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Abstract: We consider a group or committee that faces a binary decision under 

uncertainty. Each member holds some private information. Members agree 
which decision should be taken in each state of nature, had this been known, 
but they may attach different values to the two types of mistake that may 
occur. Most voting rules have a plethora of uninformative equilibria, and 
informative voting may be incompatible with equilibrium. We analyze an 
anonymous randomized majority rule that has a unique equilibrium. This 
equilibrium is strict, votes are informative, and the equilibrium implements 
the optimal decision with probability one in the limit as the committee size 
goes to infinity. We show that this also holds for the usual majority rule under 
certain perturbations of the behavioral assumptions: (i) a slight preference for 
voting according to one’s conviction, and (ii) transparency and a slight 
preference for esteem. We also show that a slight probability for voting 
mistakes strengthens the incentive for informative voting. 
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1. Introduction

Many important decisions are not taken by individuals but by groups, committees
or electorates. We here analyze a class of such situations. The decision is binary
and there are only two states of nature. All group members agree which decision
is optimal in each state. However, the true state of the world is unknown. Group
members have a common prior probability over states of nature, a prior that may
be based on ex ante public information, such as evidence or expert reports presented
to the whole group or committee. In addition, each committee member also has
some private information, a private “signal” about the true state of nature. Group
members may also differ in their valuations of the costs associates with each of the
two types of mistake that may occur. What decision rule should the group use
in order to aggregate their private information and valuations? How should each
member act under such a group decision rule? What if group members have a slight
preference for acting in accordance with their conviction, even when this may run
against their strategic incentives, and/or care about their individual public esteem in
case individual committee members’ votes become publicly known ex post? What if
there is a positive probability that a group member makes a mistaken voting decision?
These are the questions that we here address, within a stylized and abstract game-
theoretic framework.
The topic is not new. Condorcet’s (1785) so-called jury theorem essentially estab-

lishes that if (a) each member’s information is positively correlated with the true state
of nature (the defendant being innocent or guilty, respectively), (b) distinct members’
information is conditionally independent (given the state of nature), and (c) all jury
members vote according to their own private information only, then aggregation by
way of the majority rule is asymptotically efficient in the sense that the probability
for a mistaken jury decision (convicting an innocent defendant or acquitting a guilty)
tends to zero as the number of jury members goes to infinity.
However, the modern strategic analysis of committee voting, pioneered by Austen-

Smith and Banks (1996), has pointed out a major weakness of the classical result.
While Condorcet’s hypothesis (c) – that jury members base their votes on their own
private information without regard to other jury members’ potential information and
votes–may seem innocuous, a careful game-theoretic analysis shows that such voting
behavior may not be individually rational, even when all members have identical
preferences and never make mistakes. More exactly, Austen-Smith and Banks made
the remarkable discovery that, if the number of voters is large, informative voting
is generically not a Nash equilibrium of a Bayesian game that formally represents
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Condorcet’s setting. The game-theoretic reasoning runs as follows: an individual
vote makes a difference to the outcome only if it is pivotal.1 Hence, as a voter
under majority rule, one should reason as if the other votes were in a tie. But if
the number of votes is large and all the others vote informatively, the (hypothetical)
fact that they are tied is very informative, perhaps “drenching” the individual voter’s
own private information. Under such weak “evidence,” perhaps the individual voter
should not vote according to his or her private information. If the group, committee,
jury or electorate is large enough, this argument against informative voting becomes
overwhelming, for generic probabilities. Consequently, informative voting is then not
a Nash equilibrium and Condorcet’s judgement-aggregation argument fails.
This reasoning builds on the consideration of a low-probability event – the oc-

currence of an exact tie – that, in addition, is non-trivial to compute. Experimen-
tal evidence concerning decision-making in groups suggests that there indeed is a
strategic element in individual voting behavior in small groups, while the standard
strategic-voting model does not very well predict the collective voting outcomes ob-
served in somewhat larger groups, see Guarnaschelli, McKelvey and Palfrey (2000).
This suggests that a voting model should maintain the strategic element but allow for
a richer description of voters’ motives and allow for some degree of bounded rational-
ity. In particular, committee members may have a deontological preference for voting
according to their own conviction (based on their prior and private information),
and/or be concerned about their future esteem in case their individual votes will be
publicly known ex post, and individual members may occasionally make mistaken
voting decisions.
We here generalize the standard strategic-voting model in these three dimensions.

We also analyze a new and alternative voting rule, a slightly randomized majority
rule. We show that under this rule, informative voting is a Nash equilibrium, that this
equilibrium is strict (hence also essential and perfect) and asymptotically efficient in
the sense that it aggregates all information in the limit as the number of committee
members goes to infinity. We also show that, unlike the usual voting rules, this rule
has sincere voting as its unique Nash equilibrium. The above-mentioned variations of
the behavioral hypotheses turn out to play essentially the same technical role as this
variation of the institutional structure. In the standard voting model, the probability

1The notion of a pivotal event for a player is not restricted to voting games; Al-Najjar and
Smorodinsky (2000) defined, in a general setting, the influence of a player in a mechanism as the
maximum difference this player’s action can make to the expected value of a collective result. They
show that, in a precise sense, the mechanisms that maximise the number of influential players are
closely related to majority rule.



Committee Decisions: Optimality and Equilibrium 4

of a tie under sincere voting is small when the number of voters is large. Therefore, the
strategic incentive against sincere voting becomes weak when there are many voters.
Hence, small behavioral or institutional variations easily turn over the negative result
concerning sincere voting in the standard model. By contrast, both Condorcet’s
hypothesis – informative voting – and conclusion – asymptotic efficiency – hold
in strategic voting models that only differ slightly, in terms of institutional and/or
behavioral assumptions, from the standard one.
Before embarking upon our analysis, let us briefly comment on some related re-

search. The two seminal papers on incentives for informative voting are Austen-Smith
and Banks (1996), mentioned above, and Feddersen and Pesendorfer (1996). In the
latter paper, the so-called swing voter’s curse is analyzed. It refers to the follow-
ing phenomenon. If voters, among whom there are partisans for each alternative as
well as non-partisans, are allowed to abstain from voting, then poorly informed non-
partisans may use the following mixed strategy. They probabilistically balance their
votes in such a way that they collectively compensate for the presence of partisan
voters (who support a given candidate in any case) and leave room for the better
informed non-partisan voters. This mixed strategy of poorly informed non-partisan
voters involves abstention with positive probability. By contrast, in the present analy-
sis we do not allow our voters to abstain – this is one of the two senses in which our
model is more relevant for committees than general electorates.
Subsequent theoretical research on committee behavior has mainly concern the

relative merits of different voting rules, see Feddersen and Pesendorfer (1998), and the
role of straw-votes or debates before voting, see Coughlan (2000) and Austen-Smith
and Feddersen (2005). When voters are identical, the picture is very different with and
without debate or straw vote. If voters with identical preferences share their private
information in the debate or straw vote, which they are in certain equilibria, then
votes are unanimous in the decisive vote, and all majoritarian voting rules (including
unanimity) are equivalent, see Gerardi and Yariv (2007). However, in general there is a
plethora of other, uninformative equilibria, and truthful reporting in the straw vote is
incompatible with equilibrium if the committee is sufficiently heterogeneous in terms
of values/preferences. The second sense in which our model concerns committees and
not electorates is that we assume that the number of voters is fixed and known. By
contrast, in general elections, this number is usually unknown by individual voters at
the time of voting. See Myerson (1998), Feddersen and Sandroni (2002) and Krishna
and Morgan (2007) for theoretical models of abstention and electorates of random
size.
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The rest of the paper is organized as follows. In section 2 we dress the table for
the subsequent analysis by way of spelling out the base-line model. Section 3 ana-
lyzes optimality of deterministic and anonymous voting rules. Section 4 is devoted
to equilibrium considerations under diverse majoritarian voting rules, while Section
5 examines a two-stage voting procedure where the first stage is a straw vote. Then
we come to our main results. Section 6 develops a slightly randomized majority rule.
We show that informative voting is the unique Nash equilibrium under this rule, that
it is a strict equilibrium, and that the unique equilibrium outcome is asymptotically
efficient. In section 7 we analyze arguably plausible perturbations of the behavioral
assumptions, such as a slight preference for voting according to one’s conviction, a
slight preference for esteem, and a slight probability of mistakes in voting. In the
case of esteem, we study the incentive effect upon voting behavior of increased trans-
parency – of making individual committee members votes known to the public, and
hence making esteem considerations more important. Section 8 concludes. Mathe-
matical proofs are relegated to an appendix at the end of the paper.

2. The model

2.1. Notation and basic setup. There are n committee members, where n is a
positive integer, n ∈ N. The committee has to make a binary decision, x ∈ {0, 1} =
X. All committee members agree what is the right decision in each state of nature.
However, they do not know the state of nature ω ∈ {0, 1} = Ω. Each committee
member i receives a private “signal” si ∈ {0, 1}, a random variable that is positively
correlated with the true state of nature ω:½

Pr [si = 0 | ω = 0] = q0
Pr [si = 1 | ω = 1] = q1

for q0, q1 > 1/2. Hence, all committee members are “equally competent” in the sense
of having the same conditional probability of receiving the “correct” signal. Signals
received by different committee members are, however, conditionally independent,
given the state of nature. The committee members share a prior belief about the
actual state of nature (prior to the receipt of their private signals). This common
prior may be based in part on a common signal, received by all committee members,
as, for example, in the proceedings during a trial, during a committee hearing, or in
a public debate before a general election.2 Let μ = Pr [ω = 1] be the common prior,
for 0 < μ < 1.

