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Abstract

We propose a solution to the classical problem of Hurwicz and Schmeidler

[1978] and Maskin [1999] according to which, in two-person societies, no Pareto

efficient rule is Nash-implementable. To this end, we consider implementa-

tion through mechanisms that are deterministic-in-equilibrium while lotteries

are allowed off-equilibrium. For strict preferences over alternatives and un-

der a very weak condition for extending preferences over lotteries, we build

simple veto mechanisms that Nash implement a class of Pareto efficient social

choice rules called Pareto-and-veto rules. Moreover, under mild richness con-

ditions on the domain of preferences over lotteries, any Pareto efficient Nash-

implementable rule is a Pareto-and-veto rule and hence is implementable through

one of our simple veto mechanisms.
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1 Introduction

Can one design some protocol that ensures that two players reach a Pareto efficient

agreement in equilibrium? The theorems of Hurwicz and Schmeidler [1978] and

Maskin [1999], at the outset of implementation theory, provide a negative answer

to this question: no deterministic mechanism, except dictatorship, can guarantee

that every Nash equilibrium is Pareto efficient. In fact, there is a tension between

the conditions for the existence of an equilibrium at every preference profile and

those which ensure that each outcome is Pareto efficient. This impossibility, to which

we refer as the two-person implementation problem, is particularly striking since it is

based on a very mild set of assumptions.

We propose a solution to this problem based on a modification of the mecha-

nisms used for implementation. More precisely, we examine the consequences of

allowing lotteries off-equilibrium, while still ensuring deterministic outcomes in

equilibrium. That is, we consider Nash implementation through deterministic-in-

equilibrium mechanisms or simply DE mechanisms.1

Since we introduce lotteries, the notion of Pareto efficiency needs some qualifi-

cation (see Bogomolnaia and Moulin [2001] for a discussion). Two classical defini-

tions are ex-ante and ex-post Pareto efficiency. A lottery is ex-ante Pareto efficient

if no other lottery Pareto dominates it, whereas it is ex-post Pareto efficient if no

alternative that can be selected by the lottery is Pareto dominated by some other

alternative. While we show that the possibility of ex-ante Pareto efficient implemen-

tation is severely limited, we establish that ex-post Pareto efficient implementation

is possible, by DE mechanisms, as soon as preferences over alternatives are strict.2

Our main result is that a SCR is Pareto efficient and Nash-implementable if and

only if it is a Pareto-and-veto rule: for some pair of integers v = (v1,v2) with v1 +v2 +1

being the number of alternatives, it selects all Pareto efficient alternatives that are

1To our knowledge, this paper is the first one to consider this idea with two players. See Özkal-
Sanver and Sanver [2006], Bochet [2007] and Benoît and Ok [2008] for related ideas. We could replace
lotteries with sets of alternatives and the results presented would be identical.

2The current results do not extend to the setting where the players are indifferent among several
alternatives. Indeed, as proved by Sanver [2006], no selection of Pareto set is (Maskin) monotonic
and hence can be implemented.
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not among the vi worst alternatives for each player i.3 The Pareto-and-veto rule with

vector v is denoted pvv .

The sufficiency part, rather than relying on classical integer games,4 builds for

each Pareto-and-veto rule pvv a simple veto mechanism, which we call a strike mech-

anism, that Nash implements pvv . A strike mechanism endows each player i with

vi vetoes to be distributed among the alternatives with, again, v1 + v2 + 1 being the

number of alternatives. The game is simultaneous and the outcome is a full-support

lottery over the non-vetoed alternatives. The best-response reasoning is straightfor-

ward: given the vetoes of his opponent, a player can induce any alternative non-

vetoed by his opponent as the outcome by adequately casting his vetoes. Thus, his

best response amounts to select his best element among the non-vetoed alternatives.

We prove that this game has pure strategy equilibria. Then, the nice feature of

best responses has three consequences. First, each veto mechanism is DE since a

unique alternative remains non-vetoed in equilibrium, otherwise there is a conflict

with best responses. Second, an equilibrium outcome is Pareto efficient since other-

wise a player can always, by deviating, select a Pareto dominating alternative. Third,

the equilibrium strategies have a natural shape: if x is the implemented alternative

and vi is the number of vetoes, player i vetoes all alternatives preferred to x by his

opponent (say k alternatives) and he vetoes also vi − k among the alternatives less

preferred than x by his opponent. If both strategies veto disjoint sets of alternatives,

this forces each player to accept his opponent’s strategy. In any equilibrium, this

is case: the players veto disjoint sets of alternatives and only one alternative, the

implemented one, remains non-vetoed.

This result holds under the standard von Neumann and Morgenstern expected

utility framework and is even more general than that. It remains true under a mild

condition that we term “best-element bias”: for any set of alternatives, a player

prefers the (sure) lottery that consists of his most preferred element in the set to

3It is not the first time that Pareto-and-veto rules are found to be of interest in the literature:
Abreu and Sen [1991] (pp. 1016-17) present this class of rules as the main example that is virtually
implementable but fails to be Nash-implementable. In a setting where monetary transfers are al-
lowed, Sanver [2018] designs a direct veto mechanism that implements alternatives which are Pareto
efficient and preferable to some disagreement outcome by both players.

4Jackson [2001] summarizes some views on the limits of these games.
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any lottery with support in the same set. Furthermore, we characterize the class of

(ex-post) Pareto efficient social choice rules (SCRs) that can be Nash implemented

through these mechanisms. Importantly, the implementation result just relies on

the existence of a best-element bias for both players. It does not even require com-

pleteness5 or transitivity of the preferences over lotteries.

The necessity part is more involved. Here, the key concept is the veto power

generated by a mechanism: a mechanism µ endows player i with veto power over

some set X of alternatives if and only if player i has some strategy that prevents

any alternative in X to be selected with positive probability whatever his opponent

plays. As we show, any mechanism µ that ensures Pareto efficient outcomes must

endow each player i with veto power over every set of alternatives whose cardinality

does not exceed some integer v
µ
i with v

µ
1 + v

µ
2 + 1 being the number of alternatives.

This is a strong result which almost directly entails that only sub-correspondences of

pvv are Nash-implementable. The necessity is established on a domain of preference

extensions over lotteries that is rich enough to include specific extended preferences

that we label “priority” extensions. In words, a “priority” extended preference is

defined by the property that whenever all the elements of a set X are preferred to

all elements outside X, any lottery that put some weight (however small) on some

element of X is preferred to any lottery that puts no weight on X. For instance, the

domain of vNM preferences satisfies this requirement.

The structure of the paper is as follows: Section 2 introduces the basic notions.

Section 3 presents the strike mechanisms and show that the strike mechanism with

parameter v Nash implements the Pareto-and-veto rule with the same parameter.

Section 4 tackles the necessity issue. It shows that if a SCR is Pareto efficient and

Nash-implementable, then it is a Pareto-and-veto rule. Section 5 further studies the

game-theoretical properties of the proposed mechanisms and shows in particular

that their equilibrium are obtained through individual best-response dynamics. Sec-

tion 6 discusses the limitations of ex-ante implementation through DE mechanisms.

5See Schmeidler [1989] who underlines the importance of weakening completeness and writes:
"Out of the seven axioms listed here the completeness of the preferences [...] seems to me the most
restrictive and most imposing assumption".
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Section 7 presents a review of the literature and Section 8 makes some concluding

remarks.

2 Basic notions and notation

A set N = {1, 2} of two players faces a finite set A of n+ 1 ≥ 3 alternatives. We write

A = 2A for the power set of A and A =A\{∅,A}. The set of probability distributions

(or “lotteries”) over A is denoted ∆ = {p : A→ [0,1] |
∑
x∈Ap(x) = 1}. For each lottery

p ∈ ∆, we let supp(p) = {x ∈ A | p(x) > 0} denote the support of p. For each X ∈ A,

p[X] =
∑
x∈X p(x) stands for the probability that p selects an alternative in X. Let ∆uni

denotes the set of uniform probability distributions over the non-empty subsets of

A. Slightly abusing notation, we let {x} denote both the singleton set consisting of

alternative x and the lottery that selects x with probability one.

