well as standard

MHPnn-2. They do not reveal independent one from the others and appear to be actually under

lied by the updating interpretation of  ‘goatNo.3...n’. In this section we will review three main

families of such cognitive arguments. We will adopt the notation DB as apposed to P to

represent participants’ degree of belief in order to stress that we focus here on cognitive

processes rather than on theoretical relationships.

4.1.1 The heuristics explanations

The first set of explanations proposes that participants use “simple heuristics” or

“subjective heuristics” to form their judgments of probabilities (Ichikawa 1989; Shimojo &

Ichikawa 1989; Ichikawa & Takeichi 1990; Falk 1992; Yamagishi 2003).

4.1.1.1 The heuristics explanations for MR

According to these authors, participants who give MR in standard MHP use the two

following heuristics:
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“The number of cases heuristic” (NC): When the number of possible alternatives is N, the

probability of each alternative is 1/N.

“The constant ratio heuristic” (CR): When one alternative is eliminated, the ratio of

probabilities for the remaining alternatives is equal to the ratio of respective prior

probabilities.

If participants apply NC or CR to standard MHPnn-2, they will cut down the number of

alternatives from n doors to two when learning the message ‘goatNo.3...n’.  They will thus

conclude that: DB(carNo.2|’goatNo.3...n’) = DB(carNo.1|’goatNo.3...n’) = 1/2.  It proves difficult to

know what strategy participants actually implement to answer 1/2 in standard MHPnn-2 since

NC and CR are undistinguishable.  However, when Shimojo and Ichikawa (1989) and

Ichikawa and Takeichi (1990) propose MHP to their participants a large majority of

participants actually use CR.  This leads us to theorem 6.

Theorem 6. “EIS” given by the egalitarian Imaging rule is isomorphic to the solution for

standard MHPnn-2 given by NC.  More generally “PIS” given by the proportional Imaging rule

is isomorphic to the solution for MHPnn-2 based on CR.

Proof. We know by the Rule 1 that DB(carNo.i) = P(carNo.i) for i = 1, ..., i = n. CR definition

corresponds to relation (11): 

€ 

DB(carNo.1 |'goat No.3...n')
DB(carNo.2 |'goat No.3...n')

=
P(carNo.1)
P(carNo.2)

=
a1
a2

, and by the

complementarity constraint of additive probability (Property 1) we have:

€ 

DB(carNo.1 |'goat No.3...n') +DB(carNo.2 |'goat No.3...n') =1, thus:

€ 

P(car No.1)
P(car No. 2)

+1
 

 
 

 

 
 DB(car No.2 |'goat No.3...n') =1  and we find the relations (9) and (10):
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€ 

DB(car No.1 |'goat No.3...n') = P(car No.1)
P(car No.1) +P(car No.2)

= P
'goat No.3...n'

+ (car No.1) and

€ 

DB(carNo.2 |'goat No.3...n') =
P(carNo.2)

P(carNo.1) +P(carNo.2)
= P

'goat No.3...n'

+ (carNo.2)

4.1.1.2 The heuristics explanations for “EBS” in standard MHP

In parallel Shimojo and Ichikawa (1989, p. 6-7) propose a third heuristic for the thin

minority of participants in standard MHP, who give “EBS” (see also Falk, 1992).  These

authors show that these participants do not actually use Bayes’ rule to give “EBS” but use

rather the following heuristic:

“The Irrelevant, Therefore Invariant heuristic” (ITI): “If it is certain that at least one of

the several alternatives (A1, A2, …, Ak) will be eliminated. When the information specifying

what alternatives to be eliminated is given, it does not change the probability of the other

alternatives (Ak+1, Ak+2, …, An)“.

Participants who use this heuristic do not modify their prior probability P(carNo.1) after

the message ‘goatNo.3...n’ just as “SIS”.

Theorem 7. “SIS” given by the simple Imaging rule is isomorphic to the solution for MHPnn-2

given by ITI.

Proof. Contrary to CR and NC, the definition of ITI does not predict how the probabilities of

the remaining alternatives must change once some have been removed.  Nevertheless, using

the basic complementarity constraint of the axiom of additivity of probabilities (Property 1),

we can suppose that:

€ 

DB(carNo.2 |'goat No.3...n') =1-DB(carNo.1 |'goat No.3...n') =1- P(carNo.1) = P(carNo.i)
i=2

i=n

∑  and we

find again relations (21) and (22) of “SIS”.
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4.1.1.3 The “Subjective Superior heuristic” (SS):

Finally Shimojo and Ichikawa (1989) assume that the answers based on the three

above mentioned heuristics actually result from a “Subjective Superior heuristic” defined as

participants’ following belief.

The “Subjective Superior heuristic”: “The posterior probabilities of the remaining

alternatives should never be less than their priors when one alternative is removed”.

This belief is incompatible with theorem 1 and more generally with the process of

conditioning following Bayes’ rule (see for a demonstration  Ichikawa 1989).  However it is

compatible with theorem 2 corresponding to an updating situation.