2See Dixit and Weibull (2007) for an analysis of how judgmental polarization can arise among
voters with distinct priors who receive a common signal.
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All committee members agree that the right decision in state ω is x = ω. However,
they may differ in the von Neumann-Morgenstern utilities that they assign to the four
possible decision-state pairs. For each committee member i, these utilities are given
by the following table:

ω = 0 ω = 1
x = 0 ui00 ui01
x = 1 ui10 ui11

(1)

where ui01 = ui11 − αi and ui10 = ui00 − βi for αi, βi > 0. For each committee member
i, these two parameters are the disutilities or “costs” that the committee member
attaches to the two types of mistake, namely, of taking the wrong decision in each
of the two states. A committee member’s von Neumann-Morgenstern utilities may
represent his or her personal values or those of some constituency that the member
represents. We will sometimes refer to the first mistake (decision x = 0 in state
ω = 1) as a mistake of type I (accepting the false hypothesis that the state is 0)
and the second mistake (decision x = 1 in state ω = 0) as a mistake of type II
(rejecting the true hypothesis that the state is 0). For many purposes, the relevant
data about each committee member’s values, as given in (1), can be summarized in
a single number, namely

γi =
μαi

(1− μ)βi
(2)

where γi > 0 follows from our assumptions. Note that γi = 1 if and only if committee
member i attaches the same ex ante expected “cost” to both types of mistake. Before
receiving his or her signal, the probability that a committee member attaches to state
1 is μ and the “cost” of a mistake in that state (a mistake of type I) is αi. Hence,
the ex-ante expected cost of a mistake of type I, according to committee member i’s
values, is μαi. Likewise, the probability attached to state 0 is 1−μ and the “cost” of
a mistake then, that is, of type II, is, in i’s view, βi. Hence, the ex-ante expected cost
of a mistake of type II, according to committee member i, is (1− μ)βi. The summary
parameter γi is the ratio between these two ex-ante expected costs, as evaluated by
committee member i.
When studying asymptotic properties of increasingly large committees, we will

assume that all parameter pairs (αi, βi) belong to the same compact set in the interior
of the positive orthant:

(αi, βi) ∈ Θ = A×B ⊂ R2++ (3)

We will refer to this condition as the (uniform) value-boundedness condition. This
condition is trivially met if all committee members in ever larger committees are
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identical, and it is also met under replication of a given finite preference profile, and
under independent sampling from a fixed probability distribution with support in Θ.
In the base-line setting, each committee member i casts a vote vi ∈ {0, 1}, a

vote which may, but need not, be guided by i’s private signal, and the collective
decision x is determined by way of some pre-specified rule f that maps each vote
profile v = (v1, ..., vn) to a probability f (v) ∈ [0, 1] that the decision will be x = 1.
The probability for decision x = 0 is 1− f (v). Formally, a voting rule is a function
f : ∪n∈N {0, 1}n → [0, 1]. In particular, majority rule is the voting rule f defined
by f (v) = 1 if

Pn
i=1 vi > n/2, f (v) = 0 if

Pn
i=1 vi < n/2 and f (v) = 1/2 other-

wise. A voting strategy for committee member i in the base-line setting is a function
σi : {0, 1} → [0, 1] that maps i0s signal si to a probability σi (si) for a vote vi on
alternative 1: Pr [vi = 1 | si] = σi (si).3 In others words, a voting strategy prescribes
with what probability the committee member will vote for decision alternative 1. We
assume that abstention is not an alternative, so the probability that i will vote on
alternative 0 is 1 − σi (si).4 By a pure voting strategy we mean a strategy σi such
that σi (si) ∈ {0, 1} for both signals si. In this case, vi = σi (si). In the voting
literature, the pure strategy to always vote according to one’s signal, σi (si) ≡ si, is
usually called informative voting, while voting for the alternative that maximizes the
voter’s expected utility, conditional on his or her own signal, and only on that piece
of information, is called sincere voting.

2.2. Condorcet’s jury theorem. Condorcet’s Jury Theorem asserts that if all
committee members vote informatively, then the probability of a mistaken collective
decision under majority rule tends to zero as the committee size tends to infinity. The
result hinges on the assumption that the signals are positively correlated with the
true state and that they are conditionally independent. The result does not explicitly
depend on committee members’ values, since their voting behavior is assumed:

Theorem 1 [Condorcet]. Suppose that all committee members vote informatively
under majority rule. Let Xn (ω) ∈ {0, 1} be the collective decision when there are n
committee members and the true state is ω. Then

lim
n→∞

Pr [Xn (ω) 6= ω] = 0

3We will later analyze behavioral voting strategies under two-stage voting rules.
4In some committees abstention is indeed not permitted while in others it is. We exclude the

latter case for analysitical convenience and brevity.
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2.3. Signal informativeness. A hypothesis in Condorcet’s theorem is thus that
all committee members vote informatively. Clearly, this is not always a reasonable
assumption, not even for n = 1, the case of a single decision-maker. To clarify this
aspect, suppose, that one committee member has been selected to make the decision
single-handedly, based only on his or her private signal. If the signal is noisy and her
prior and valuation of mistake costs favor one alternative over the other, the right
decision may well be to disregard the signal. An application of Bayes’ rule gives the
following posterior probability for state 0 after signal 0 has been received:

Pr [ω = 0 | si = 0] =
(1− μ) Pr [si = 0 | ω = 0]

Pr [si = 0]
=

(1− μ) q0
(1− μ) q0 + μ (1− q1)

and likewise for the signal si = 1. Consequently, the strategy to vote informatively –
when the decision is in i’s hands – is optimal if and only if (1− μ) q0βi ≥ μ (1− q1)αi

and μq1αi ≥ (1− μ) (1− q0)βi, or, equivalently, if and only if (1− q0) /q1 ≤ γi ≤
q0/ (1− q1). We assume henceforth that both inequalities hold strictly for all com-
mittee members:

1− q0
q1

< γi <
q0

1− q1
∀i, (4)

a condition we will refer to as the signal-informativeness condition. It follows from
our assumption q0, q1 > 1/2 that the lower (upper) bound in (4) is below (above)
unity.

3. Optimal voting rules

What voting rules are optimal for the committee? We here briefly consider the opti-
mality of deterministic one-stage voting rules, that is, voting rules f : ∪n∈N {0, 1}n →
{0, 1} that map vote profiles v = (v1, ..., vn) to decisions. As for normative criteria
by which to define optimality, the following two seem most relevant: maximization
of the probability for taking the right decision, or, alternatively, maximization of the
sum of the committee members’ expected (vonNeumann-Morgenstern) utilities from
the decision. While the first criterion does not discriminate between mistakes of type
I and II, the second does, which makes sense in many contexts. For instance, if most
or all members of a jury (hiring committee) consider it a worse error to convict an
innocent (hire an incompetent job candidate) than to acquit a guilty defendant (not
hire a competent job candidate), then it is desirable that the voting rule accounts
for this asymmetry of values. We here focus on this latter, utilitarian criterion.5 We

5This criterion is clearly cardinal in the sense that it is affected by indiviudual linear transforma-
tions of committee members’ vonNeumann-Morgenstern utilities (but not by addition of constants
to these).
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call a deterministic voting rule f (first-best) optimal if, given all committee members’
private information, there exists no other such function that yields higher expected
welfare. Formally, the criterion thus is to maximize

W (f) =
X
i,x,ω

Pr [(x, ω)] · uixω

when x ≡ f (s1, ..., sn). Hence, we evaluate welfare by applying the voting rule f in
question directly to the signal vector, or, equivalently, under (Condorcet’s) hypothesis
that all committee members vote informatively. In other words: a (first-best) optimal
voting rule is an optimal deterministic direct mechanism with no requirement of
incentive-compatibility.6

Of great practical relevance are the majoritarian rules. Formally, let N be the
nonnegative integers and for any k ∈ N ∩ [0, n+ 1], let fk : {0, 1}n → {0, 1} be the
k-majority rule defined by fk (v1, ..., vn) = 1 iff

Pn
i=1 vi ≥ k. For n odd, majority rule

is thus the special case k = (n+ 1) /2. For arbitrary n, k = 1 and k = n are the two
unanimity rules (requiring n votes for decision 0 and 1, respectively), k = 0 the rule
to take decision 1 irrespective of the votes and k = n+ 1 the rule to take decision 0
irrespective of the votes. It is not difficult to verify that if the signal-informativeness
condition (4) holds and a certain k-majority rule is optimal among such rules, then
necessarily 1 ≤ k ≤ n. Moreover, the k-majority rule in question is then optimal
among all deterministic voting rules.7

Hence, without loss of generality we may restrict the quest for optimal rules to
k-majority rules, where 1 ≤ k ≤ n. Since the number n of committee members is
finite, existence of an optimal voting rule is guaranteed. The following result provides
a necessary and sufficient condition for optimality. Let

ᾱ (n) =
1

n

nX
i=1

αi, β̄ (n) =
1

n

nX
i=1

βi and γ̄ (n) =
μᾱ (n)

(1− μ) β̄ (n)
.

6Using another definition of collective welfare, Chwe (2007) analyzes which deterministic voting
rule maximizes welfare under the constraint that voters should have no incentive to vote insincerely.
The optimal voting rule is then non-monotonic (a large majority in favor of one alternative leads to
the adoption of the opposite decision) and under this rule all voters are indifferent between sincere
and insincere voting.

