Fundamentals and exchange rate forecastability with machine learning methods - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2015

Fundamentals and exchange rate forecastability with machine learning methods

Résumé

Using methods from machine learning -- sequential ridge regression and the exponentially weighted average strategy both with discount factors -- that do not estimate a model but directly output forecasts we show that fundamentals from simple exchange rate models (PPP, UIRP and monetary models) consistently allow to improve exchange rate forecasts for major currencies over the floating period era 1973--2014 at a 1 month forecast and allow to beat the no-change forecast. ``Classic'' fundamentals hence contain useful information about exchange rates even for short forecasting horizons. Such conclusions cannot be obtained when using rolling or recursive OLS regressions as in the literature.
Fichier principal
Vignette du fichier
ExchangeRates_2015_HAL.pdf (3.31 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

halshs-01003914 , version 1 (10-06-2014)
halshs-01003914 , version 2 (12-07-2014)
halshs-01003914 , version 3 (23-04-2015)
halshs-01003914 , version 4 (09-10-2015)
halshs-01003914 , version 5 (21-12-2016)
halshs-01003914 , version 6 (28-05-2018)

Identifiants

  • HAL Id : halshs-01003914 , version 3

Citer

Christophe Amat, Tomasz Michalski, Gilles Stoltz. Fundamentals and exchange rate forecastability with machine learning methods. 2015. ⟨halshs-01003914v3⟩
1043 Consultations
3700 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More