4.1.2 The Mental Models Theory

The second main explanation for MR was proposed by Johnson-Laird et al. (1999)

based on their Mental Models Theory (from now on noted MMT) (see also Girotto &

Gonzalez 2000).  According to these authors, participants are not able to construct the

complete set of mental models the puzzle entails because they have a limited working

memory. MMT in probability situation can be described by four principles.

 (i) The “truth principle”: Participants first represent the probability problem by

constructing the sets of “mental models” (representations of the different possibilities), which

probabilities are strictly superior to 0, (ii) the “equiprobability principle”:  Participants

construct a diagram of equiprobable alternatives (iii) The “proportionality principle”:

Participants assess the probability of an event E proportionally to the number of mental

models (nE) in which event E occurs, that is to say nE/n with n the number of mental models

and (iv) the subset principle:  Granted equiprobability, a conditional probability, P(E| B),

depends on the subset of B that is E, and applying the proportionality principle to E and B

yields the numerical value.
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We notice that the principles (i), (ii) and (iii) actually make up an algorithm to

construct the experimenter’s representation of Figure 1b in a populational format (see section

4.2.4). Meanwhile the subset principle (iv) corresponds to a natural translation of a focusing

procedure24. Hence MMT can be interpreted as an alternative normative method to describe

MHPnn-2 (mental models corresponding to possible worlds).

For instance, the description of standard MHP in terms of mental models involves 6

models: 2 models when the car is behind the chosen door (door No.1) because the host then

either exhibits a goat behind door No.2 (first model) or behind door No.3 (second model).

Hence we have the following models 

€ 

car No.1     'goat No.2'

car No.1     'goat No.3'

 
 
 

 
 
 

. The equiprobability principle,

assumes that 2 identical models exist in the case where the car is behind door No.i (i > 1) and

the host shows that door No.j (with j > 1 and j ≠ i) hides a goat. Hence we have the additional

4 models: 

€ 

car No.2     'goat No.3'

car No.2     'goat No.3'

car No.3     'goat No.2'

car No.3     'goat No.2'

 

 

 
 

 

 
 

 

 

 
 

 

 
 

.

Now when the host shows that door No.3 hides a goat, the “subset principle” retains

the 3 models that contain ‘goatNo.3’: 

€ 

 
car No.1     'goat No.3'

car No.2     'goat No.3'

car No.2     'goat No.3'

 

 
 

 
 

 

 
 

 
 

 and by the “proportionality

principle” we arrive at “EBS”.

However, Johnson-Laird et al. (1999), outline that when the car is behind door No.1,

for working memory limitation, participants simply think: “the host chooses another door”.

Similarly, participants fail to construct the identical models in each case when the car is not

                                                  
24 These principles actually rediscover Laplace’s (1986, p. 38-39) traditional first two principles:  (i) “The
probability is the ratio of the number of favorable cases to the number of all possible cases”; (ii) but this holds
under the assumption that the various cases are equally possible; if they are not…. the probability will be the
sum of the possibilities of each possible case” (Author’s translation).
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behind door No.1. They consequently built only the 3 following mental models:

€ 

car No.1   other door

car No.2   other door

car No.3   other door

 

 
 

 
 

 

 
 

 
 

. When the host shows that door No.3 hides a goat, the use of the

“subset principle” implies that participants consider only the 2 mental models compatible

with this message: 

€ 

car No.1   other door

car No.2   other door
 
 
 

 
 
 

and by the proportionality principle it gives MR.

 It is obvious that manipulating mental models requires significant a memorial

cognitive effort (

€ 

(n−1) ai
i=1

i= n

∑  models for MHPnn-2). TMM’s explanation would hold if

participants effectively use mental models to form their probability judgments. However this

hypothesis is not widely spread (see for example Brase 2002). In MHP nn-2, participants seem

to accept Property 1 of experimenters’ representation (see section 3.1) thus confirming a full

representation of the puzzle. Participants can also use a representation different from mental

models to understand MHP nn-2. For instance, the formal bi-probabilistic structure described in

section 2.2 (see Figure 1) requires less effort of manipulation in memory than a description in

terms of mental models. Nevertheless, if one accepts the principles of TMM, an alternative

explanation for MR can be again formulated in terms of the updating interpretation of revision

situation. If participants interpret the message ‘goatNo.3...n’ in an updating framework, the

“subset principle” (iv) no longer holds. The problem has been modified and participants must

again (as if answering to a new problem) construct a new set of mental models. In standard

MHP, the “truth principle” induces a new set of 2 mental models: 

€ 

car No.1   goatNo.2

car No.2   goatNo.1

 
 
 

 
 
 

.

Participants by the “equiprobability principle” find MR. This process corresponds to the

proportional Imaging rule in a MHPnn-2 formulated in a populational format.

4.1.3 The proportional Imaging rule explains the partition-edit-count strategy
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A third explanation for MR was proposed by Fox and Levay (2004) (see also Fox &

Rottenstreich 2003; Fox & Clemen 2005).