7To see this, suppose that f : {0, 1}n → {0, 1} is optimal. Since all voters’ signals have the same
precision, there exists some symmetric function g : {0, 1}n → {0, 1} such that W (g) =W (f). Then
g (s1, ..., sn) is a function h of the signal sum

P
si. Since f maximizes W , so does g, and then h

has to be increasing, since q0, q1 > 1/2 by assumption; nothing can be gained by disregarding a
signal. Since h is increasing, g is a k-majority rule for some k ∈ {0, 1, ..., n, n+ 1}. If the signal
informativeness condition (4) holds strictly, and αi, βi > 0, it is never optimal to disregard all
signals, so then k ∈ {1, ..., n}.
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The parameter pair
¡
ᾱ (n) , β̄ (n)

¢
can be though of as the values of a (synthetic)

representative voter. For arbitrary positive integers n and k, let

g (k, n) =

∙
(1− q0) (1− q1)

q0q1

¸kµ
q0

1− q1

¶n

and note that the factor in square brackets is less than 1 while the factor in round
brackets exceeds 1. Hence. g (k, n) is decreasing in k and increasing in n. The
following result characterizes the optimal voting rule, for a given committee, in terms
of its representative voter:8

Theorem 2. Suppose that the signal-informativeness condition (4) holds. For any
positive n ∈ N and k ∈ N ∩ [1, n], k-majority rule is optimal among all deterministic
voting rules if and only if

g (k, n) ≤ γ̄ (n) ≤ g (k − 1, n) . (5)

For n odd, majority rule is deterministic and corresponds to k = (n+ 1) /2.
Hence, by (5), majority rule is optimal if and only if

1− q0
q1

∙
q0 (1− q0)

(1− q1) q1

¸n−1
2

≤ γ̄ (n) ≤ q0
1− q1

∙
q0 (1− q0)

(1− q1) q1

¸n−1
2

(6)

In the special case of equally precise signals, q0 = q1, the factor in square brackets
is 1, and then (6) follows from the signal informativeness condition (4).9 In sum,
irrespective of the committee members’ values:10

Corollary 1. Majority rule is optimal whenever n is odd and q0 = q1.

Consider a sequence of committees of ever larger size n = 1, 2..., all with the same
signal precisions q0 and q1, for arbitrary q0, q1 ∈ (1/2, 1] and assume that the value-
boundedness condition (3) holds. For each positive integer n, let k∗ (n) be optimal,
and write ρ∗ (n) for k∗ (n) /n, the optimal vote ratio.11 It is not difficult to verify that
ρ∗ (n) converges as the committee size n goes to infinity, and, perhaps surprisingly,

8Note that q0/ (1− q1) ≤ g (0, n) < g (n, n) ≤ (1− q0) /q1. Hence, if the signal-informativeness
condition (4) holds, then condition (5) below holds for some k ∈ {1, ..., n}.

9By (4): (1− μ)βi (1− q0) /q1 ≤ μαi ≤ (1− μ)βiq0/ (1− q1) for all i. Addition of these n
inequalities implies (6).
10The same result is obtained within a different model framework in Sah and Stiglitz (1988).
11Generically, k∗ (n) is unique.
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that the limit is independent of the committee members’ values/preferences, as long
as these meet the value-boundedness condition: the limit of ρ∗ (n), as n tends to
infinity, then depends only on the precision of the two signals. In particular, the limit
value is 1/2 if the two signals are equally precise. In other words, as a special case we
obtain that majority rule is optimal for large committees or electorates, independently
of voters’ preferences, as long as their two signals are equally precise. Moreover, by
continuity, this holds approximately for approximately equally precise signals.

Corollary 2. Suppose that the signal-informativeness condition (4) and the value-
boundedness condition (3) hold. For any q0, q1 ∈

¡
1
2
, 1
¤
:

1− q0 ≤ lim
n→∞

ρ∗ (n) =
ln
³

q0
1−q1

´
ln
³

q0
1−q1

´
+ ln

³
q1
1−q0

´ ≤ q1 (7)

The reason why the optimal voting rule is asymptotically independent of commit-
tee members’ values is, roughly, that for large committees the probability of a mistake
is vanishingly small. It turns out that all that matters is the relative precision of the
two signals, captured by the two parameters q0 and q1. To see this, suppose that, for
a given committee size n, a certain k-majority rule fk is optimal: k∗ (n) = k. Then
we necessarily have W

¡
fk
¢
≥ W

¡
fk+1

¢
, that is, it should not be welfare improving

to instead use the (k + 1)-majority rule. Let N1 be the (random) number of signals 1
among the n signals received. Comparing voting rules fk and fk+1, it is clear that the
first is (weakly) better than the second if and only if it is better when N1 = k, this
being the only event in which the two voting rules differ. Moreover, if N1 = k, then
fk is (weakly) better than fk+1 if and only if erring under voting rule fk+1 (taking
decision 0 when the state is 1) incurs no smaller social cost than erring under fk

(taking decision 1 when the state is 0), which amounts to the inequality

ᾱ (n) Pr [N1 = k | ω = 1] ≥ β̄ (n) Pr [N1 = k | ω = 0] .

For very large n and proportionately large k, k = k∗ (n) ≈ ρ∗ (n)n, the ratio between
the probabilities either tends to zero or to plus infinity (since q0, q1 > 1/2). However,
the ratio γ̄ (n) = ᾱ (n) /β̄ (n) is by hypothesis bounded away from zero and plus
infinity (uniformly in n). Hence, asymptotically, it does not matter exactly what
values the parameters γ̄ (n) take, as long as they all belong to a bounded interval
of positive numbers. Consequently, the limit ratio ρ∗ (n) does not depend on the
committee members’ values. (See appendix for a formal proof.)
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4. Equilibrium

Suppose that the collective decision is to be taken according to k-majority rule among
n committee members, for some positive integer k ≤ n, and as described above. This
k may be, but need not be optimal. Is sincere voting then a Nash equilibrium?
In force of the signal informativeness condition (4), sincere voting is identical with
informative voting, and we will use these two attributes interchangeably. In this
voting game, each voter i first observes her private signal and then casts her vote
vi ∈ {0, 1}, simultaneously with all other voters. The collective decision x = 1 results
if at least k voters cast the vote 1, while the collective decision x = 0 results in the
opposite case.
In Nash equilibrium, each voter maximizes his or her expected utility, given his or

her private signal, and given all other voters’ strategies. Clearly, there is a plethora
of (pure and mixed) uninformative Nash equilibria whenever n ≥ 3. For example,
to always vote 0 (or 1), independently of one’s private signal, constitutes a Nash
equilibrium. For if others vote according to such a strategy, then my vote will never be
pivotal and hence I can just as well use the same uninformative voting strategy as the
others. Under what conditions, if any, will sincere voting constitute an equilibrium?

Theorem 3. Suppose that the signal-informativeness condition (4) is met. For any
positive integers n and k with 1 ≤ k ≤ n, sincere voting under k-majority rule
constitutes a Nash equilibrium if and only if

g (k, n) ≤ γi ≤ g (k − 1, n) ∀i (8)

Some remarks are in place. First, if committee members have identical values,
then conditions (8) and (5) are identical. Hence, in this special case, a k-majority
rule is optimal (for a committee of given size n) if and only if sincere voting under
this rule is a Nash equilibrium. This was first proved by Austen-Smith and Banks
(1996, Lemma 2), see also Costinot and Kartik (2006) for more findings under the
same hypothesis of ex ante identical committee members. Secondly, for k = n = 1–
the case of a single decision-maker – condition (8) is, as one would expect, identical
with the signal informativeness condition (4).
Thirdly, if n is odd and k = (n + 1)/2 – majority rule – then (8) coincides

with the weak-inequality version of (4) when q0 = q1. Hence, for n odd and equally
informative signals, sincere voting is a Nash equilibrium under majority rule, irre-
spective of individual valuations γi, as long as these meet condition (4). This is .not
surprising, since in the knife-edge case of equally precise signals, a tie among an even
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number of other votes does not affect the odds for one state over the other.12 Generi-
cally, however, q0 and q1 are not identical.13 Suppose, thus, that q0 6= q1 and consider
majority rule in a committee with an odd number of members. Condition (8) then
becomes

1− q0
q1

∙
q0 (1− q0)

(1− q1) q1

¸n−1
2

≤ γi ≤
q0

1− q1

∙
q0 (1− q0)

(1− q1) q1

¸n−1
2

∀i (9)

If q0 and q1 differ even the slightest, then the factor in square brackets is distinct from
unity. Hence, as n tends to infinity, this factor either converges to zero (if q0 > q1) or
to plus infinity (if q0 < q1). Inevitably, for any given positive γi-value, one of the two
inequalities in (8) is thus violated for all n sufficiently large. We have obtained the
following slight generalization of Theorem 1 in Austen-Smith and Banks (1996):14

Corollary 3. Suppose that q0 6= q1. For any positive sequence (γi)i∈N there exists
an n0 ∈ N such that sincere voting is a Nash equilibrium under majority rule for no
n ≥ n0.

This result is intuitively plausible. For suppose that state 0 is more likely to give
rise to signal value 0 than state 1 is likely to give rise to signal value 1, that is, q0 > q1.
In such a case, signal 0 is less informative than signal 1 in the sense that signal 0 is
more likely in state 1 than signal 1 is in state 0. If n is large, a tie among the others
is then quite a strong indication of state 1, even if a voter’s own signal is 0, since in
total there are just about as many signals 0 as signals 1, quite an unlikely event in
state 0. Hence, even if I, as a voter, believed that the others vote sincerely, I should
nevertheless vote on alternative 1, irrespective of my own signal.

Remark 1. The corollary can also be explained in terms of Corollary 2: If q0 6= q1,
then majority rule is not asymptotically optimal. Hence, by Theorem 3 there exists
a committee size n0 beyond which sincere voting is not a Nash equilibrium.