We define a “strike mechanism” as follows. Each player i ∈ N is endowed with a

non-negative number vi of vetoes, with v1 + v2 = n. The set

Mi = {X ⊆ A | #X = vi}

represents the sets of alternatives i can veto, and M = M1 ×M2 is the joint mes-

sage space. The mechanism µv : M → ∆uni associates to each pair of messages

m = (m1,m2), the lottery µv(m) that is uniform6 over the set

supp(µv(m)) = A \ (m1 ∪m2).

In other words, an alternative is uniformly drawn from the non-vetoed alternatives.

Note that, as v1 + v2 = n, the set m1 ∪m2 contains at most n elements, so that

supp(µv(m)) is always non-empty.

The set of linear orders over A is denoted by LA and its generic element �i is the

preference of i ∈ N .7 The set of (strict) preference profiles over A is L2
A = LA × LA

6Theorem 1 holds replacing the uniform distribution by any probability distribution with full
support over the non-vetoed alternatives.

7More precisely, one of x �i y and y �i x holds for any distinct x,y ∈ A while x �i x fails for all
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with � = (�1, �2) denoting a generic preference profile. We write

pe(�) = {x ∈ A | @y ∈ A : ∀i ∈N,y �i x}

for the set of Pareto efficient alternatives at � ∈ L2
A. Let L(x,�i) = {y ∈ A : x �i y}

be the (strict) lower contour set and U (x,�i) = {y ∈ A : y �i x} be the (strict) upper

contour set of x ∈ A at �i∈ LA.

A social choice rule (SCR) is a mapping f : L2
A → A. A SCR is Pareto efficient

iff f (�) ⊆ pe(�) for all � ∈ L2
A. We say that f is a sub-correspondence of g and write

f ⊆ g whenever f (�) ⊆ g(�) for all � ∈ L2
A.

In general, a mechanism is a function µ : M → ∆ with M = M1 ×M2 where

Mi , ∅ is the message space of i ∈ N . In order to properly define the game associ-

ated to µ, we do not need to extend preferences over the whole ∆ but simply over

µ(M) := {p ∈ ∆ | p = µ(m) for some m ∈ M}, the range of µ. In this paper, we only

consider mechanisms with finite ranges.8 For example, the set of uniform lotteries

over A, denoted ∆uni = {p ∈ ∆ | p(x) = p(y) for any x,y ∈ supp(p)} is finite. The strike

mechanisms, which play a central role in this work, have ∆uni as their range.

We let Pµ(M) stand for the set of binary relations over µ(M). A typical element of

Pµ(M) is denoted �∗i with �∗i being its strict part. We say that �∗i is an extension of �i
when x �i y =⇒ {x} �∗i {y}, ∀x,y ∈ A.

For a mechanism µ :M→ ∆ and a preference profile over lotteries �∗= (�∗1,�
∗
2), a

Nash equilibrium is a pair of messages (m1,m2) ∈M such that, for all m′1 ∈M1 and

all m′2 ∈ M2, µ(m1,m2) �∗1 µ(m′1,m2) and µ(m1,m2) �∗2 µ(m1,m
′
2). Let N µ(�∗) denote

the set of Nash equilibria of the mechanism µ at the profile �∗.

We now turn to the question of the domain of preferences to be considered. As

already mentioned we work under the assumption that preferences over alternatives

are strict, but we are flexible as to the way preferences are extended from alterna-

tives to lotteries. Since there are many ways to do so, we use a notion of admissible

extended preferences. Let κ(�i) ⊆ P∆ be a set of admissible preferences over lot-

x ∈ A. Moreover, x �i y and y �i z implies x �i z for all x,y,z ∈ A.
8While our results still hold extending over the whole simplex, the richness condition PREX be-

comes harder to satisfy. We would like to thank Bhaskar Dutta for pointing this out.
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teries of player i associated with �i∈ LA. Abusing notation, let κ(�) ⊆ P 2
∆

be the

set of admissible preference profiles over ∆ associated with the preference profile

�= (�1,�2). Such a correspondence κ that associates to each preference a set of ex-

tended preferences (and to each profile of preference a set of profiles of extended

preferences) is called a domain of preference extensions. Throughout the paper

we use the property of Best-element bias: a player with a best-element bias prefers

the (sure) lottery that selects his best element in X to any (considered) lottery with

support in X.

Best-element bias: Let �i∈ LA be a strict preference on A, and let ∆̄ ⊆ ∆ be a set of

lotteries. An extension �∗i of �i exhibits the best element bias in ∆̄ when for any

X ∈ A with #X > 1 and any x ∈ X, if x �i y for any y ∈ X \ {x}, then {x} �∗i p for all

p ∈ ∆̄ with supp(p) ⊆ X and p , {x}.

A domain κ is said to satisfy the best element bias (in short: κ satisfies BEB) in ∆̄

if, for any strict preference > ∈ LA, any extension �∗i ∈ κ(>) exhibit the best element

bias in ∆̄. Note that BEB is satisfied by virtually all domain of preference extensions

that are considered in the literature, including the von Neumann and Morgenstern

domain.

Given a domain κ, a mechanism µ is admissible iff for all �∈ L2
A and all �∗∈ κ(�),

N µ(�∗) , ∅. It is deterministic-in-equilibrium (DE) iff for all �∈ L2
A, all �∗∈ κ(�),

and all m ∈ N µ(�∗), #supp(µ(m)) = 1. It Nash-implements the SCR f : L2
A → A

iff for all �∈ L2
A and all �∗∈ κ(�), f (�) =

⋃
m∈N µ(�∗)

supp(µ(m)). Note that if µ Nash-

implements some SCR f , then µ is admissible.

3 Pareto efficient implementation

For any v = (v1,v2) ∈ {0,1, ..., n}2 with v1 + v2 = n, we define the Pareto-and-veto rule

pvv : L2
A→A as the SCR:
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pvv(�) =

Pareto︷︸︸︷
pe(�)∩

Veto︷                                                       ︸︸                                                       ︷
{x ∈ A | #L(x,�1) ≥ v1}︸                      ︷︷                      ︸
Best n− v1 alternatives for 1

∩{x ∈ A | #L(x,�2) ≥ v2}︸                      ︷︷                      ︸
Best n− v2 alternatives for 2

.

The Pareto-and-veto rule pvv picks all Pareto efficient alternatives with a lower-

contour set at least as large as vi for every player i.

Our first observation is that pvv is non empty when v1 + v2 ≤ n. To see this, just

observe that eliminating n alternatives at most, out of n+1, leaves at least one, say a.

If a is Pareto efficient, we are done. If not, a is Pareto-dominated by some a′ ∈ pev , but

since a′ is at least as good as a for player i, a is still among his n−vi best alternatives.

As soon as v1 + v2 is at least n + 1 , the example of completely opposed preferences

shows that pvv can be empty.

We now turn to the implementation pvv by a “strike” mechanism. For a strike

mechanism, given a strategy mj that vetoes some set of vj alternatives, the objective

for player i is to select the support of the lottery that determines the outcome. Let

gv(Mi ,mj) = {X ∈ A | supp(µv(mi ,mj)) = X for some mi ∈ Mi} be the attainable set

of player i at mj under the strike mechanism µv . So the set gv(Mi ,mj) contains the

different supports of the uniform lotteries that player i can induce when player j

selects mj under the strike mechanism µv . Because of the number of vetoes at his

disposal, player i can choose the support of the outcome by adequately casting his

vetoes as described by the following result:

Proposition 1. For each player i and each strategy mj ∈Mj , the attainable set equals:

gv(Mi ,mj) = {X ⊆ A \mj | 1 ≤ #X ≤min{n+ 1− vi ,n+ 1− vj}}.