Participants evaluate conditional probabilities in (i) subjectively partitioning the sample

space into a set of n interchangeable events suggested by the statement of the problem, (ii)

editing out events that can be eliminated by the new message and (iii) counting the number

of remaining events and reporting the ratio.

However these authors think that partitioning correctly the sample space in standard

MHP proves difficult because participants only focus on the sample space most obviously

suggested by the statement. In this view, participants in MHPnn-2 do not envisage the correct

experimenters’ set (i.e. 2(n-1) possible worlds {carNo.1∧’goatNo.2.4…n’,

carNo.1∧’goatNo.2.3.4.6…n’, ..., carNo.1∧’goatNo.2…n-1’, carNo.1∧’goatNo.3…n’,

carNo.2∧’goatNo.3…n’, carNo.3∧’goatNo.2.4…n’, ..., carNo.n∧’goatNo.2…n-1’} of Figure 1b) but

the limited sample space of n possible worlds {carNo.1, ..., carNo.n}. Hence, applying (ii) and

(iii) on this naïve space gives MR. As we have seen in relations (9) and (10) this cognitive

explanation supports further our hypothesis of an updating interpretation of the message of

revision. Indeed the updating interpretation of message ‘goatNo.3...n’ forces participants to

consider only the simpler probabilistic level corresponding to this naive set (see section

3.2.1).

4.2  “EBS” is facilitated when the format of MHPnn-2 enhances the focusing interpretation

In the experimental literature some studies show that specific formats of MHPnn-2’

statement seem to prompt a higher rate of “EBS” in participants’ response. These results have

triggered some psychological debates on the underlying cognitive processes at play (Barbey

& Sloman Forthcoming). However our binary view of MHPnn-2, in terms of experimenter’s

“correct” focusing and participants’ “misleading” updating interpretation of the situation of
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revision, invites to a new reading of these experimental results. It leads us to conclude that the

different formats that facilitate “EBS” actually enhance the focusing understanding of the

situation of revision.

4.2.1 Natural frequencies format

Some authors argue that the human mind would have developed in its evolution a

module designed to process natural frequencies acquired by natural sampling (Cosmides &

Tooby 1996; Gigerenzer & Selten 2001). Various studies prove that probability judgments

appear more Bayesian when experimental paradigms refer to natural frequencies (as opposed

to single-event probabilities) (Gigerenzer & Hoffrage 1995; Cosmides & Tooby 1996; Brase

et al. 1998; Hoffrage et al. 2002). This result is confirmed in problems written in a natural

frequencies format isomorphic (from a mathematical point of view) to standard MHP (Tubau

& Alonso 2003; Yamagishi 2003). For instance the following problem used in Yamagishi

(2003)

The Gemstone problem (natural frequencies format): A factory manufactures 1200

artificial gemstones daily. Among the 1200, 400 gemstones are blurred, 400 are cracked, and

400 contain neither. An inspection machine removes all cracked gemstones, and retains all

clear gemstones. However, the machine removes half of the blurred gemstones. How many

gemstones pass the inspection, and how many among them are blurred?

In this natural frequencies format, the bi-probabilistic structure illustrated by Figure 1

in section 2.2 is made explicit and unambiguous. To draw the parallel with standard MHP, we

respectively have blurred, cracked, and neither that correspond to carNo.1, carNo.3 and carNo.2

while ‘goatNo.3’ corresponds to the inspection process. However this format is different from a

pragmatic point of view. The three pragmatic arguments inherent to MHPnn-2’s three stages

(see section 3.2) to explain the updating interpretation, no longer exist. Participants know that
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the situation of revision is static and that they must stick to their original distribution P

(explicit in the statement). The message not cracked equivalent to ‘goatNo.3’ does not require

cognitive effort. The process of inspection is explicitly presented as non-symmetrical with

respect to blurred and clear gemstones. Moreover the question worded in frequentist terms

modifies the perception of the situation of revision and sets up the situation of focusing

(Dubois & Prade 1992; Dubois et al. 1996). Participants must simply focus on the reference

class of gemstone on a subset to modify P(gemstone) into P(gemstoneinspection) by

Bayesian conditioning25 . The natural frequencies format improves Participants’ “EBS” rate as

it encourages the comprehension of the focusing situation. In MHPnn-2, if participants envisage

the bi-probabilistic structure, the focusing situation is clearly identifiable in this context where

participants are first asked the frequency question “Has the car appeared behind door No.1 in

numerous repetitions?” and then P(carNo.1’goatNo.3...n’) to the second frequency question:

“Has the car appeared behind door No.1 in numerous repetitions when the host who knows

where the car is, had opened doors No.3; …; No.n  to reveal goats? Similarly some other

manipulations may enhance (i) the explicit bi-probabilistic structure and (ii) help participants

to interpret the situation of revision in a focusing framework through a specific wording of the

question. The two theories that have proposed arguments alternative to frequentist module

arguments  (the “question form” and the “nested sets”) can be analyzed in this way.