We finally explore the relations between (i) optimality of a voting rule and (ii)
sincere voting being an equilibrium under a voting rule. It follows immediately from
Theorems 2 and 3 that if sincere voting is a Nash equilibrium under some k-majority

12Then Pr [ω = 0 | T ∧ si = 0] = Pr [ω = 0 | si = 0] and likewise for ω = si = 1.
13The probability that an innocent defendant will appear innocent may well be different from the

probability that a guilty defendant will appear guilty, and the same can be said about signals for
good and bad investment opportunities or for differnt states of a market or whole economy.
14Their result concerns the special case α1 = α2 = ... = αn = β1 = β2 = ... = βn.
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rule, then this rule is optimal. What about the converse? We already noted that the
converse holds if committee members have identical values. What if they do not?
We proceed to show that if a k-majority rule is optimal, then sincere voting is an
equilibrium under this rule for sufficiently homogenous committees. To this end, it
is useful to first ask which collective decision x ∈ {0, 1} individual i then would like
to see taken, if i had known the total number N1 of signals 1 received among all
committee members. As shown in the appendix, voter i will deem decision x = 1 to
be better than decision x = 0 if and only if :

Pr[N1 | ω = 0] ≤ γi Pr[N1 | ω = 1] (10)

(The condition is self-evident in the special case when γi = 1.) After some algebraic
manipulation, this condition can be re-written as N1 ≥ λi, where

λi =
n ln q0

1−q1 − ln γi
ln q0

1−q1 + ln
q1
1−q0

(11)

We note that both terms in the denominator are positive and that the critical value λi
decreases with γi. Without loss of generality we may assume that γ1 ≤ γ2 ≤ .. ≤ γn
and hence λ1 ≥ λ2 ≥ .. . ≥ λn. For generic parameter values q0, q1 and γi, the
parameters λi are not integers. We here focus on this generic case. We will call
λi ∈ R the threshold of i; voter i needs more than λi signals 1 to prefer decision 1
(in the jury case, a “guilty” verdict). Write mi = bλic + 1 for the smallest integer
exceeding λi. Committee member i thus prefers decision 1 (over decision 0) if and
only if the number of signals 1 is at leastmi ∈ N. We call the committee homogeneous
if these integer thresholds are the same for all members,

mi = mj ∀i, j (12)

while otherwise the committee will be called heterogeneous.15

Proposition 1. If sincere voting is a Nash equilibrium under k-majority rule, then k-
majority rule is optimal. Conversely, if k-majority rule is optimal and the committee
is homogeneous, then sincere voting under this rule is a Nash equilibrium.

15A committee is thus heterogeneous if λ1 > bλm+1c+ 1 or λn < bλm+1c or both.
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5. Straw vote

It is plausible that communication before voting can probabilistically improve the
outcome when the committee is homogenous, since then no member has an incentive
to misreport his or her private information. Coughlan (2000) considers the following
two-stage voting procedure. In stage one, all committee members simultaneously
report their private signals to a “center.” These reports may be truthful or false. The
total counts of reported zeros and ones are made public to the whole committee. In
stage two, there is simultaneous voting under some k-majority rule as described above,
but now with the total number of reports of each type being common knowledge.
Coughlin shows that under such a straw vote procedure, truthful revelation of one’s
signal in the communication stage is compatible with sequential equilibrium if voters
are ex ante identical. However, this is but one of a plethora of equilibria, many of
which are uninformative. For example, even if everyone sends truthful reports, it
is optimal to vote on alternative 0 irrespective of the information available, if all
others to do likewise. Moreover, as Coughlan (2000) shows, truthful reporting is
not compatible with equilibrium if the committee is heterogeneous in terms of values.
Members with extreme values will truthfully report their information only if it “points
in the right direction.”
We here generalize Coughlan’s result, in the special case of majority rule. Consider

a committee consisting of an arbitrary odd number n of committee members. Without
loss of generality, suppose again that γ1 ≤ γ2 ≤ ... ≤ γn. For each committee member
i, let λi be as defined in equation (11). We will call committee member i = (n+ 1) /2
the median voter – this is the committee member who has equally many committee
members on her “left” (in the weak sense) as on her “right” (in the weak sense) on
the value scale. Let si be the signal received by committee member i. Denote by
ti ∈ {0, 1} the straw vote of i in stage one of this voting mechanism (abstentions not
allowed) and call these votes reports. Let the random variable N1 be the number of
reports “1” in the first stage: N1 =

Pn
i=1 ti. In the second stage, the committee votes

again, now “for real,” and the collective decision x is taken according to majority
rule. The vote cast by individual i at this second stage is denoted vi. When deciding
which vote to cast, voter i knows her own private signal si and report ti, as well
as the realization of N1. Hence, a pure strategy for each committee member i is a
pair (τ i, σ̃i), where τ i : {0, 1} → {0, 1} assigns a report ti = τ i (si) to each signal si
received, and σ̃i : {0, 1}2 ×{0, 1, 2, ..., n}→ {0, 1} assigns a vote vi = σ̃i (si, ti, Ni) to
each own signal si received, own report ti delivered, and observed count N1 of reports
“1” in the straw vote. Is truthful reporting compatible with sequential equilibrium?
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Proposition 2. Let n be odd and suppose that λ(n+1)/2 /∈ N. Truthful reporting in
the straw vote is compatible with sequential equilibrium if and only if the committee
is homogeneous.

The same result, for the special case q0 = q1, can be found in Coughlan (2000),
who also considers other majoritarian voting rules.

6. Randomized majority rule

Consider first the voting rule according to which all n members of the committee
simultaneously cast their votes, whereafter a random sample of n0 ≤ n of these votes
is drawn and the collective decision is made by way of some k-majority rule applied
to this random sample of size n0. If each vote has a fixed positive probability of being
sampled and the sample size n0 is small enough, then we know from the preceding
analysis that sincere voting will be a Nash equilibrium. More precisely, consider a
committee of nmembers for which the signal informativeness condition (4) holds. Let
the positive integer n∗ ≤ n be maximal with the property that condition (8) holds for
all subsets of the committee of sizes n0 ≤ n∗ (with n0 in the place of n in (8)). From
the signal-informativeness condition it follows that such an integer n∗ ≥ 1 exists. Let
f∗ be the randomized voting rule according to which all n committee members vote
simultaneously and the collective decision x is determined by majority rule applied
to a sample of odd size n0 ≤ min {n∗, n} of these votes, the sample being drawn at
random from among all subsets of size n0, with equal probability for each such subset.
Assume that the sample draw is statistically independent of the state of nature and of
the signals and votes. The following observation follows immediately from Theorem
3:

Corollary 4. Sincere voting is a Nash equilibrium under voting rule f∗.

An evident drawback of this anonymous voting rule is that it does not aggregate
the private information in an efficient way when n is large, since the sample size may
remain bounded even if n increases. Hence, the collective decision under f∗ may
remain bounded away from full informational efficiency when n → +∞. However,
there is a straight-forward remedy: combine this randomized majority rule with the
usual majority rule. Instead of always letting a randomly selected subset of votes
determine the collective decision, use a binary randomization device to determine
whether the collective decision x be determined by the majority of the random sample
or by the majority of all n votes. Under this doubly randomized majority rule,
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Condorcet’s claim can be restored: if the binary randomization device is carefully
calibrated, the collective decision will be correct with probability one in equilibrium
in the limit as the committee size n tends to infinity. Moreover, we will show that,
for every committee size n, this equilibrium is strict and unique. As is well known
from analyses of other voting mechanisms, uniqueness is not trivial to obtain. The
following example shows that this is also true for the present mechanism; even if the
probability for random delegation is large enough to render sincere voting a (strict)
Nash equilibrium, there may still exist other, less informative, equilibria.

Example 1. Consider a committee with three members with a uniform prior, μ =
1/2, equally precise signals, q0 = q1 = q, distinct values, γ1 = 1/c, γ2 = 1 and γ3 = c

for some c > 1, such that the signal-informativness condition (4) is strictly met for
all committee members. Since the two signals are equally precise, sincere voting is
a strict Nash equilibrium under majority rule. Consider the following randomized
majority rule: with probability 1− ε the decision is made according to majority rule,
with probability ε it is delegated to h = 1 of the individual votes. Since an increase
in ε enhances all voters’ incentive for sincere voting, sincere voting is a strict Nash
equilibrium for all ε ∈ [0, 1]. However, for certain values of ε, there also exists a mixed
equilibrium in which (a) voter 1 votes sincerely for sure when receiving signal 0 and
with probability x when receiving signal 1, (b) voter 2 always votes sincerely, and (c)
voter 3 votes sincerely for sure when receiving signal 1 and with probability y when
receiving signal 0. The probability y should render voter 1 indifferent when receiving
signal 1 and the probability x should render voter 3 indifferent when receiving signal
0. It is not difficult to verify that this amounts to the following requirements:

x =
3 (1− ε) (c− 1) q (1− q)− ε [(c+ 1) q − c]

3 (1− ε) (c+ 1) (2q − 1) (1− q) q

y =
3 (1− ε) (c− 1) q (1− q)− ε [(c+ 1) q − 1]

3 (1− ε) (c+ 1) (2q − 1) (1− q) q

For instance, for c = 2, q = 0.7 and ε = 0.2 we obtain and x∗ ≈ 0.80026 and
y∗ ≈ 0.46958, a Nash equilibrium in which the “extreme” voters 1 and 3 randomize.
We also note that the mixed equilibrium exists (0 < x, y < 1) if and only if ε is
sufficiently small:

ε <
3 (c− 1) q (1− q)

3 (c− 1) q (1− q) + (c+ 1) q − 1 .