Proof. Take some player i and some strategy mj ∈Mj . Take first the case with vi < vj

so that n+ 1 − vj < n + 1 − vi . We want to prove that for each non-empty X ⊆ A \mj
(hence with #X ≤ n+ 1 − vj), there is some mi ∈ Mi with supp(µv(mi ,mj)) = X. Note

that each non-empty subset of A \mj is of the form A \ (mj ∪ C) with 0 ≤ #C ≤ vi .
Thus, it suffices to pickmi such thatmi\mj = C which ensures that supp(µv(mi ,mj)) =

A \ (mi ∪mj) = A \ (mj ∪C), as required. In the case vi ≥ vj , take mi with mi \mj = C.
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Since vi ≥ vj , it follows that #C ≥ vi−vj and hence for each non-emptyX ⊆ A\mj with

#X ≤ n+1−vj−(vi−vj) = n+1−vi , there is somemi ∈Mi with supp(µv(mi ,mj)) = X.

Proposition 1’s main implication is that player i can induce any singleton inA\mj
as the support of the outcome: formally, for any player i and any alternative x ∈ A:

x ∈ A \mj =⇒ {x} ∈ gv(Mi ,mj).

Building on this key property of the attainable set, the rest of the section proves

that the strike mechanism µv Nash implements the Pareto-and-veto rule pvv . The

first consequence of this property is that strike mechanisms are deterministic in

equilibrium as long as the domain satisfies BEB.

Proposition 2. For any strike mechanism µv , if the domain κ satisfies BEB in the range

of µv , then µv is DE.

Proof. Assume that there is some equilibrium m = (m1,m2) with #supp (µv(m)) > 1.

Consider some player i and some alternative x ∈ supp(µv(m)) with x �i y for all y ∈
supp(µv(m)) \ {x}. Since x ∈ A \mj , Proposition 1 shows that {x} ∈ gv(Mi ,mj). Thus,

there is some m′i ∈ Mi with µv(m′i ,mj) = {x}. Furthermore, {x} �∗i µv(m) due to BEB,

which contradicts that m is an equilibrium.

Since a strike mechanism is DE, no uncertainty remains in equilibrium: players

veto disjoint sets of alternatives and a unique alternative is selected. The next result

shows that any alternative selected by a Pareto-and-veto rule with veto vector v is se-

lected by some strict equilibrium of the strike mechanism µv . In a strict equilibrium,

the best response of each player is unique. Few games admit this sort of equilibria

and when they exist, strict equilibria have all the usual desiderata that the theory of

refinements requires9. As a by-product of our proof, we also obtain the admissibility

of each strike mechanism µv .

9In particular, a strict equilibrium is proper and hence perfect (see van Damme [1991] for a clas-
sic treatment). Note that equilibrium refinements rely on expected utility (to derive utility from
perturbed profiles) whereas most of our results do not depend on this assumption.
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Proposition 3. For any veto vector v, let the domain κ satisfy BEB in the range of µv , then

any Pareto-and-veto alternative x ∈ pvv(�) is the unique outcome of a strict equilibrium

of the strike mechanism µv .

Proof. Take any v ∈ {0, ..., n}2 with v1 + v2 = n, any � ∈ L2
A, and any �∗∈ κ(�) with

κ satisfying BEB. Take x ∈ pvv(�). Because x is Pareto-optimal, any of the n other

alternatives is either strictly better than x for one (and only one) player or strictly

worse for both. So counting these n = v1 + v2 alternatives we obtain:

v1 + v2 = #U (x,�1) + #U (x,�2) + #(L(x,�1)∩L(x,�2)) . (1)

By definition of pvv , v1 ≤ #L(x,�1) = n − #U (x,�1). Therefore v2 ≥ #U (x,�1),

which means that player 2 has enough vetoes to block all the alternatives that player

1 strictly prefer to x. The same holds fo player 1 with respect to player 2. Writing

Equation (1) as:

[v1 −#U (x,�2)] + [v2 −#U (x,�1)] = #(L(x,�1)∩L(x,�2)) ,

one can see that it is possible to have players 1 and 2 respectively veto v1 −#U (x,�2)

and v2−#U (x,�1) different alternatives in L(x,�1)∩L(x,�2), so that all n alternatives

are vetoed by one player or the other.

Let m1 and m2 be such strategies. We now prove that, under BEB, m1 is a strict

best response to m2. To this end, recall that U (x,�1) ⊆ m2: any alternative strictly

preferred by player 1 to x is vetoed by player 2. So when player 1 deviates to m′1 ∈
M1, the support A \ (m′1 ∪m2) of the outcome lottery excludes U (x,�1). Because of

the constraints on the number of vetoes, µ(m′1,m2) = {x} is impossible for m′1 , m1.

Therefore, for player 1, the support of µ(m′1,m2) either contains only alternatives that

are strictly worse than x, or contains x and some other alternatives that all are worse

than x. By BEB, player 1 strictly prefers {x} to such outcomes, so m1 is the unique

best response to m2. The same holds for the other player, hence the result.

Equipped with this result, we are now ready to prove Theorem 1, according to

which the strike mechanism µ with veto vector v Nash-implements the Pareto-and-
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veto rule with the same veto vector v.

Theorem 1. Let the domain κ satisfy BEB in ∆uni. The strike mechanism µv Nash-

implements the Pareto-and-veto rule pvv for any v ∈ {0, ..., n}2 with v1 + v2 = n.

Proof. Take any v ∈ {0, ..., n}2 with v1 + v2 = n, any � ∈ L2
A, and any �∗∈ κ(�). Propo-

sition 3 establishes that pvv(�) ⊆
⋃

m∈N µv (�∗)
µv(m) provided that the domain κ satisfies

BEB in the range of µv . Moreover, it is easy to check that the range of µv is precisely

∆uni.

We now show pvv(�) ⊇
⋃

m∈N µv (�∗)
µv(m). Take some x with µv(m) = {x} for some

m ∈ N µv (�∗). We first show that x ∈ pe(�). Suppose not, i.e., there exists y ∈ A
with y �i x for all i ∈ N . Since µv(m) = {x}, we have m1 ∩m2 = ∅. Thus, y ∈ mi for

some i ∈ N , say i = 1, without loss of generality. It follows that y ∈ A \m2 and thus

{y} ∈ gv(M1,m2). Therefore, µv(m′1,m2) = {y} for some m′1 and as {y} �∗1 µv(m) = {x},
we contradict m ∈ N µv (�∗).

We now show #L(x,�i) ≥ vi ∀i ∈ N . Suppose, without loss of generality, that

v1 > #L(x,�1). For any m2 ∈ M2, there is some y ∈ A with y ∈ A \m2, y �1 z for

any z ∈ A \m2 and #L(y,�1) ≥ n + 1 − v2 since m2 contains v2 vetoes. Remark that

n+ 1− v2 = v1 + 1 and thus y �1 x since #L(y,�1) > #L(x,�1) so {y} �∗i {x}. Moreover,

µv(m′1,m2) = {y} for some m′1 ∈M1 since y ∈ A\m2 and thus {y} ∈ gv(M1,m2). Finally

{y} �∗1 {x} = µv(m), contradicting that m is an equilibrium.

4 On the necessity of vetoes and the uniqueness of the

mechanism

We now turn to the uniqueness question. This section shows in which sense the

strike mechanism is the only possibility for Pareto-efficient Nash implementation.

4.1 Domain of extended preferences

We now define some conditions on the domain κ to be used throughout. The first

one restricts admissible extensions in the same spirit as the BEB condition. A player
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with a worst-element bias (or simply WEB) prefers any lottery with support in X to

the (sure) one that selects his worst element in X.