4.2.2 The question form

Girotto & Gonzalez (2001) argue that participants are able to make correct probability

judgment for single-event probabilities when the distributions of probabilities are formulated

in term of chance. Their studies were not concerned with MHPnn-2 so we will stick to the

                                                  
25 On can noted that Dubois  & Prade (1992) use a frequentist framework to explain the focusing situation
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previous gemstone problem and propose the following statement (see however the studies

cited in Girotto & Gonzalez 2000):

The Gemstone problem (question form): A factory manufactures artificial gemstones daily.

A gemstone that is produced has 2 chances out of 6 to be blurred, 2 chances out of 6 to be

cracked, and 2 chances out of 6 to be neither. It is then tested by the inspection machine. A

blurred gemstone has 1 chance out of 2 to be removed by the inspection machine, a cracked

gemstone has 2 chances out of 2 to be removed by the inspection machine and a clear

gemstone has no chance (out of 2) to be removed by the inspection machine. Imagine that a

gemstone is tested. Out of the total of 6 chances, this gemstone has __ chances of passing the

inspection. What are besides the chances that it has passed the inspection and that it is

blurred?

With this formulation the bi-probabilistic hierarchical structure is again explicit (three

layers in the same way of natural frequencies format and the two distributions of probability

reflected by the given respective proportions). It is also clear that here the “question format”

conducts participants to directly use Laplace’s principle (ratio of proportions) which exactly

corresponds to the focusing process.

4.2.3 Nested set format

Sloman, Over, Slovak and Stibel (2003) propose a general explanation for natural

frequencies effect: framing problems in terms of instances rather than properties actually

clarifies critical set relations. In this line Yamagishi (2003) claims that participants in MHP

tend to answer MR because they cannot comprehend “nested sets” namely, subsets relative to

larger sets, in the task structure. A solution is to propose a schematic representation of

standard MHP  (equivalent to Figure 1) (Ichikawa 1989; Cheng & Pitt 2003; Yamagishi

2003). For instance the use of a roulette-wheel diagram (see Figure 3) favors “EBS” in MHP
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(Ichikawa 1989; Yamagishi 2003). This diagram is a schematic representation of the bi-

probabilistic level of belief described in Figure 1a. The outside circle corresponds to the set of

worlds of layer 0, the inner circle corresponds to the set of worlds of layer 1 and the central

point represents the single set of layer 2. The different areas represent the two distributions of

probabilities related to layers 1 to 0 and to layers 2 to 1. Now if a small ball runs along the

edge of the inner disk and stops at random like a roulette-wheel when participants receive the

message ’goatNo.3’, it is certain that the ball stops in the dotted area, that is, Area carNo.2 or 1/2

of Area carNo.1. This schematic representation, leads participants to correctly interpret

’goatNo.3’ as a focusing message.

-------------------------------------------------------------

Insert Figure 3 about here

-------------------------------------------------------------

4.2.4 Populational format a natural translation of possible worlds semantics

More generally, a populational format of presentation helps participants to induce

experimenters’ representation of MHPnn-2.  This format relies on a finite number of discrete

objects (balls) and discrete meta objects (urns) representing worlds and meta-worlds. These

objects (and meta objects) are liable to receive individualizing properties (and meta

properties) on which participants will form beliefs. The traditional hierarchy of balls, urns and

meta-urn (corresponding respectively to worlds of layer 0, layer 1 and layer 2) is the most

convenient introductive set. The focusing situation being here illustrated by the message of

the type “ a ball is extracted of an urn which had been previously extracted, this ball has a

specific characteristic to be named”. The most elementary translation in a populational format

of MHPnn-2 is the urns and balls problem described in section 2.3. Such a representation

indeed facilitates the distinction between the focusing message “the ball is not labeled 3, ... to
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n” and the updating message “the balls labeled 3, ... to n have been removed” (Baratgin &

Politzer 2007b). The three former formats that improve the interpretation of the focusing

situation can be grouped under this populational representation. For instance Gigerenzer’s

natural frequency format actually corresponds to a general translation (among various others)

of this populational representation.

5 Conclusion

MHPnn-2 appears in the literature as the typical paradigm that concludes that human

probability judgment fails to implement basic revision rule such as Bayesianism conditioning.

However a careful analysis of the experimental statement in the light of the Relevance Theory

and a thorough review of the broad Psychological literature on the subject leads us to

reconsider such conclusion. The heuristics put forward to explain participants’ “non-

Bayesian” response as well as the experimental clues and formats that prompt a higher rate of

Bayesian response can be seen as evidence that participants actually interpret the puzzle in an

updating framework in which the universe undergoes a significant change. Such updating

situation as opposed to the focusing interpretation expected by experimenters requires a

different revision rule which explains the departure from the Bayesian Solution.