In particular, for c = 2 and q = 0.7, the upper bound on ε is approximately 0.36.
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For the sake of definiteness and ease of notation, we establish the claimed result
for the special case of majority rule, n odd and n0 = 1. For any committee with
an odd number n of members: let all votes be cast simultaneously, and then, with
a pre-specified (and by the voters known) probability, the decision is either taken
according to majority rule, applied to all n votes, or, alternatively, according to a
randomly drawn single vote. Let 1 − εn be the probability for the first event and
εn the probability for the second. These probabilities are known by all committee
members when they cast their votes. Denote by f ε such a doubly randomized voting
rule for committees with odd numbers of members, for any sequence ε = (εn)n∈N with
0 ≤ εn ≤ 1 for all n ∈ N.
We first investigate the condition on the delegation probability εn for sincere

voting to be a Nash equilibrium under such a voting rule f ε, for a given committee
size n. Suppose that committee member i has received the signal si = 0. Denote
by ∆uεni the difference in expected utility, for that member, when casting the sincere
vote vi = 0 rather than the insincere vote vi = 1. Committee member i will become
the “ex-post dictator” with probability εn/n, while majority rule will be applied to
all n votes with probability 1− εn. If another committee member’s vote is sampled,
then i’s vote does not matter. It follows from the proof of Theorem 3 in the appendix
that:16

∆u
ε2m+1
i =

εn
n

(1− μ) q0βi − μ (1− q1)αi

(1− μ) q0 + μ (1− q1)
+ (13)

+(1− εn)

µ
2m

m

¶
(1− μ) qm+10 (1− q0)

m βi − μqm1 (1− q1)
m+1 αi

(1− μ) q0 + μ (1− q1)

The first term on the right-hand side – the probability that i’s vote is randomly
sampled times the conditionally expected utility difference when this happens – is
non-negative if and only if γi ≤ q0/ (1− q1). The corresponding inequality for signal
1 is γi ≥ (1− q0) /q1. As expected, both inequalities are satisfied (strictly) under the
signal-informativeness condition (4). It follows that ∆uεni is positive for all εn < 1

close enough to 1. Moreover, for εn fixed, it is not difficult to show that the second
term on the right-hand side – the probability that majority rule will be applied to all
n = 2m+1 votes times the conditional utility difference when this happens – tends
to zero as n tends to infinity. This is not surprising since the probability for a tie
tends to zero and the utilities in question are bounded. Under our value boundedness
condition (3), this can be shown to hold uniformly for all i (see Appendix). Hence,

16Set n = 2m+ 1 and k − 1 = m in equation (17).
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εn can be made small when n is large (and odd). The incentive for voting sincerely
is then strict, so sincere voting is in fact a strict Nash equilibrium. In general, there
may exist other Nash equilibria, along with this strict one, as we saw in Example 1
above. However, if εn is not reduced too fast as n increases, then it can be proved that
the strict and informative equilibrium is unique: no other Nash equilibrium, neither
pure nor mixed, then exists.
In the appendix we prove these claims under the hypothesis that the signal infor-

mativeness condition is uniformly met in the sense that there exists some η < 1 such
that

1− q0
ηq1

< γi <
ηq0
1− q1

∀i (14)

Theorem 4. Suppose that the value-boundedness condition (3) holds and that the
signal-informativeness condition is uniformly met. There exist a sequence of positive
ε̄n → 0 such that for any voting rule f ε with εn ≥ ε̄n for all odd n ∈ N:
(i) sincere voting is a strict Nash equilibrium
(ii) there exists no other Nash equilibrium.

In force of this result, the claim in Condorcet’s jury theorem is valid for a suitably
specified sequence of doubly randomized majority rules. For each committee size n,
let the probability for random delegation to a single vote, εn, remain above the critical
threshold value ε̄n so that sincere voting is the unique Nash equilibrium. Since the
threshold ε̄n decreases to zero as the committee increases in size, we may also let
the randomization probability εn tend to zero, thereby reducing the informational
inefficiency asymptotically to zero. Formally, let (εn)n∈N be any sequence of positive
numbers tending to zero, such that εn ≥ ε̄n for all n, where (ε̄n)n∈N satisfies Theorem
4. The associated sequence of randomized voting rules, (f εn)n∈N, is asymptotically
efficient:

Corollary 5. Suppose that the value-boundedness condition (3) holds and that the
signal-informativeness condition is uniformly met. Let Xn ∈ {0, 1} be the committee
decision under a voting rule f εn such as just described, for each n ∈ N. Then

lim
n→∞

Pr [Xn 6= ω] = 0

Remark 2. Although sincere voting is a strict and unique Nash equilibrium for all
n and ε ≥ ε̄n under the hypotheses of the corollary, sincere voting is not a dominant
strategy for all such n and ε. We show this in five steps. First, for any voter



Committee Decisions: Optimality and Equilibrium 20

type (α, β) ∈ Θ, let k∗ (α, β) ∈ N be the minimal k ∈ N such that the conditional
expected utility to a committe member of type (α, β) from decision x = 1 is higher
than from decision x = 0, conditional upon k signals 1 and 1 signal 0. Let k∗ =
max(α,β)∈Θ k

∗ (α, β). Since Θ is compact with positive lower bounds, k∗ ∈ N. Second,
fix k ≥ k∗ and, consider committees of odd sizes n such that (n − 1)/2 > k. For
each such n, consider any committee member i and let σ̃n,k−i be the following strategy
combination for the others: (n−1)/2 of them always vote 0, (n−1)/2−k always vote
1, and the remaining k voters vote sincerely. Third, according to the voting rule f ε,
committee member’s vote is decisive with probability ε/n and pivotal with probability
(1− ε) p, where p is the probability for a tie among the other n − 1 votes. Under
σ̃n,k−i , p is the probability that the k sincere voters all receive signal 1, a probability
that depends on k but not on n (as long as (n − 1)/2 > k). Under σ̃n,k−i , i being
pivotal is thus a strong indication that the state of nature is ω = 1, so strong that
the conditionally expected utility, given that i is pivotal, is maximized when i votes
1 irrespective of his or her own signal. Fourth, by continuity there exists an ε̃n > 0

such that, against σ̃n,k−i , always voting 1 is a better reply for i than voting sincerely,
for all ε ∈ (0, ε̃n). Moreover, ε̃n is increasing in n. Fifth, and finally: there exists a
n∗ ∈ N such that ε̄n < ε̃n for all n ≥ n∗. For each ε ∈ (ε̄n, ε̃n), voting on alternative
1 irrespective of i’s signal is a better reply for i, against σ̃n,k−i , than sincere voting.
Hence, for such n and ε, sincere voting is not a dominant strategy or voter i under
f ε.

Remark 3. We conclude by noting that claim (i) in Theorem 4 holds also under
incomplete information concerning committee members’s values. Suppose, thus, that
there is a probability measure νn on R2n+ , for each n ∈ N, such that, for each com-
mittee size n, “nature” first draws the value vector θ = h(α1, β1) , ..., (αn, βn)i ∈ R2n+
according to νn, whereafter each committee member i gets to know his or her own
value pair (αi, βi), and then the above voting game is played. If there exists a η < 1
such that (14) holds with probability one for all n, then sincere voting is a sequential
equilibrium; other committee members’ values are irrelevant for a committee mem-
ber’s voting decision when all others vote informatively. In order to know the expected
utility associated with each of i’s four pure local strategies, given her value pair, i
only needs to know everybody’s signal precisions (which are taken to be commonly
known and the same for all committee members, q0 and q1, respectively).
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7. Perturbing the behavioral assumptions

7.1. A slight preference for sincerity. Suppose that committee members have
a slight preference for voting according to their personal conviction. In addition to
the expected utility from the collective decision, such a committee member i receives
additional (psychological) utility if he or she votes on the alternative that – given
the member’s values αi and βi, prior μ and signal si– is the right alternative. Such
voters are not “irrational,” it is only that they also care (a bit) about the sincer-
ity of their own vote. (Most humans arguably feel some discomfort when acting
against their personal conviction.) How are the above results affected, if at all, if
all committee member have a slight preference for sincerity per se? We maintain
the signal-informativeness condition (4) and focus on majority rule. Suppose that
each committee member i who receives the signal 0 obtains additional utility δ0i > 0
from voting 0, and likewise if the committee member receives the signal 1. For any
odd committee size n, the expected utility difference between voting 0 and 1, for a
committee member i who has received the signal 0, now is:

∆u0i = δ0i +

µ
n− 1

(n− 1) /2

¶
(1− μ) q

n+1
2

0 (1− q0)
n−1
2 βi − μq

n−1
2

1 (1− q1)
n+1
2 αi

(1− μ) q0 + μ (1− q1)
(15)

and likewise when the same committee member has received the signal 1. Clearly,
sincere voting is a Nash equilibrium for all δ0i , δ

1
i > 0 sufficiently large. Moreover, if

there exists a positive lower bound δ on all δ0i and δ1i , then sincere voting is a Nash
equilibrium granted n is large enough, since the probability for a tie under sincere
voting goes to zero as n → +∞ and hence the strategic incentive against sincere
voting vanishes asymptotically as the size of the committee tends to infinity. In this
sense, the negative result in Corollary 2 is not robust. The reason for this non-
robustness is that the second term in (15) tends to zero as n tends to plus infinity.
Hence, no matter how small δ0i > 0 is, ∆u0i is positive for n large enough, and likewise
for the expected utility difference between voting 1 and 0 for voters who have received
the signal 1.
More generally, consider a sequence of committees with ever larger size n, such that

the value-boundedness condition (3) holds and the signal informativeness condition
is uniformly met. The utility from sincere voting may depend on the committee size.
In order to allow for this possibility, let δ0i,n and δ

1
i,n be positive for each member i and

committee size n. Granted these parameter values do not decrease too fast with n,
informative voting is a strict Nash equilibrium, and it is the unique Nash equilibrium
for each committee size n. In particular, the whole plethora of uninformative Nash
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equilibria that exist in the standard voting model in sections 4 and 5 vanishes:

Theorem 5. Suppose that the value-boundedness condition (3) holds and the signal-
informativeness condition is uniformly met. There exist a sequence of positive num-
bers δ̄n → 0 such that for each n ∈ N, if δ0i,n, δ1i,n ≥ δ̄n for all i ∈ {1, ..., n}:
(i) sincere voting is a strict Nash equilibrium
(ii) there exists no other Nash equilibrium.