Worst-element bias: Let �i∈ LA be a strict preference on A, and let ∆̄ ⊆ ∆ be a set of

lotteries. An extension �∗i of �i exhibits the worst element bias in ∆̄ when for any

X ∈ A with #X > 1 and any x ∈ X, if y �i x for any y ∈ X \ {x}, then p �∗i {x} for all

p ∈ ∆̄ with supp(p) ⊆ X and p , {x}.

As in the case of BEB, WEB is satisfied by virtually all preference extensions over

lotteries.10 We say that a domain κ satisfies WEB in ∆̄ iff WEB is satisfied in ∆̄ for

all �∗∈ κ(�), for all �∈ L2
A.

The next condition, Priority Extension, deals with the richness of the domain of

preference extensions. For any lottery p ∈ ∆, we write p[· � x] =
∑
y:y�x p(y) to refer

to the probability, according to p, of obtaining an alternative weakly preferred to x

according to �.

Priority extension: Let �∗i extend �i and let x ∈ A, the extension �∗i is a (PREX) of

�i for x in ∆̄ iff given any two lotteries p,q ∈ ∆̄, if p[· � x] > 0 and q[· � x] = 0, then

p �∗ q.

The interpretation of this property is clear: under a priority extension, each al-

ternative is used as a grading benchmark: The individual prefers to reach the bench-

mark x, even with a tiny probability, than not reaching it. The argument “What is

the best alternative I have some chance to obtain with that lottery?” has priority over

the precise values of the probabilities. We say that a domain κ satisfies PREX in ∆̄

iff for all �∈ L2
A, there is some �∗∈ κ(�) that is a priority extension of � in ∆̄ for all

x ∈ A.11

Here is an example of a domain of extension that satisfies the condition in the set

∆uni of uniform lotteries. Similar examples can be found for any finite set of lotteries.

Consider the correspondence κvNM : LA→ P∆uni that allows any von Neumann and

10In fact, BEB and WEB are satisfied if one considers the well-known preference extension axioms
of the literature (such as Gärdenfors [1976] or Kelly [1977]) and deduces preferences over lotteries
through the preferences over their supports. If κ satisfies BEB and WEB (which are universally
quantified), every sub-correspondence of κ satisfies them as well.

11Note that if x is bottom-ranked in �, there is no lottery q with q[· � x] = 0, so that any extension
is (vacuously) a priority extension for x.
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Morgenstern extension of �. In other words, for � ∈ LA, κvNM(>) is the set of all

�∗ ∈ P∆uni such that there exists a vector u ∈ RA with a � b ⇐⇒ ua > ub for all a,b ∈ A
and:

∀p,q ∈ ∆uni, p �∗ q ⇐⇒
∑
a∈A

p(a)ua >
∑
a∈A

q(a)ua.

The domain κvNM(>) contains priority extensions of � to ∆uni. To see this, label

the alternatives in A according to the preference: an+1 � an � . . . � a1 and let uak =

(n+ 1)k for any ak ∈ A. Take any pair p,q ∈ ∆uni with p[· � ak] > 0 and q[· � ak] = 0 for

some ak. The expected value of p, that is
∑
a∈Ap(a)ua, reaches its minimum when the

lottery contains in its support ak but no better alternative according to � (and hence

has k alternatives in its support). The expected value
∑
a∈Ap(a)ua is at least

uak
k
>
uak
k + 1

=
(n+ 1)k

k + 1
≥ (n+ 1)k−1.

The expected value of q,
∑
a∈A q(a)ua, reaches its maximum when q = {ak−1} and hence

its value is at most (n+ 1)k−1. Therefore, for any ak ∈ A, p[· � ak] > 0 and q[· � ak] = 0

implies that p �∗ q. Thus, uniform lotteries are ordered following the priority rule.

4.2 Implementable rules

We are now ready to state the counterpart to Theorem 1, according to which, if one

wants to implement Pareto efficient SCRs through a DE mechanism, the SCR must

be a Pareto-and-veto rule. Precisely we prove the following:

Theorem 2. Let f be a Pareto efficient SCR that is Nash-implementable by a DE mecha-

nism µ on a domain κ. Let the domain κ satisfy BEB, WEB and PREX in the range of µ.

Then f = pvv for some v ∈ {0, ..., n}2 with v1 + v2 = n.

To prepare for the proof we provide lemmas showing that we can restrict atten-

tion to “veto-neutral" mechanisms. For each player i, let

veto(Mi) = {X ∈ A | ∃mi ∈Mi s.t. supp(µ(mi ,mj))∩X = ∅ for all mj ∈Mj},

denote the veto set for player i. When X ∈ veto(Mi), we say that player i has veto
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power over the set X of alternatives, i.e., he has a strategy that ensures that no alter-

native in this set belongs to the support of the outcome independently of the strategy

of his opponent. We first state a result on the structure of the veto power that DE

mechanisms generate.

Lemma 1. Under the hypothesis of Theorem 2, for any partition {X,Y } of A with X ∈ A,

either Y ∈ veto(M1) or X ∈ veto(M2) but not both.

Proof. Let µ :M→ ∆ be admissible and DE and letX ∈ A. Write Y = A\X. Pick some

�∈ L2
A such that ∀x ∈ X, ∀y ∈ Y , x �1 y and y �2 x. The existence of such preference

� is ensured by our assumption that the domain contains all strict preferences on

alternatives. Take also �∗∈ κ(�) such that p �∗1 q for all p,q ∈ µ(M) with p[X] > 0 and

q[X] = 0, and such that p �∗2 q for all p,q ∈ µ(M) with p[Y ] > 0 and q[Y ] = 0. The

existence of such extended preference �∗ is ensured by PREX. Now suppose, for a

contradiction, that Y < veto(M1) and X < veto(M2). Because µ is admissible and DE,

there exists an equilibrium m = (m1,m2) ∈ N µ(�∗) with µ(m) = {a} for some a ∈ A.

Two cases are possible:

• If a ∈ X. As Y < veto(M1), ∃m′2 ∈M2 such that supp
(
µ(m1,m

′
2)
)
∩Y , ∅, hence

µ(m1,m
′
2) �∗2 {a} due to WEB, contradicting m ∈Nµ(�∗).

• If a ∈ Y . As X < veto(M2), ∃m′1 ∈M1 such that supp
(
µ(m′1,m2)

)
∩X ,∅, hence

µ(m′1,m2) �∗1 {a}, again contradicting m ∈ N µ(�∗).

Thus, Y ∈ veto(M1) or X ∈ veto(M2). Because the mechanism is well-defined, it is

impossible that Y belongs to veto(M1) and its complement X belongs to veto(M2).

Therefore either Y ∈ veto(M1) or X ∈ veto(M2) but not both.

A mechanism µ is veto neutral for player i iff for any X ∈ A and any permutation

ρ : A → A, X ∈ veto(Mi) ⇐⇒ ρ(X) ∈ veto(Mi). When µ is veto neutral for some

player i, if a set with a given cardinality belongs to veto(Mi) then any other set with

the same cardinality belongs to veto(Mi) as well. Note that a player with veto power
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over X has also veto power over any X ′ ⊂ X. Hence, the veto set for player i can be

written as:

veto(Mi) = {X ∈ A | #X ≤ vi},

where the integer vi stands for the cardinality of the highest cardinality set over

which i has veto power.

Lemma 2. Under the hypothesis of Theorem2, µ is veto neutral for both players.

Proof. Let X ∈ veto(M1), x ∈ X and x′ ∈ A \ X.12 Thus, there exists m1 ∈ M1 that

vetoes X. The set X ′ = X\{x}∪{x′} has the same cardinal as X. Write Y = A\(X∪{x′}),
so that we have a partition

A = (X \ {x})∪ {x} ∪ {x′} ∪Y .