MHPnn-2 actually illustrates experimenters’ difficult choice of a methodology in the

studies on probability revision. Before conducting any experimental study, experimenters

should define the consistency principles they retain and outline the implications of the

reference model they use for their empirical work.  If an experimenter is to consider the

Bayesian model as the reference to study revision of probabilistic judgment, he or she should

first of all conduct a pragmatic analysis of the representation of the task by participants. More

generally, psychologists should check that participants’ representation of the task coincides

with the type of revision situation they intend (Baratgin & Politzer 2006).
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In this line MHPnn-2 is the typical example where such a protocol is not respected. First

in the numerous experiments on the puzzle experimenters limit Bayesianism to the simple use

of Bayes’ rule. Participants are judged inconsistent because their responses depart from the

result Bayes’ rule yields on the data given in the statement. Second, experimenters lose sight

aware that Bayes’ rule can be a normative rule in the sole respect of a focusing situation of

revision. Consequently experimenters overlook the fact that participants may not interpret the

puzzle in a focusing framework.

Finally from a psychological point of view, experimenters would advantageously

consider the fairly general Imaging’ rules as a valuable reference to study human probability

judgment. It may actually reveal to have a sizeable descriptive power and robustness as

participants seem to naturally opt for an updating framework. The updating situation of

revision was hardly addressed in the literature. Nevertheless it has been indirectly studied in

three particular research fields. It has been considered explicitly in a deductive framework, in

connection with the problem of belief revision for knowledge bases (Elio & Pelletier 1997;

Politzer & Carles 2001), and implicitly in the field of counterfactual reasoning: a

counterfactual statement indeed expresses a modification of the universe, albeit virtual.

Finally, the situation called “intervention” in the field of causal reasoning can be considered

as a special case of updating (see Appendix 3). Some experimental studies on causal

reasoning have shown that this situation of intervention seems natural to participants as they

are competent to predict the consequences of an intervention (Sloman & Lagnado 2005;

Waldmann & Hagmayer 2005). This new approach to causal reasoning offers additional

reasons to take a serious view at the updating situation in probability judgment revision.
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Appendix

1  “EBSk” is not unique in general MHPnk

Let MHPnk be the version of the Monty-Hall puzzle with n doors No.i (i = 1, ..., n) and

k the number of doors opened by the host to show goats when participants’ original choice is

No.1 (k ≤ n-2). For parsimony and convenience sake we will order the doors following the

choice of the host and we will assume that the host opens the k last doors (message ‘goatNo.n-

k+1...n’ with k ∈ [1, ..., n-2]). Rules 1, 2, 3, are straightforwardly transposed into MHPnk

while rules 3.2 and 3.2.1 are easily generalized. On the contrary rule 3.1 can have various

generalizations. With respect to rules 3.1, 3.2 and 3.2.1, we assume that the probabilities

P(‘goatNo.n-k+1...n’carNo.i) (for i = 1, ..., i = n) are independent from prior probabilities but

may depend on the remaining number of closed doors (n-k). The likelihoods P(‘goatNo.n-

k+1...n’carNo.i) (i = 1, ..., i = n) are thus function of n and k. Let αi (i = 1, ..., i = n)  be  the

likelihoods P(‘goatNo.n-k+1...n’carNo.i). Let’s next consider the generalized rules:

Rule 3.2g: If the car is behind door No.1, the host is bound to show goats behind k doors

chosen among doors No.2..., No.n.

Also the rule 3.2.1 (no preference between the n-1 doors if the car is behind door No.1)

becomes:

Rule 3.2.1g: In the specific case where the car is behind door No.1, the host chooses to

show k goats behind doors selected among n-1 doors. The host has thus 

€ 

Cn-1
k  possibilities and

€ 

α1 =
1
Cn-1
k .

The general Bayesian solution to MHPnk ,“EBSk”  becomes:
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€ 

P(car No.i |'goat No.n - k +1...n') = aiα i

a1α1 + α ja j
j=2

j=n -k

∑
,  with 0 < i < n - k +1   (26)

Before going further an assumption needs to be made on the host’s strategies when the car is

behind door No.i (with i>1).  We propose first the natural host’s strategy 1.

1.1 Strategy 1: For any i the host adopts the same rule whatever door No.i  that hides the

car

In this case the host has no preference between the n-2 doors No.2, ...No.i-1; No.i+1,

...No.n when the car is behind door No.i. Hence the implicit rule 3.1 is no longer ambiguous

and can be generalized by the following rule.

Rule 3.1g1: If the car is behind door No.i (with i > 1), the host chooses to show goats behind k

doors selected among n-2 doors (n doors except doors No.1 and No.i). The host has thus 

€ 

Cn-2
k

possibilities and 

€ 

α i =
1
Cn-2
k .

In this case (26) becomes “EBSk1”:

€ 

P(car No.1 |'goat No.n - k +1...n') =
a1

(n −1− k)!k!
(n −1)!

a1
(n −1− k)!k!