The claim in Condorcet’s jury theorem thus holds for rational and strategically
voting committee members when these have a slight preference for sincerity:

Corollary 6. Suppose that the value-boundedness condition (3) holds, that the
signal-informativeness condition is uniformly met, and that δ0i,n, δ

1
i,n ≥ δ̄n > 0 for

all n ∈ N and i ∈ {1, ..., n}. Let Xn (ω) ∈ {0, 1} be the collective decision in pure-
strategy Nash equilibrium under majority rule with n voters. Then

lim
n→∞

Pr [Xn (ω) 6= ω] = 0.

The following example illustrates the possibility of a mixed Nash equilibrium when
the preference for sincerity is not strong enough.

Example 2. Consider a committee, similar to that in Example 1, with three mem-
bers with a uniform prior, μ = 1/2, equally precise signals, q0 = q1 = q, distinct
values, γ1 = 1/c, γ2 = 1 and γ3 = c for some c > 1, and an equally strong preference
for sincerity, δ0i = δ1i = δ ≥ 0 for i = 1, 2, 3, such that the signal-informativeness con-
dition is met for all committee members. Since the two signals are equally precise,
sincere voting is then a Nash equilibrium under majority rule, for all δ ≥ 0. However,
there may also exist a mixed (anti-symmetric) equilibrium in which (a) voter 1 votes
sincerely when receiving signal 0 and votes sincerely with probability x when receiv-
ing signal 1, (b) voter 2 always votes sincerely, and (c) voter 3 votes sincerely when
receiving signal 1 and votes sincerely with probability x when receiving signal 0. Does
there exist an x ∈ (0, 1) for which this constitutes a Nash equilibrium? The probabil-
ity x should render voter 1 indifferent when receiving signal 1 and voter 3 indifferent
when receiving signal 0. It is not difficult to show that the “anti-symmetry‚ of val-
ues makes these two indifference conditions coincide and boil down to the following
equation:

x =
q (c− 1) (1− q)− δ

(c+ 1) (2q − 1) (1− q) q
(16)
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For example, for q = 0.8, δ = 0.1 and c = 2, the signal-informativeness condition
is met and we obtain x ≈ 0.31. More generally, the equilibrium randomization x

is decreasing in δ, the preference for sincerity. For δ ≥ q (c− 1) (1− q), no mixed
equilibrium of this sort exists. For example, for q = 0.8 and c = 2 this is true for all
δ ≥ 0.16.

How are the other results for the standard model affected if committee members
have a slight preference for sincerity? Condorcet’s original result, Theorem 1 is clearly
unaffected, since it presumes sincere voting. The characterization of optimal voting
rules in Theorem 2 is also unaffected. By contrast, our characterization of when
sincere voting is an equilibrium, Theorem 3, is affected. With a slight preference for
sincerity, condition (8) is still sufficient for sincere voting to be an equilibrium, but
it is no longer necessary. Because committee members with a (slight) preference for
sincerity have a (slightly) stronger incentive to vote sincerely and hence sincere voting
may be an equilibrium even when condition (8) is violated. By the same token, the
negative result in Corollary 3 no longer holds up without qualification. Its validity
hinges on the how the preference for sincerity depends on the size of the committee.
If it decreases very fast, then the claim in the corollary holds up, while if it does not
decrease too fast, then the claim in the corollary does not hold (the latter follows
from Theorem 5). The first half of proposition 1 – the implication from equilibrium
to optimality – is not generally valid when committee member have a preference for
sincerity, but the second half of the proposition – the implication from optimality to
equilibrium – holds a fortiori. Likewise, only half of the result concerning the straw
vote procedure, Proposition 2, holds up when committee members have a preference
for sincerity. Homogeneous committees will still report truthfully in the straw votes,
but members of a heterogeneous committee may do so too; they have to balance their
strategic motive to not report truthfully against their disutility from false (insincere)
reporting. The positive result for randomized majority rules, Theorem 4 and its
corollary, hold a fortiori if committee members have a preference for sincerity.

7.2. Transparency and a slight concern for esteem. Another important
source for motivation is esteem: self-esteem, esteem by peers (here the other com-
mittee members) and/or by society at large.17 This motive may become stronger the
more transparent the committee’s decisions are. Indeed, some central banks (Bank
of England and the Sveriges Riksbank, for instance) have in recent years introduced

17We are grateful to Torsten Persson for pointing out this possibility.



Committee Decisions: Optimality and Equilibrium 24

transparency rules whereby individual board members’ votes are made public after-
wards. Hence, individual votes can after some time be evaluated against the backdrop
of later incoming information about the economy’s true state in the period in ques-
tion. A board member who’s vote, with hindsight, appears to have been correct
(wrong) may enhance (diminish) that member’s public esteem.18 With increased
transparency, anticipation of the possibility of state revelation may influence voting
incentives. See Gersbach and Hahn (2008), Hahn (2008) and Swank, Swank and
Visser (2008) for studies of the effects of increased transparency on decision-making
in central banks. We here sketch how transparency and such concerns for esteem can
be incorporated in the present model.
In each state of nature ω, let τω ∈ [0, 1] be the probability that both the true

state of nature and all committee members’ votes will become publicly known af-
ter the decision has been made. An increase in τ 0 and τ 1 thus represents increased
transparency. Arguably, being a committee member who voted for the ex-post right
decision, when other committee members were erring, may enhance the committee
member’s esteem in the general public. Similarly, some social stigma may be at-
tached to an ex-post mistaken vote when other committee members voted for the
ex-post correct decision. Let ρ+i (ω, k/ (n− 1)) > 0 be the additional esteem-utility
for committee member i for having voted correctly in state ω, when k of the n − 1
other committee members voted correctly (in a committee of size n). Likewise, let
ρ−i (ω, k/ (n− 1)) > 0 be the stigma-disutility for committee member i for having
voted incorrectly in state ω, when k of the n − 1 other committee members voted
correctly. Arguably, ρ+i (ω, k/ (n− 1)) is decreasing and ρ−i (ω, k/ (n− 1)) increasing,
in the second argument, the share of correct votes.
The expected additional utility from voting sincerely (vi = 0) upon signal si = 0

can be written as:

n−1X
k=0

ρ+i (0, k/ (n− 1)) Pr [k votes 0 ∧ revelation ∧ ω = 0 | si = 0]

−
n−1X
k0=0

ρ−i (1, k
0/ (n− 1)) Pr [k0 votes 1 ∧ revelation ∧ ω = 1 | si = 0] ,

where “revelation” denotes the event in which the true state and the votes become
18An interesting extension of the present model would be to allow for the possibility that signal

precisions differ between committee members, where a member’s signal precision is his or her private
information, see Section 8. In such a richer model, changes in esteem could be derived from the
public’s Bayesian updating of beliefs about board members’ competence.
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publicly known. Given the signal 0, the difference in expected additional utility to
committee member i from voting sincerely (vi = 0) instead of insincerely (vi = 1) is
then:

δ0i = τ 0

n−1X
k=0

ρ∗i (0, k/ (n− 1)) Pr [k votes 0 ∧ ω = 0 | si = 0]

−τ 1
n−1X
k=0

ρ∗i (1, k/ (n− 1)) Pr [k votes 1 ∧ ω = 1 | si = 0] .

where
ρ∗i (ω, k/ (n− 1)) = ρ+i (ω, k/ (n− 1)) + ρ−i (ω, k/ (n− 1)).

We note that it is not clear, from a psychological point of view, wether ρ∗i (ω, k/ (n− 1))
is increasing or decreasing in its second argument; that depends on how quickly one’s
esteem falls and one’s stigma increases, when the share of correct votes among the
others increases. If all other committee members vote sincerely, then

δ0i =
τ 0 (1− μ) q0

(1− μ)q0 + μ(1− q1)

n−1X
k=0

ρ∗i (0, k/ (n− 1))
µ

k

n− 1

¶
qk0(1− q0)

n−1−k

− τ 1μ(1− q1)

(1− μ)q0 + μ(1− q1)

n−1X
k=0

ρ∗i (1, k/ (n− 1))
µ

k

n− 1

¶
qk1(1− q1)

n−1−k.

The expression for δ0i is involved but can be interpreted. The first sum is the
expected value of ρ∗i (0, k/ (n− 1)), when the binomial random variable k has mean
value (n− 1) q0. Likewise, the second sum is the expected value of ρ∗i (1, k/ (n− 1)),
when the binomial random variable k has mean value (n− 1) q1. For large n, and
granted that ρ∗i (0, k/ (n− 1)) and ρ∗i (1, k/ (n− 1)) are sufficiently smooth functions
of k and n, these sums are approximately equal to ρ∗i (0, q0) and ρ

∗
i (1, q1), respectively.

These quantities can be interpreted as the net values of the social esteem to committee
member i for being in the non-erring majority in the two states respectively, when
the size of this majority is the one expected in that state, k = (n− 1) q0 and k =

(n− 1) q1, respectively. For large n, we thus obtain the approximation

δ0i '
τ 0(1− μ)q0ρ

∗
i (0, q0)− τ 1μ(1− q1)ρ

∗
i (1, q1)

(1− μ)q0 + μ(1− q1)
.

Thus, δ0i is positive if and only if τ 0 (1− μ) q0ρ
∗
i (0, q0) > τ 1μ(1−q1)ρ∗i (1, q1). Reason-

ing likewise for the other signal, the incentive is, for both signals, in favor of sincerity
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if
1− q0
q1

<
μτ 1ρ

∗
i (1, q1)

(1− μ) τ 0ρ∗i (0, q0)
<

q0
1− q1

.

This condition has the same form as the signal informativeness condition (4). The
disutilities αi and βi associated with mistakes of type I and II are replaced by the
social esteem factors τ 0ρ∗i (0, q0) and τ 1ρ

∗
i (1, q1). This is, then, a sufficient condition

for our “usual” conclusion to hold: under this condition, even a small dose of trans-
parency ensures that, in large enough committees, sincere voting is the unique and
strict Nash equilibrium.