Suppose, for a contradiction, thatX ′ < veto(M1). Lemma 1 then implies that Y∪{x} ∈
veto(M2). Therefore there exists m2 ∈ M2 that vetoes Y ∪ {x}. Since x′ is neither

vetoed by m1 nor by m2, µ(m1,m2) = {x′}. Now consider a unanimous preference

profile �= (�1,�2) such that x �i x′ �i y for all y , x,x′and for i = 1,2. For this

preference profile, the second-best alternative x′ is Pareto-dominated by x but, at

(m1,m2), both players veto x. Thus, no unilateral deviation can obtain, with any

probability, a better outcome than x′. Thanks to BEB, that implies that (m1,m2) is a

Nash equilibrium, in contradiction with the Pareto efficiency assumption.

The proof of the proposition is established by noting that given any X,X ′ ∈ A
with #X = #X ′, there is a finite sequence of sets X = X1, ...,Xs = X ′ with #(Xi∩X ′i+1) =

#X − 1 for each i ∈ {1, ..., s − 1} and applying repeatedly the argument above.

We can now complete the proof of the Theorem.

Proof of Theorem 2. We first establish the existence of v such that f ⊆ pvv . Let M
be the joint message space of µ that DE-implements f . Take any preference profile

�= (�1,�2) and any x ∈ f (�). For each �i with i = 1,2, let �∗1 denote its associated

PREX for x. Thus, for all p,q ∈ µ(M), for each z ∈ A and for i = 1,2, if p[· �i z] > 0

12The two extreme cases veto(M1) = {{∅}} and A ∈ veto(M1) are trivial.

15



and q[· �i z] = 0 then p �∗i q. Since x ∈ f (�), µ admits a Nash equilibrium (m1,m2)

with µ(m1,m2) = {x}. By the definition of an equilibrium, player 2 has no better

response to m1 than m2. However, under �∗2, a deviation m′2 is profitable for player

2 iff supp(µ(m1,m
′
2))∩U (�2,x) , ∅. Therefore:

∀m2 ∈M2, supp(µ(m1,m2))∩U (�2,x) = ∅

and likewise for player 1. In other words, m1 makes the set U (�2,x) unattainable for

player 2 under µ. We say that m1 gives player 1 veto power on the set U (�2,x), and

likewise for player 2.

From Lemma 2, if a player has veto power on some set, she has also veto power

on any set of the same cardinality. Let vi be the largest number of outcomes that i

can veto. For the mechanism to be well-defined, one needs v1 +v2 ≤ n, so that not all

the n+ 1 alternatives can be vetoed simultaneously. The existence of a deterministic

equilibrium (an equilibrium with a singleton outcome) shows that v1 + v2 ≥ n.

Clearly, an outcome that would be among the vi worse alternatives for a player

i cannot be an equilibrium outcome under µ because i could then veto her vi worse

alternatives. Due to WEB, a player prefers any lottery with support not included

in the vi worst alternatives to any lottery that selects (surely) one of the worst vi

alternatives. Hence f being implementable imposes the required veto conditions on

the ranks of the implemented alternatives in the individual preferences. Since we

assumed that f is also efficient, we obtain f ⊆ pvv .

For this v, we now prove the reverse inclusion. Given �= (�1,�2), let x ∈ pvv(�).

Consider the profile �′ defined as follows.

Label the n+ 1 alternatives in two ways: an+1 �1 an �1 . . . �1 a1 and bn+1 �2 bn �2

. . . �2 b1. Write aw1
= bw2

= x. The veto conditions in the definition of pvv are that

w1 > v1 and w2 > v2, which implies that:

an+1 �1 . . . �1 aw1
= x �1 . . . �1 av1

�1 . . . �1 a1,

bn+1 �2 . . . �2 bw2
= x �2 . . . �2 bv2

�2 . . . �2 b1.
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The preference �′1 is obtained by lowering the ranks of all those, among the alter-

natives av1+1, ..., aw1−1, which are preferred to x by the other player, player 2. If

w1 = v1 + 1 we simply let �′1 = �1. If w1 ≥ v1 + 2, consider the set

H1 =
{
av1+1, . . . , aw1−1

}
∩ {bw2+1, . . . , bn+1}

and observe that

#H1 ≤ n−w2 ≤ n− v2 = v1.

Starting from �1, we define �′1 by switching in the ranking the first elements a1,...

a#H1
with the elements of H1, where a1 is switched with the most preferred element

of H1 of player 1, a2 is switched with the second most preferred element of H1 of

player 1 and so on...

We now claim that if x ∈ f (�′1,�2) then x ∈ f (�). Let µ DE-implement f . If

x ∈ f (�′1,�2), there exists a pure strategy equilibrium (m′1,m
′
2) for the game with

preferences (�′1,�2) with {x} = µ(m′1,m
′
2). With the initial preferences (�1,�2), m2 is

also a best response since player 2 does not change her preference, and m′1 is also a

best response for player 1 because her preferences differ only below x. As previously

argued,m2 gives player 2 veto power on the setU (�1,x). SinceU (�′1,x) =U (�1,x) by

construction, it follows that the support of any lottery that player 1 can attain given

m2 is included in A \U (�1,x). Hence, due to BEB, m1 is a best response for player

1 since µ(m1,m2) = {x}. Therefore this equilibrium for (�′1,�2) is also an equilibrium

for (�1,�2), that is: x ∈ f (�′) =⇒ x ∈ f (�).

The same construction for player 2 yields the preference profile �′′= (�′1,�
′
2) with

the property:

x ∈ f (�′′) =⇒ x ∈ f (�). (2)

But notice that, by construction of �′1, all the alternatives y such that y �2 x are now

among the v1 worse alternatives according to �′1. Therefore x is the preferred alter-

native, according to �′2, among the alternatives in the intersection of the top n − v1

alternatives for player 1 and n − v2 alternatives for player 2 in �′. Since the same is

true for the other player, we find that x is the unique Pareto optimum in the alter-
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natives among the top n− v1 alternatives for player 1 and the top n− v2 alternatives

for player 2 in � ”. Since f itself is assumed to be efficient and is selecting in pvv , we

obtain that f (�′′) = {x}. From (2) it follows that x ∈ f (v) as requested.

Theorem 2 shows the existence of a strong link between implementation through

DE mechanisms and veto power. Indeed, it shows that under the conditions BEB,

WEB, and PREX, a SCR has to admit some veto structure in order to be both Pareto

efficient and implementable. This theorem is related to the impossibility result by

Hurwicz and Schmeidler [1978] in the following sense. Hurwicz and Schmeidler

[1978] show that the only SCRs which are both Pareto efficient and implementable

(through a deterministic mechanism) are the dictatorial ones. Note that a dictato-

rial SCR corresponds to pvv with v = (n,0) (if player 1 is the dictator) or v = (0,n)

(if player 2 is the dictator). Our theorem shows that by allowing lotteries as off-

equilibrium punishments, the Pareto-and-veto rules appear as a class of intermedi-

ate and, interestingly, non dictatorial SCRs.

Note that pvv is neutral for any v ∈ {0...,n}2 and that it is anonymous if and only if

v1 = v2. Thus, under the assumptions of Theorem 2, the following observations triv-

ially follow. With an odd number of alternatives, an anonymous, neutral and Pareto

efficient SCR f is Nash-implementable by a DE mechanism iff f is a Pareto-and-veto

rule with v1 = v2. On the contrary, with an even number of alternatives, there exist

no anonymous, neutral and Pareto efficient SCR that is Nash-implementable by a

DE mechanism.