(n −1)!
+

(n − 2 − k)!k!
(n − 2)!

a j
j=2

j=n -k

∑
  

€ 

                             = a1(n −1− k)

a1(n −1− k) + (n −1) a j
j=2

j=n -k

∑
                     (27)

€ 

P(car No.i |'goat No.n - k +1...n') = ai(n −1)

a1(n −1− k) + (n −1) a j
j=2

j=n -k

∑
 ,  for i = 2, ...,  i = n             (28)

and hence the relation: 

€ 

P(carNo.1 |'goat No.n - k +1...n')
P(carNo.i |'goat No.n - k +1...n')

= a1(n −1− k)
ai(n −1)

            (29)
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Theorem 8: When the mean of the set of values ai (with i = 2, ...i = n-k) is strictly superior to

the mean of the set of values ai (with i = n-k+1, ..., i = n),

€ 

 P(car No.1 |'goat No.n - k +1...n') < P(car No.1) and in the specific case where the mean of the set

of values ai (with i = 3, ...i = n-k) is equal to the mean of the set of values ai (with i = n-k+1,

...i = n) 

€ 

P(car No.1 |'goat No.n - k +1...n') = P(car No.1)  .

Proof. By simple elementary calculation

€ 

 P(car No.1 |'goat No.n - k +1...n') < P(car No.1) ⇔ a1(n −1− k)

a1(n −1− k) + (n −1) a j
j=2

j=n -k

∑
<

a1

a1 + a j
j=2

j=n

∑
 

€ 

⇔
(n −1)
(n −1- k)

−1
 

 
 

 

 
 ai
i= 2

i= n -k

∑ > ai
i= n -k+1

i= n

∑ ⇔

ai
i= 2

i= n -k

∑
(n −1- k)

>

ai
i= n -k+1

i= n

∑
k

In particular when the ai (with i > 1) are equal to a2 for any k, “EBSk2” coincides with “EBS”.

€ 

P(carNo.1 |'goat No.n - k +1...n') = P(carNo.1 |'goat No.3...n') = P(carNo.1)             (30)

Proof. By simply applying relations (27) and (28), we have:

€ 

P(carNo.1 |'goat No.n - k +1...n') =
a1

a1 + (n−1)a2
= P(carNo.1)             (31)

€ 

P(car No.i |'goat No.n - k +1...n') = a2(n −1)
a1(n −1− k) + a2(n −1- k)(n−1)

 

                     = a2(n−1)
(n−1− k)(a1 + a2(n −1))

=
a2

a1 + a2(n −1)
+

ka2

(n −1− k)(a1 + a2(n −1))

    

€ 

       = P(car No.i) +
1

(n − k -1)
P(car No.j)

j= n−k +1

n

∑             (32)

The relations (31) and (32) correspond to the solution by simple Imaging rule  “SISk”

for MHPnk for the k worlds invalidated by the updating message ‘goatNo.n-k+1...n’ are

redistributed proportionally on the (n-k-1) worlds (carNo.i) (with i = 2, ..., i = n-k).
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Notably, in standard MHPnk for any k,

€ 

P(car No.1 |'goat No.n - k +1...n') = P(car No1) = P"
'goat No.n-k+1,...,n'

+ (car No.1)                                         (33)

€ 

 for i > 1, P(car No.i |'goat No.n - k +1...n') =
(n −1)

(n −1− k)
1
n

=
1
n

+
k

(n −1− k)n

€ 

        = P(car No.i) +
1

(n −1− k)
P(car No.j)

j= n−k +1

j= n

∑  =  P"
'goat No.n-k+1,...,n'

+ (car No.i)             (34)

We can again generalize Theorem 4 into

Theorem 9. For any n > 2 and any k, 

€ 

P"goat No.n -k+1...n"(carNo.1) > P(carNo.1 |'goat No.n - k +1...n')

and 

€ 

P'goat No.n -k +1...n' (car No.i) < P(car No.i |'goat No.n - k +1...n'),  for i = 2, ...,i = n - k

Proof. “PIS k2” corresponds to 

€ 

P'goat No.n -k +1....n' (car No.i) = ai

a j
j=1

n−k

∑
,  for i =  1, ...,i = n    (35)

It is obvious because for n > 2;

€ 

a1

a j
j=1

n−k

∑
> a1

a1 +
(n−1)

(n−1− k)
a j

j= 2

n−k

∑
 and ai(n −1)

a1(n −1− k) + (n −1) a j
j= 2

n−k

∑
>

aj

a j
j=1

n−k

∑
for i =1, ...,  i = n  

1.2 Strategy 2: For (any i > 1) the host adopts the same strategy whatever door No.i that

hides the car

This rule is implicit in standard MHP where the host’s strategy is the same for No.2 and

No.3. There are multiple possibilities to generalize the rule of MHP: The host opens door

No.2 if No.3 hides a car and No.3 if No.2 hides a car. A possibility is illustrated below:

Rule 3.1g2: If the car is behind door No.i (with 1 < i < n-k), the host chooses to open door

No.i+1...i+1+k. If the car is behind door No.i (with n-k ≤ i ≤ n), the host chooses to open
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doors No.i+1...n,2,...2+n-k-i.  Hence when the host opens the k doors No.n-k+1, ..., No.n,  αn-k

= 1 and αi = 0 otherwise.