7.3. Noise voters. Experimental evidence from laboratory studies suggests that
human subjects in committee decision problems of the kind analyzed here sometimes
make mistakes, see Guarnaschelli et al. (2000). For instance, even when sincere
voting is a Nash equilibrium under majority rule in a three-person committee setting,
some subjects do not vote according to their informative signal. Awareness of a
positive error rate in others’ voting clearly influences the voting incentives of a rational
committee member. We here extend our model to allow for this possibility.19 Consider
a committee consisting of n members who may, but need not, have a slight preference
for sincerity and/or concern for esteem. Assume that with probability λ ∈ [0, 1]
exactly one of these members suddenly becomes a noise voter, defined as a voter who
votes randomly according to an exogenous probability distribution, irrespective of his
or her private signal Assume, moreover that such a noise voter’s vote is statistically
independent of the state and all private signals. A committee member who is not a
noise voter is called an informed voter.
We analyze a special case of this set-up in full detail. Assume thus, that n is an

odd number, that the voting rule is majority rule, that the prior is uniform, that the
two signals are equally precise and that a noise voter randomizes uniformly. It is not
difficult to then show that the possibility of a noise voter in the committee increases
each informed committee member’s incentive to vote sincerely when other informed
committee members vote sincerely. The reason for this is two-fold: a noise voter
among the others increases the probability for an informed voter of becoming pivotal,
and it enhances the conditionally expected net utility gain from sincere voting (over
insincere voting) if the informed voter is pivotal. It is as if the strategic counter-force
against sincere voting is mitigated by the potential noise voter – an uninformed vote

19Eliaz (2002) analyses the mechanism-design implementation problem with k faulty players
among n players. Blais et al. (2008) use the 1 faulty player model to analyse experimental data on
voting.
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among the others’ votes make it rational to place more weight on one’s own signal.
Formally

Proposition 3. Consider majority rule in a committee with n odd, μ = 1/2, 1/2 <
q0 = q1 < 1, and with a probability λ ∈ [0, 1] for the presence of a noise voter who
randomizes uniformly. The probability that a given committee member’s vote will be
pivotal under sincere voting is strictly increasing in λ. Moreover, conditional upon
being pivotal, the expected-utility difference between sincere and insincere voting is
strictly increasing in λ.

It follows that, at least in the special case hypothesized in the proposition, the
possibility of a noise voter increases informed voters’s incentive for sincere voting.
Consequently, the above results for committees without noise voters, for the random-
ized voting rule and for voters with a preference for sincere voting and/or concern
for esteem, hold a fortiori in the presence of noise voters. We conjecture that this
qualitative conclusion is valid more generally. Indeed, the more noise voters there are
in a committee, the stronger should the incentive for sincere voting be.

8. Conclusion

The above analysis is restricted to a committee of equally “competent” members
who receive private information of exogenously fixed precision and face a binary
collective decision problem with no possibility of abstention. Despite these heroic
simplifications, we believe that the qualitative conclusions hold more generally.
First, suppose that the committee members are unequally “competent” in the

sense that some members receive more precise signals than others. If the competence
differences are known by all members, then weighted majoritarian rules, whereby
more competent voters are given higher weights than less competent ones, may be
superior the k-majority rules studied here. For a survey of results of this sort, see
Grofman, Owen and Feld (1983), Owen, Grofman and Feld (1989) and Ben-Yashar
and Milchtaich (2006). Under the usual majority rule, but with differing competence
among the committee members, what can be said about equilibrium voting? Two
main cases appear relevant for such a consideration. In the first case, each member i
has precision parameters qi0, q

i
1 > 1/2 and these are known by all committee members.

In the second case, each member i has precision parameters qi0, q
i
1 > 1/2 but these are

know only by member i himself.20 Let us briefly re-consider the statement and proof

20Visser and Swank (2007) assume that committee members do not even know their own compe-
tence.
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of Theorem 3. The quantities g (k, n) have to be re-defined and will, in general, also
depend on i. More precisely, each such quantity gi (k, n) will no longer be a simple
product of two factors raised to powers k and n, but will be a complex multinomial
sum; instead of just counting the number of signals of each type, one has to keep
track of which signal was received by which member, and consider all permutations.
With so defined quantities gi (k, n) in condition (3), the claim of Theorem 3 would
remain true, and the quantities gi (k, n) would be continuous in the parameter vector
h(q10, q11) , ..., (qn0 , qn1 )i. Hence, Theorem 3 would be approximately correct for approxi-
mately equally competent committee members. Similar considerations apply to other
equilibrium results. The second case, that of incomplete information concerning com-
petence, appears to be particularly interesting for analyses of the incentive effects of
transparency. For studies of such settings, see Visser and Swank (2007), Gersbach
and Hahn (2008), Swank, Visser and Swank (2008) and Hahn (2008).
A second direction for generalization, which would be valuable and challenging to

explore, concerns the binary nature of both signals and choices. What can be said if
the choice is binary but there are more than two signal values (perhaps just three,
or a whole continuum)? What if there are more than two choice alternatives? New
results have recently been obtained for more general collective decision problems of
this sort, see McLennan (2007).
A third direction would be to analyze equilibrium outcomes if abstention is an

option and/or the number of voters is unknown by the voters. Such aspects may be
less relevant for some committees but may play a major role in other committees and
certainly in general elections. Krishna and Morgan (2007) undertake an investigation
of precisely these two aspects, in a setting where the number of voters is a Poisson
distributed random variable and each voter draws a random cost for casting a vote.
Each voter only observes his or her own signal and voting cost. Krishna and Morgan
assume that the voters are ex-ante identical, that the two states of nature are equally
likely and that the two signals are equally precise. They show that sincere voting
then is the unique Nash equilibrium under super-majority rules when the expected
number of voters is large. Moreover, equilibrium participation rates are such that the
outcome is asymptotically efficient. While their model thus is cast more in the mold
of general elections, it would be interesting to explore whether (strategic) abstention,
allowed for in their framework, can be introduced in our framework for a committee
of fixed and know size, and whether the kind of preference heterogeneity that we
here permit can be introduced into their framework. Here, we only note that sincere
voting under our randomized majority rule will remain a strict Nash equilibrium also
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when abstention is allowed. However, our uniqueness claim may then fail.
A fourth and final avenue for future work would be to endogenize voters’ signal

precision. Before a committee meets, individual members usually make (typically
unobserved) efforts to study the question at hand, so that they will be well informed
at the meeting. However, as is well-known both by practitioners and theorists, this
gives rise to a free-rider problem, whereby committee members tend to under-invest
and arrive at the meeting less informed than what would be collectively desirable. For
recent analyses of this moral hazard phenomenon in various models, see Mukhopad-
haya (2003), Persico (2004), Gerardi and Yariv (2008) and Koriyama and Szentes
(2007).
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9. Appendix

We here provide mathematical proofs of claims not proved in the main text.

9.1. Theorem 1. Suppose that ω = 0 and consider any positive integer n. The
probability that voter i votes vi = si = 1, when voting informatively, is 1− q0. Under
majority rule, the probability of a wrong decision in this state is thus

Pr [Xn = 1 | ω = 0] ≤ Pr
"
1

n

nX
i=1

si ≥
1

2
| ω = 0

#

Conditional upon ω = 0, the random variables {si}ni=1 are independent, with the
same Bernoulli distribution. Hence, according to the Central Limit Theorem (see,
for example, Theorem 27.1 in Billingsley, 1995), their average, 1

n

Pn
i=1 si (given ω =

0), converges in distribution towards the normal distribution with mean 1 − q0 and
variance q0(1− q0)/n. Since 1− q0 <

1
2
:

lim
n→∞

Pr

"
1

n

nX
i=1

si ≥
1

2
| ω = 0

#
= 0

The same argument applies to the state ω = 1, and the result follows from the identity

Pr [Xn (ω) 6= ω] = (1− μ) Pr [Xn = 1 | ω = 0] + μPr [Xn = 0 | ω = 1]

9.2. Theorem 2. Write W
¡
fk
¢
in the following way, where the random variable

N1 is the number of signals 1 received, U0 = (1− μ)
Pn

i=1 u
i
00 and U1 = (1− μ)

Pn
i=1 u

i
11,

two real numbers:

W
¡
fk
¢
= − (1− μ) β̄ (n) Pr [x = 1 | ω = 0]− μᾱ (n) Pr [x = 0 | ω = 1] + U0 + U1

= − (1− μ) β̄ (n) Pr [N1 ≥ k | ω = 0]− μᾱ (n) Pr [N1 < k | ω = 1] + U0 + U1

Hence,

W
¡
fk+1

¢
−W

¡
fk
¢
= (1− μ) β̄ (n) Pr [N1 = k | ω = 0]− ᾱ (n) Pr [N1 = k | ω = 1]

and thus

W
¡
fk+1

¢
≤W

¡
fk
¢
⇐⇒ γ̄ ≥ Pr [N1 = k | ω = 0]

Pr [N1 = k | ω = 1]

⇐⇒ γ̄ ≥ (1− q0)
k qn−k0

qk1 (1− q1)
n−k = g (k, n)
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Likewise:

W
¡
fk−1

¢
≤W

¡
fk
¢
⇐⇒ γ̄ ≤ Pr [N1 = k − 1 | ω = 0]

Pr [N1 = k − 1 | ω = 1]

⇐⇒ γ̄ ≤ (1− q0)
k−1 qn−k+10

qk−11 (1− q1)
n−k+1 = g (k − 1, n)

Since g (k, n) is decreasing in k, W
¡
fk
¢
≥ W

¡
fh
¢
for all h = k + 1, k + 2, ..., n if

and only if γ̄ ≥ g (k, n). Likewise, W
¡
fk
¢
≥ W

¡
fh
¢
for all h = k − 1, k − 2, ..., 1

if and only if γ̄ ≤ g (k − 1, n). Hence, as k increases from 1 to n, W
¡
fk
¢
reaches

its maximum value either at a unique k or (non-generically) at two adjacent values,
k − 1 and k. As noted in footnote 6, k = 0 and k = n+ 1 are never optimal.