4.3 Maskin Monotonicity

Maskin Monotonicity has played a key role in the development of implementation

theory. It stands as the necessary condition for implementation through determin-

istic mechanisms: if a SCR is implementable, then it satisfies this condition. As

we show, this statement also applies to the current setting. Formally, a SCR f is

Maskin Monotonic iff for any x ∈ A and any �,�′∈ L2
A with L(x,�i) ⊆ L(x,�′i) ∀i ∈N ,

x ∈ f (�) =⇒ x ∈ f (�′). Maskin monotonic is satisfied by each Pareto-and-veto rule as

shown by the next lemma.
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Lemma 3. For any veto vector v, the Pareto-and-veto rule pvv is Maskin monotonic.

Proof. For any veto vector v, take any �∈ L2
A and any x ∈ pvv(�). Let �′∈ L2

A be some

profile with L(x,�i) ⊆ L(x,�′i) ∀i ∈ N . Note that x ∈ pe(�) implies that x ∈ pe(�′).
Moreover, #L(x,�′i) ≥ #L(x,�i) for each i ∈N (by construction of �′) and #L(x,�i) ≥ vi
∀i ∈N (by the definition of pvv). Thus x ∈ pvv(�′), as desired.

If the domain satisfies BEB, WEB and PREX, a Pareto efficient SCR that is Nash-

implementable by a DE mechanism is a Pareto-and-veto rule (as stated by Theorem

2). Since any such rule is Maskin monotonic, we conclude that Maskin monotonicy

is still necessary for implementation with DE mechanisms.

5 Iterative best responses

As mentioned above the equilibria of the considered game are pure and strict. This

ensures that the usual game-theoretical refinement criteria are satisfied. However,

what does this imply concerning the use of veto mechanisms in laboratory experi-

ments or in real-life applications? Fudenberg and Levine [2016] argue that an equi-

librium often fails to arise from introspection, but rather from some non-equilibrium

learning dynamics. Moreover, as they write, "in laboratory games do not usually re-

semble Nash equilibrium (except in some special cases); instead, there is abundant

experimental evidence that play in many games moves toward equilibrium as sub-

jects play the game repeatedly and receive feedback" (see Van Huyck et al. [1990]

for a classic treatment and Goeree and Yariv [2011] and Chan et al. [2017] for recent

treatments).

In this section we consider the simplest learning dynamics (best responses). Since

there may multiple equilibria in the game-form associated to a strike mechanism,

there is no hope that the synchronous best response dynamics converge necessar-

ily. If (m1,m2) and (m′1,m
′
2) are two different equilibria then the sequence (m1,m

′
2),

(m′1,m2), (m1,m
′
2), (m′1,m2), ... is such that each player best-responses to her oppo-

nent’s previous moves, but they never coordinate (This remark is very general: it

holds for any two player game with multiple equilibria). We thus consider alternate
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best response dynamics and show that these processes lead to our equilibria. That

point underlines the relevance of our mechanisms in applied settings.

Alternate best responses dynamics. Letm0,m1,m2,m3, ... be a sequence of messages

from alternating players. Say, for instance, and without loss of generality, that player

2 plays m0, m2, etc. Suppose that for any t ≥ 1, mt is a best response (for player 1 if t

is odd and for player 2 if t is even) to mt−1. So #mt is equal to v1 for t odd and to v2

for t even.

First notice that, thanks to our strict preferences assumption (BEB), best re-

sponses are unique. Precisely, when player i is facing a veto on the vj alternatives

mt−1, her best response is to pick her unique preferred alternative among the re-

maining set A \mt−1 and to veto the other vi alternatives. Thus the whole sequence

is uniquely defined by its first element m0, and we have, for any t ≥ 1:

mt−1 ∩mt = ∅. (3)

Let rt for t ≥ 1 denotes the outcome at date t; this is the unique alternative such

that:

mt−1 ∪mt ∪ {rt} = A.

By definition, both mt and mt+2 contain vj alternatives. However, as previously

mentioned, mt and mt+1 are disjoint, and so are mt+1 and mt+2. Therefore, both mt

and mt+2 contain vj alternatives from the set A \mt+1, which contains n− vi alterna-

tives. Thus, since vi + vj = n − 1, mt and mt+2 differ on at most one alternative. If

mt = mt+2, an equilibrium is reached. If mt , mt+2 then mt and mt+2 differ on one

alternative exactly.

The following property of the best response correspondence is used in our proof

of convergence. Suppose that one alternative, say a, is erased from the set A. In case

a ∈ mt−1, the best response to m̃t−1 = mt−1 \ {a} is the same mt. In case a < mt−1 and

a ∈ mt+1, the best response to m̃t−1 = mt−1 is m̃t = mt \ {a}, and is the best response

of the same player in the modified game where a is not available and the player has

one veto less.
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We now prove that the sequence of best responses leads to an equilibrium in at

most n iterations. Let an denote the worst alternative for player 1. If for some k ≥ 0,

an < m
2k, then the best response for player 1 implies to veto an, that is: an ∈ m2k+1.

This in turn implies (because of property 3) that player 2 does not veto an at date

2k + 2. It follows that the following chain holds: for all t ≥ 0

an <m
t =⇒ an ∈mt+1 =⇒ an <m

t+2 =⇒ ...

Consequently, an belongs either to all mt for t odd and starting at 1 (call this case 1),

or to all mt for t even and starting at 2 (call this case 2).

Now consider the sequence of sets m̃t = mt \ {an} for all t ≥ 1. We claim that this

new sequence is again a sequence of alternating best responses in the game where the

set of alternatives is A \ {an} and the numbers of vetoes are, in case 1, v′ = (v1 − 1,v2)

and in case 2, v′ = (v1,v2−1). This is true in case 1 because, in the original sequence,

player 1 always had to veto an that is her worst alternative and player 2 never had

to block a1 that is never available to her. This is also true in case 2 because, in the

original sequence, player 1 never had to veto an that was never available to her, and

player 2 always had to veto an.

The same logic applies to the worst element for the other player as well. The

argument can be repeated for player 1 or for player 2 until all vetoes are exhausted

and about the sequences starting at m1 then at m̃2, then at ˜̃m3, etc. It follows that in

the original sequence, for all t ≥ n, mt =mt+2. We conclude that the iterative process

of alternate best responses converges to an equilibrium in at most n iterations.

6 Ex-ante Pareto efficiency

This section shows that ensuring ex-ante Pareto efficient equilibria through DE mech-

anisms is in general not possible. It presents two separate results for two notions:

ex-ante efficiency for mechanisms (Section 6.1) and for SCRs (Section 6.2). The first

one shows that no ex-ante Pareto efficient admissible mechanism ensures minimal

veto rights to each player. The second one proves that any ex-ante Pareto efficient
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and implementable SCR is a dictatorship.

6.1 Ex-ante efficient mechanisms

Ex-ante efficiency means that efficiency is observed at the level of lotteries, before

their realization. Received knowledge on this issue (see, for instance, Börgers and

Postl [2009]) highlights that ex-ante efficiency is difficult to obtain. An example

is published (Núñez and Laslier [2015]) of an ex-ante Pareto efficient two-player

mechanism for three alternatives; this mechanism, called Approval mechanism, is

not DE and fails to be efficient for four alternatives or more. The existence of a

non-DE efficient mechanism for many alternatives a remains an open problem.

The difficulty can be described by the following argument. Let A = {a,b,c} with

a �1 b �1 c and c �2 b �2 a. Consider the strike mechanism that gives one veto to

each player. If the domain κ satisfies BEB, the unique equilibrium outcome is b.

Now, assume that both players prefer a non degenerate lottery with support {a,c}
to the pure outcome b. This is the case when both players extend their preference

over alternatives to uniform lotteries through expected utility and their intensity

of preference for b is low. In this case, the unique equilibrium outcome is Pareto

dominated by a lottery, that is a possible outcome of the mechanism, therefore non

dictatorial ex-ante Pareto efficiency cannot be reached with deterministic outcomes.

Our first result is a negative result, that generalizes this observation to veto rules, as

studied in this paper.