In this case (26) becomes “EBSk2”:

€ 

P(carNo.1 |'goat No.n - k +1...n') =

a1
Cn-1
k

a1
Cn-1
k + an-k

= a1
a1 + an−kCn-1

k                                                     (36)

Similarly 

€ 

P(carNo.n - k |'goat No.n - k +1...n') =
an−kCn-1

k

a1 + an−kCn-1
k                                                      (37)

and hence the relation: 

€ 

P(carNo.1 |'goat No.n - k +1...n')
P(carNo.n - k |'goat No.n - k +1...n')

= a1
an−kCn-1

k                                     (38)

Theorem 10: (i) For an-k strictly superior to 

€ 

ai
i= 2, i≠n−k

i= n

∑
(Cn -1

k −1)
,

€ 

 P(car No.1 |'goat No.n - k +1...n') < P(car No.1) =  a1

A

and (ii) in the specific case where an-k corresponds to the mean of set of values ai (with i > 2,

and i ≠ n-k) and k = 1 or k = n-2,

€ 

P(car No.1 |'goat No.n') = P(car No.1 |'goat No.3...n') = P(car No.1) = a1

A
 since

€ 

Cn -1
k = 2 when k = n − 2 and k =1.

Theorem 11. (i) 

€ 

P(carNo.1 |'goat No.n - k +1...n') < P(carNo.1 |'goat No.n - k +1') =
a1

a1 + (n−1)an -k

and (ii) In the special case where all ai are equals, for i > 1, we get from the well know

binomial coefficients property 

€ 

Cn-1
k = Cn-1

n -1-k the following result:

For i = 1, ..., i = n: 

€ 

P(carNo.i |'goat No.n - k +1...n') = P(carNo.i |'goat No.k +1...No.n')
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We have for 1 < k < n-2 the following inequalities:

€ 

P(carNo.1 |'goat No.n - k +1...n') > P(carNo.1 |'goat No.3...n')

€ 

P(carNo.n - k |'goat No.n - k +1...n') < P(carNo.n - k |'goat No.3...n')

Proof. 

€ 

a1

a1 + a2Cn -1
k > a1

a1 + a2(n −1)
 because Cn -1

k ≤
(n −1)k

k!
≤

(n −1)n -2

(n - 2)!
 < n -1 :

In standard MHPnk, we have: 

€ 

P(carNo.n - k |'goat No.n - k +1...n') =
1

1+ Cn-1
k                              (39)

€ 

P(carNo.n - k |'goat No.n - k +1...n') =
Cn-1
k

1+ Cn-1
k                                                                              (40)

We can also generalize Theorem 4:

Theorem 12. For any n > 2 and any k, 

€ 

P
'goat No.n-k+1,...,n'

+ (carNo.1) > P(carNo.1 |'goat No.n - k +1...n')

and 

€ 

P
'goat No.n-k+1,...,n'

+ (carNo.n - k) < P(carNo.n - k |'goat No.n - k +1...n').

Proof. “IPSk2” reads:

€ 

P
'goat No.n-k+1,...,n'

+ (carNo.i) =
ai

ai + an-k
 and it is obvious since for n > 2;

 

€ 

a1

a1 + an -k

> a1

a1 + Cn -1
k an -k

 and   Cn -1
k an -k

a1 + Cn -1
k an -k

>
an -k

a1 + an -k

 as 

€ 

for k < n -1, Cn -1
k ≥

n −1
k

 

 
 

 

 
 

k

> 1.

2 Participants’ representation of a distribution of events for MHPk

The possibility though not tested by psychologists, that participants do not have a

precise distribution of probability from layer 1 to layer 0 supports further the hypothesis that

participants interpret the message in an updating manner. In this case, the hierarchical

structure is formed by a probability distributions from layer 2 to layer 1 always represented by

the prior probabilities P(carNo.i) and by a distribution of events from layer 1 to layer 0. This

structure is called a “distribution of events” (Walliser & Zwirn 1997, forthcoming).  In this
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representation the value of event carNo.1 is represented by an interval [Bel(carNo.1),

Pl(carNo.1)]  with Bel (carNo.1) the lower value associated to carNo.1 (called “belief function” )

and Pl(carNo.1) is the upper value associate to carNo.1 (called “plausibility”) with relation

Pl(carNo.1) = 1 – Bel(¬
carNo.1) . The two measures Bel(carNo.1) and Pl(carNo.1) are defined

with the mass function m(B) that are the weight of evidence in favor of carNo.1.

€ 

Bel(car No.1) = m(B) = P(car No.1)
B: B⊂A≠∅
∑  and

€ 

Pl(car No.1) =1- Bel(¬
car No.1) = m(B) =

B:A∧B≠∅
∑  P(car No.1).

For such distribution of events the adequate rule of revision after an updating message

‘goatNo.n-k+1...n’ is the Dempster-Shafer’ rule  (Dubois & Prade 1993; Walliser & Zwirn

1997, forthcoming) which is expressed by 

€ 

Bel'goat No.n -k+1...n' (carNo.i) =1- Pl'goat No.n -k+1...n' (
¬
carNo.i)

and 

€ 

Pl'goat No.n -k+1...n' (carNo.i) =
Pl(carNo.i∧'goat No.n - k +1...n')

Pl('goat No.n - k +1...n')
.