Instead of social choice rules, defined on profiles of preferences over pure alter-

natives, we are here dealing with social lottery rules (SLR), defined on profiles of

preferences over lotteries. For such a preference profile, �∗, the SLR F defines a set

of lotteries F(�∗) ⊆ ∆. We will consider SLRs that are defined on the same domains

that were used in the previous sections: preferences over pure alternatives are strict,

and all strict preferences are admitted, and the preferences on lotteries are described

by a product correspondence κ.

For a mechanism µ and a profile of preferences over alternatives �∗, let Fµ(�∗)
denote the set of Nash outcomes: Fµ(�∗) = {µ(m) : m ∈ Nµ(�∗)}. This is a subset of
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µ(M), the range of µ. A mechanism µ is ex-ante Pareto efficient on the domain κ

if for any �∈ L2
A and any �∗∈ κ(�) there is no p ∈ µ(M) and q ∈ Fµ(�∗) such that

p �∗i q for all i with at least one strict preference. Say that µ is DE at �∗ if all its

Nash outcomes are deterministic, that is, with our loose notation: Fµ(�∗) ⊆ A. A

mechanism µ is a dictatorship iff there is some i ∈ N such that for each x ∈ A, there

exists mi ∈Mi such that µ(mi ,mj) = {x} for all mj ∈Mj .

Theorem 3. Let the domain κ satisfy PREX and WEB. On κ, any admissible DE mech-

anism that is ex-ante Pareto-efficient is a dictatorship.

Proof. Suppose first that the mechanism µ is not purely deterministic, that is there

exists a strategy combination m∗ ∈M and two distinct alternatives a1, an+1 ∈ A such

that {a1, an+1} ⊆ supp(µ(m∗)). Since µ is DE, it follows that Fµ(�∗) ⊆ A. Write A =

{a1, a2, ..., an+1} (recall that n+1 ≥ 3) and consider the opposed preferences �= (�1,�2)

with a1 �1 a2 �1 ... �1 an+1 and an+1 �2 an �2 ... �2 a1. Let the players’ preferences

over lotteries, �∗1 and �∗2, be such that, for any p,q ∈ µ(M), if p[· �1 a1] > 0 and

q[· �1 a1] = 0 then p �∗1 q, and if p[· �2 an+1] > 0 and q[· �2 an+1] = 0 then p �∗2 q. Such

a profile exists because the domain κ satisfies PREX. Therefore, since {a1, an+1} ⊆
supp(µ(m∗)), µ(m∗) �∗i {x} for i = 1,2 and any x , a1, an+1. Since µ is ex-ante Pareto

efficient, it follows that Fµ(�∗) ⊆ {a1, an+1}.
Therefore, at this profile, the mechanism µ admits either {a1} or {an+1} or both

as equilibrium outcome. Assume w.l.og. that µ admits some equilibrium m̃ with

µ(m̃) = {a1}. By definition of equilibrium, {a1} = µ(m̃) �∗2 µ(m̃1,m
′
2) for any m′2 ∈ M2.

Yet, since κ satisfies WEB, then p �∗2 {a1} for all p ∈ µ(M) with p , {x}. Therefore,

µ(m̃1,m
′
2) = {a1} for any m′2 ∈ M2. It follows that for every a ∈ A, there is either

some m1 ∈M1 such that µ(m1,m
′
2) = {a} for any m′2 ∈M2 or some m2 ∈M2 such that

µ(m′1,m2) = {a} for any m′1 ∈ M1. It follows that either for every a ∈ A there is some

m1 ∈ M1 such that µ(m1,m
′
2) = {a} for any m′2 ∈ M2 or for every a ∈ A there is some

m2 ∈ M2 such that µ(m′1,m2) = {a} for any m′1 ∈ M1. In the first case, player 1 is the

dictator and in the second case player 2 is the dictator.

Suppose now that there is no m∗ ∈M such that supp(µ(m∗)) ⊃ {x,y} for some pair

of alternatives {x,y} ∈ A. Then, for any m ∈ M, µ(m) ∈ A so that µ is a determinis-
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tic mechanism and µ(M) ⊆ A. Thus, for any N µ(�∗) = N µ(�) for any �∗∈ κ(�) and

any �∈ L2
A. Hence, ex-ante Pareto efficient is equivalent to Pareto efficiency w.r.t. �.

Thus, the two-person implementation problem (as stated by Hurwicz and Schmei-

dler [1978] and Maskin [1999]) applies: the only mechanisms that are admissible

and Pareto efficient are dictatorships.

6.2 Ex-ante efficiency of implementable social choice rules

The literature on implementation has concentrated on social choice rules (SCRs)

which, by definition use only cardinal information: a preference profile � on alter-

natives, and not a preference profile �∗ over lotteries. Since we consider mechanisms

that can outcome lotteries, some definitions are useful in order to make the link with

this literature.

So consider a SCR f : for all �∈ L(A), f (�) ⊆ A. A mechanism µ that is DE on a

domain κ is said to implement the SCR f on κ iff:

∀ �∈ L(A), ∀ �∗∈ κ(�), Fµ(�∗) = f (�).

Note that, for a mechanism to implement a social choice rule, it is required that the

outcomes of the mechanism not only are deterministic, but also are independent of

the precise preferences over lotteries. The following definition presents a concept of

ex-ante Pareto efficient SCR that is suitable for the study of the implementation of

SCRs by mechanisms that can output lotteries. It should not be confused with the

concept of an ex-ante Pareto efficient mechanism defined above.

Given a set of lotteries ∆ ⊆ ∆ a SCR f is ex-ante Pareto efficient in the range ∆

iff given any �∈ L2
A and any �∗ in κ(�), any X ∈ f (�) and any x ∈ X, there is no p ∈ ∆

such that p �∗i x for all i ∈N with at least one strict preference.

We show that the notions of ex-ante Pareto efficiency and admissibility clash,

hence extending the two-player implementation problem to the setting with lotteries

and DE mechanisms. This shows that ex-ante Pareto efficiency is too restrictive in

our setting.
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Theorem 4. Let f be a SCR that is Nash-implementable by a DE mechanism µ on a

domain κ. Suppose that κ satisfies PREX and WEB in the range of µ. If f is ex-ante

Pareto efficient in the range of µ, then µ is a dictatorship.

Proof. Let f be an ex-ante Pareto efficient SCR that is Nash-implementable by a DE

mechanism µ on a domain κ. Borrowing the vocabulary of Hurwicz and Schmeidler

[1978], we think of the mechanism µ as a matrix where player 1 controls rows and

player 2 controls columns. We hence write, for every x ∈ X, an {x}-row is a row that

contains only {x} as an outcome and similarly for an {x}-column.

Take any profile �∈ L2
A. Let a and b respectively denote the best outcomes for

player 1 and 2 at �. Take �∗∈ κ(�) such that p �∗1 q for all p,q ∈ µ(M) with p(a) > 0

and q(a) = 0 and such that p �∗2 q for all p,q ∈ µ(M) with p(b) > 0 and q(b) = 0. The

existence of �∗ is ensured by PREX. Take any alternative x , a,b. According to �∗

both players strictly prefer a lottery with support {a,b} to the pure alternative x. Ex-

ante Pareto efficiency thus implies that x < f (�). Indeed, if x ∈ f (�), then µ admits

an equilibrium m∗ with µ(m∗) = {x} (since µ is DE). However, both players prefer the

lottery {a,b} to x, contradicting ex-ante Pareto efficiency. So f (�) ⊆ {a,b}. Thus, an

ex-ante Pareto optimal and admissible DE mechanism gives equilibrium outcomes

from the union of tops.

Now consider a preference profile � where the players’ preferences are com-

pletely opposed. Relabel the alternatives as a1, a2,..., am. Take a preference profile

where a1 and a2 are respectively the best and last alternatives for player 1 while a2

and a1 are, respectively, the best and last alternatives for player 2. So the equilib-

rium outcomes of µ belong to {a1, a2}. Note that µ is DE, so no lottery with support

{a1, a2} is an equilibrium outcome. Let, without loss of generality, a1 be an equilib-

rium outcome. This is the worst element for player 2 and also the worst lottery (due

to WEB), hence player 1 must have an {a1}-row.

Now, take a preference profile where a2 and a3 are, respectively, the best and last

alternatives for player 1 while a3 and a2 are the respective top and bottom outcomes

for player 2. So the equilibrium outcomes of µ belong to {a2, a3}. We first show that

a3 cannot be an equilibrium outcome. Suppose it is. As a3 is the worst element

25



and lottery for player 1, player 2 must have an {a3}-column, due to WEB, which

contradicts player 1 has an {a1}-row. As a result, a2 is an equilibrium outcome and

we argue, mutatis mutandis, player 1 has an a2-row.

Iterate by making the arguments for a3, a4, . . . , am−1, am, proves that for each a ∈ A,

player 1 has an {a}-row, showing that player 1 is the dictator. Repeating the argument

assuming that a2 is an equilibrium outcome shows that player 2 is the dictator.

7 Review of the literature

This section provides a short review of the two-player implementation problem (see

Dutta [2019] for a recent and complete survey). As argued in the introduction, the

pioneering works (Hurwicz and Schmeidler [1978] and Maskin [1999]) provide a

provocative result: dictatorships are the only Pareto efficient rules that can be Nash

implemented. Their proof builds on three key assumptions: (i) the preference do-

main is universal (any preference profile is allowed) while implementing mecha-

nisms are (ii) simultaneous and (iii) deterministic.

The literature has explored the consequences of weakening each of these assump-

tion.13 The first strand relaxes condition (i), Dutta and Sen [1991] and Moore and

Repullo [1990] are the key papers in this direction. They identify the domain re-

strictions under which one can design Pareto efficient and non-dictatorial Nash-

implementable rules. While the full characterization is rather complex, the suffi-

cient domain conditions for implementation often rely in the Euclidean space (see

Section 5 in Dutta and Sen [1991] for instance); in the current work, we work in a set-

ting where we do not impose any structure on the alternatives or on the preferences

over them, beyond the fact that that preferences over alternatives are strict.

A second strand is concerned with (ii), that is, replacing simultaneous with dy-

namic mechanisms. This literature, in which Moore and Repullo [1988], Abreu and

Sen [1991] and Herrero and Srivastava [1992] play a key role, shows that introducing

an order of play expands the set of implementable rules with more than two players.

13Other approaches have modified the rationality notion, using “partial honesty”; see Dutta and
Sen [2012] among others.
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No characterization of implementable rules via subgame-perfect or via backward

induction is available. By altering the notion of implementation (role-robust imple-

mentation), De Clippel et al. [2014]14 show that a possibility arises with dynamic

vetoes and randomized order of play (see also Barberà and Coelho [2019] who con-

sider the implementation of the fallback-bargaining solution). However, while ex-

ante fairness is achieved by randomizing the order of play, ex-post fairness fails. The

order of play matters for determining the outcome, creating first, or second, mover

advantages. As Moulin [1981] puts it, "voting by veto procedures introduce a strong

asymmetry among agents: ... the ordering of the agents has a strong influence on the

outcome" (see also Barberà and Coelho [2018] on first/second mover advantages).

The third and final strand of the literature deals with assumption (iii), as does

the current work: it explores the consequences of modifying the type of mechanisms

jointly with the notion of implementation.15 Indeed, virtual implementation is a re-

formulation of the original problem: a social choice rule is virtually implementable

if there exists a game form G, such that for all preference profiles G admits a unique

equilibrium outcome (a lottery) which is ε-close to the outcome prescribed by the

rule at this preference profile and this holds for every ε > 0. Following this ap-

proach, Matsushima [1988] and Abreu and Sen [1991] provide a strong possibility

result: with at least three players, any rule is implementable. With two players, the

result is more nuanced but some SCRs are virtually implementable (among which

the Pareto-and-veto rule described in the current work). However, under the virtual

implementation approach, "any alternative can be the outcome of the game as it re-

ceives positive probability in the equilibrium lottery" (Bochet and Maniquet [2010]).

In other words, in order to virtually implement a social choice rule, one constructs

game forms whose equilibrium outcome at every preference profile is a full-support

14A classic literature considers sequential voting by veto with many players (see Mueller [1978],
Moulin [1981], Bloom and Cavanagh [1986a], Bloom and Cavanagh [1986b], Felsenthal and Ma-
chover [1992] and Anbarci [2006]) where each player is assigned a certain number of vetoes to be
distributed freely among the alternatives. See also the rules ok k-names (Barberà and Coelho [2010],
Barberà and Coelho [2017]).

15See also the papers on approval voting with two players as Núñez and Laslier [2015] and Laslier
et al. [2017]. See also Jackson and Sonnenschein [2007] who show that linking decisions (that is, a
common decision on several independent problems) can help overcoming incentive constraints in
Bayesian collective decision problems.
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lottery, arbitrarily close to the outcome prescribed by the social choice rule. This

represents a threat to the relevance of these solutions since it involves that socially

undesirable alternative, even with a small probability, can be selected.

8 Concluding remarks

Strike mechanisms arise as a solution to the two-person implementation problem.

This solution is obtained by altering two key elements of the classic framework: (i)

considering mechanisms that allow in equilibrium pure alternatives and off equilib-

rium lotteries and (ii) restricting efficiency to the ex-post Pareto notion.

Our class of DE mechanisms is a simultaneous version of the dynamic veto mech-

anisms (see Moulin [1981]) which, by allowing off-equilibrium set-valued outcomes,

resolve the unfairness generated by dynamic mechanisms. To see the difference be-

tween our solution and the one based on dynamic veto mechanisms, consider a dy-

namic game that allows player 1 to veto n+1−k alternatives and player 2 to veto k−1

of the remaining k alternatives, where k ∈ {1, . . . ,n+ 1}. At each preference profile �,

the subgame perfect equilibrium outcome of this game is the most preferred alter-

native of player 1 among pvv(�) where v1 = n+ 1− k and v2 = k − 1. In other words,

this dynamic veto mechanism subgame perfect implements a subcorrespondence of

pvv by refining it with respect to the true preference of the first mover. One could

argue that fairness here could be achieved by selecting randomly the first-mover.

Yet, this needs qualification since this randomization prevents some alternatives to

arise as the following example shows. When A = {a,b,c,d,e}, at the preference profile

a �1 b �1 c �1 d �1 e and c �2 b �2 a �2 d �2 e, the dynamic veto mechanism which

gives 2 vetoes to each voter implements, by alternating first movers, either a or c but

excludes b. However, pvv picks all three of a, b and c. Thus, our simultaneous di-

rect veto mechanisms allow for the implementation of the compromise alternative b

whereas their dynamic counterparts fail to do so. This constitutes a strong argument

in favor of using simultaneous mechanisms.

We close by noting three limitations of our analysis. First, it is restricted to Nash
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implementation in pure strategies. Allowing for mixed strategies and exploring the

existence of interesting DE mechanisms for settings with two ore more players seems

to be a promising research avenue (see Mezzetti and Renou [2012]). Second, the set

of implementable SCRs expands if one considers implementation through non-DE

mechanisms. Indeed, as long as BEB holds, the game-form associated to plurality

rule Nash implements the union of tops16 which selects at each preference profile all

alternatives that are top-ranked by at least one player.17 Third, we have considered

implementation through ex-post Pareto efficient DE mechanisms. Other notions of

efficiency are present in the literature such as stochastic dominance. Whether other

SCRs can be Nash implemented through DE mechanisms by considering different

notions of efficiency remains to be explored.
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