Numerous authors have shown that the solution of standard MHP by Dempster-

Shafer’s rule gives again 1/2 for the two measures 

€ 

Bel'goat No.3' (car No.1) and Pl'goat No.3' (car No.1)

(Diagonis & Zabell 1986; Pearl 1988; Fagin & Halpern 1991; Walley 1991; Dubois & Prade

1992). More generally it is immediate to see that the solution of MHPnk by Dempster-Shafer’s

rule (noted “DSk”) is equivalent to “PIS”. Thus we have for the two possibilities of the host’s

strategies treated in Appendix 1 the following “DSk1” and “DSk2”:

€ 

Bel'goat No.n -k +1...n' (car No.i) = Pl'goat No.n -k +1...n' (car No.i) = ai

ai
i=1

n -k

∑
 ,  for i =1, ...,  i = n        (Strategy 1) (41)

€ 

Bel'goat No.n -k +1...n' (car No.i) = Pl'goat No.n -k +1...n' (car No.i) = ai

ai + an -k

 ,  for i =1, ...,  i = n   (Strategy 2) (42)
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As far as focusing situation the solution is not unique. The adequate rule is then the

Fagin Halpern Jaffray’s rule (Dubois & Prade 1993; Walliser & Zwirn 1997, forthcoming)

which defines that:

€ 

Bel(carNo.i |'goat No.n - k +1...n') =
Bel(carNo.i∧'goat No.n - k +1...n')

Bel(carNo.i∧'goat No.n - k +1...n') + Pl(¬carNo.i∧'goat No.n - k +1...n')

€ 

Pl(carNo.i |'goat No.n - k +1...n') =
Pl(carNo.i∧'goat No.n - k +1...n')

Pl(carNo.i∧'goat No.n - k +1...n') + Bel(¬carNo.i∧'goat No.n - k +1...n')

In standard MHP, these rules give a solution in the format of the interval [0, 1/2]

(Diagonis & Zabell 1986; Pearl 1988; Fagin & Halpern 1991; Walley 1991; Dubois & Prade

1992) and 

€ 

0, Pl
'goat No.n-k+1...n'

(car No.i)[ ] in MHPnk. Indeed following the host’s strategies, we have

respectively:

€ 

Pl'goat No.n -k+1...n' (No.i) =
ai
Ai=1

i=n -k

∑  

€ 

= Pl(carNo.i∧'goat No.n - k +1...n') +Bel(carNo.i∧'goat No.n - k +1...n')         (Strategy 1) (43)

€ 

Pl'goat No.n -k+1...n' (No.i) =
a1 +an-k
A

 

€ 

= Pl(carNo.i∧'goat No.n - k +1...n') +Bel(carNo.i∧'goat No.n - k +1...n')         (Strategy 2) (44)

3 A correspondence with Pearl’s Bayesian conditioning after intervention

The proportional Imaging rule is equivalent to Pearl (2000)’ s Bayesian conditioning

after one intervention (designed by Pearl as the “do” operator) introduced in the causal

reasoning. MHPnn-2 can indeed be modeled by a Bayesian network representing dependencies

among: the host’s initial choice (X1), participants’ choice (X2) and the doors open by host
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hiding goats (X3) (see Figure 4a below). All variables X1, X2 and X3 can take n values: door

No.1, ..., door No.n.

Now if the external intervention “the n-2 doors No.3, ..., No.n are open” is released

(do(X3) = No.3...n), the links X1 → X3 and X1→ X3 are deleted and the new mechanism

(when X2 is equal to No.1) corresponds to conditioning on the action do(X3) = No.3...n (see

Figure 4b). We find the relations (9) and (10) induced by the proportional Imaging rule:

€ 

P(X1=No.1 | (X2 =No.1)∧do(X3) = No.3...n) = P(carNo.1|goat No.3...n)

€ 

                                            = P
'goat No.3,...,n'

+ (car No.1)                     (43)

 

€ 

P(X1=No.2 | (X1 =No.1)∧do(X3) = No.3...n) = P(carNo.2|goat No.3...n)

€ 

                                            = P
'goat No.3,...,n'

+ (car No.2)                     (44)

-------------------------------------------------------------

Insert Figure 4 about here

-------------------------------------------------------------

This correspondence supports a new psychological argument in favor of the

hypothesis of updating interpretation by participants. It explains the hypothesis introduced by

Glymour (2001) and studied by Burns and Wieth (2004) that participants are not able to

recognize the collider principle.  The “collider principle” is depicted in Figure 4a.  The two

variables X1 (experimenter’s original choice) and X2 (participant’s original choice) are

independent whereas the value of variable X3 (doors hiding goats opened by the host) renders

X1 and X2 dependent. Now, in the updating representation of MHPnn-2 (Figure 4b), the

collider principle is ruled out. Hence participants if have an updating interpretation cannot be

detected the collider principle.
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