9.3. Corollary 1. Condition (5) is equivalent with∙
(1− q0) (1− q1)

q0q1

¸kµ
q0

1− q1

¶n

≤ γ̄ (n) ≤
∙
(1− q0) (1− q1)

q0q1

¸k µ
q1

1− q0

¶µ
q0

1− q1

¶n+1

or µ
q0

1− q1

¶n

≤ γ̄ (n) ·
∙

q0q1
(1− q0) (1− q1)

¸k
≤
µ

q1
1− q0

¶µ
q0

1− q1

¶n+1

Taking logarithms and dividing through with n, we obtain

ln

µ
q0

1− q1

¶
≤ 1

n
ln γ̄ (n) +

k

n
ln

∙
q0q1

(1− q0) (1− q1)

¸
≤ 1

n
ln

µ
q1

1− q0

¶
+

µ
1 +

1

n

¶
ln

µ
q0

1− q1

¶
As n→∞, the upper bound converges to the lower bound, ln

³
q0
1−q1

´
, and 1

n
ln γ̄ (n)

tends to zero since, in force of the value-boundedness condition (3). This establishes
the equality in (7).
In order to establish the claimed inequalities, let

B =
ln
³

q0
1−q1

´
ln
³

q0
1−q1

´
+ ln

³
q1
1−q0

´ .
Suppose first that q1 ≤ q0. Then

q1
1−q0 ≤

q0
1−q1 , from which we deduce that B ≥ 1/2

and 1− q0 ≤ B. To obtain the second claimed inequality, B ≤ q1, note that this can
be re-written, after some manipulation, as

q1 ln(1− q0) + (1− q1) ln q0 ≤ q1 ln q1 + (1− q1) ln(1− q1).
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The right-hand side is independent of q0, while the left-hand side is decreasing in q0.
Thus, the claimed inequality B ≤ q1 holds for all q0 ∈ [q1, 1] if and only if it holds for
q0 = q1. Writing the inequality for that special case, one obtains

q1 ln(1− q1) + (1− q1) ln q1 ≤ q1 ln q1 + (1− q1) ln(1− q1),

or, equivalently,
(2q1 − 1) ln(1− q1) ≤ (2q1 − 1) ln q1,

an inequality which clearly holds since q1 ≥ 1/2.
Now suppose that q1 ≤ q0. Then the above reasoning (switching q0 and q1) gives us

1− q1 ≤ 1−B ≤ q0, which is equivalent with the claimed inequality 1− q0 ≤ B ≤ q1.

9.4. Theorem 3. For any n, k ∈ N such that 1 ≤ k ≤ n, denote by T the event
of a tie among the others, that is, that exactly k − 1 of the other voters receive the
signal 1 and thus n−k receive the signal 0. Suppose, for instance, that i received the
signal si = 0. Should i then vote on alternative 0? The probability for the joint event
that si = 0 and that there is a tie among the others, conditional on the state ω = 0,
is

Pr [T ∧ si = 0 | ω = 0] =
µ
n− 1
k − 1

¶
qn−k0 (1− q0)

k−1

Likewise, conditional on the state ω = 1, we have

Pr [T ∧ si = 0 | ω = 1] =
µ
n− 1
k − 1

¶
qk−11 (1− q1)

n−k

Therefore, the probability for the joint event that i receives the signal 0 and there is
a tie among the others is

Pr [T ∧ si = 0] =

µ
n− 1
k − 1

¶h
(1− μ) qn−k0 (1− q0)

k−1 + μqk−11 (1− q1)
n−k
i

Since the probability of receiving the signal 0 is Pr [si = 0] = (1− μ) q0+μ (1− q1),
committee member i attaches the following conditional probability of a tie among the
others, conditional upon si = 0:

p0(k) = Pr [T | si = 0] =
µ
n− 1
k − 1

¶
(1− μ) qn−k0 (1− q0)

k−1 + μqk−11 (1− q1)
n−k

(1− μ) q0 + μ (1− q1)

We are now in position to compute the difference in expected utility for voter i
between casting the sincere vote vi = 0 instead of the insincere vote vi = 1, conditional
upon the signal si = 0:

∆ui = E [ui | si = vi = 0]− E [ui | si = 0 ∧ vi = 1]
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Because i’s vote affects the collective decision x only in the event T , we have

∆ui = p0(k) · (E [ui | T ∧ si = vi = 0]− E [ui | T ∧ si = 0 ∧ vi = 1])

where

E [ui | T ∧ si = vi = 0] = κi − αi Pr [ω = 1 | T ∧ si = 0]

E [ui | T ∧ si = 0 ∧ vi = 1] = κi − βi Pr [ω = 0 | T ∧ si = 0]

and κi is the conditionally expected utility of taking the right decision, x = ω,
conditional on the event T ∧ si = 0.21 By Bayes’ law (factorials cancel):

Pr [ω = 0 | T ∧ si = 0] =
(1− μ) Pr [T ∧ si = 0 | ω = 0]

Pr [T ∧ si = 0]

=
(1− μ) qn−k+10 (1− q0)

k−1

(1− μ) qn−k0 (1− q0)
k−1 + μqk−11 (1− q1)

n−k+1 .

Hence:

∆ui =

µ
n− 1
k − 1

¶
(1− μ) qn−k+10 (1− q0)

k−1 βi − μqk−11 (1− q1)
n−k+1 αi

(1− μ) q0 + μ (1− q1)
. (17)

The condition for ∆ui to be nonnegative, that is, for i to rationally want to vote
according to her signal si = 0, is thus

(1− μ) qn−k+10 (1− q0)
k−1 βi ≥ μqk−11 (1− q1)

n−k+1 αi,

which can be written as

γi ≤
µ
1− q0
q1

¶k−1µ
q0

1− q1

¶n−k+1
= g (k − 1, n) . (18)

Hence, sincere voting on alternative 0 (that is, to chose vi = 0 when si = 0) is optimal
if and only if the right inequality in (8) is met. Likewise, sincere voting on alternative
1 is optimal if and only if

γi ≥
µ
1− q0
q1

¶k µ
q0

1− q1

¶n−k
= g (k, n) (19)

21

κi = ui00 Pr [ω = 0 | T ∧ si = 0] + ui11 Pr [ω = 1 | T ∧ si = 0]
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9.5. Proposition 1. Suppose that sincere voting is an equilibrium under k-majority
rule, then, by Theorem 3, g (k, n) ≤ γi ≤ g (k − 1, n) for all i. Hence

(1− μ)βig (k, n) ≤ μαi ≤ (1− μ) βig (k − 1, n) ∀i

so β̄ (n) g (k, n) ≤ ᾱ (n) ≤ β̄ (n) g (k − 1, n) or, equivalently, g (k, n) ≤ γ̄ (n) ≤
g (k − 1, n). Thus, by Theorem 2, the k-majority rule is optimal.
Conversely, suppose that the committee is homogeneous. There exists an integer

m such that m− 1 ≤ λi ≤ m for all i. By definition (11) of λi, this is equivalent to∙
q0

1− q1

¸n−m ∙
1− q0
q1

¸m−1
≤ γi ≤

∙
1− q0
q1

¸m−1 ∙
q0

1− q1

¸n−m
∀i (20)

This implies the same inequality for γ̄ (n) and thus k-majority rule is optimal for
k = m, by Theorem 2. But since (20) holds, sincere voting is an equilibrium, by
Theorem 3.

9.6. Proposition 2. Suppose that all committee members report truthfully in the
first stage: ti = si for all i. In stage two, all committee members are then essentially
in the same “information set” in stage two, before casting their “real” votes: they all
know the total number N1 of signals 1 among the n signals received. No voter knows
exactly who received what signal, except for their own, but this is of no consequence
since all voters by assumption receive signals of the same “quality.” Suppose that
each committee member votes for his or her preferred decision alternative in stage
two, given his or her information. Will each voter i then have an incentive to report
truthfully in the first stage? A single voter can change N1 by only one unit.
Case 1 : Voter i has received the signal si = 1 and that there are N0 other signals

1. Then N1 = N0+1 if i will truthfully report ti = 1 while N1 = N0 if i would falsely
report ti = 0. It follows that i’s report will affect the final decision x if and only if
N0 < λ(n+1)/2 < N0 + 1, or, equivalently, if and only if N0 =

¥
λ(n+1)/2

¦
.22 Therefore

any committee member i who receives the signal si = 1 can reason conditionally on
this event, namely, that the total number of signals sj = 1 received by the other
committee members is exactly

¥
λ(n+1)/2

¦
. The probability for this event does not

depend on the identity of member i and it does not depend on i’s signal or report.
This probability is positive whenever 0 ≤

¥
λ(n+1)/2

¦
≤ n, a condition that can be

written as

γ(n+1)/2 ≤
µ

q0
1− q1

¶n

.

22The reasoning is based on the assumption that λm+1 does not happen to be an integer.
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But this inequality is implied by the informativeness condition (4) that we already
imposed.
Case 2 : Voter i has instead received the signal si = 0, while the others have still

together received N0 signals 1. Then i’s report will affect the final decision x if and
only if N0 − 1 < λ(n+1)/2 < N0, or, equivalently, if and only if N0 =

¥
λ(n+1)/2

¦
+ 1.

Again, this event has positive probability.

9.7. Claim (i) in Theorem 4. Write n = 2m + 1, that is, for any committee
member, m is half of the rest of the committee. To see that sincere voting under f ε

is a strict Nash equilibrium, first note that ∆uεi > 0 if and only if

ε

1− ε
>
2m+ 1

Bi
·
µ
2m

m

¶£
αiμq

m
1 (1− q1)

m+1 − βi (1− μ) qm+10 (1− q0)
m¤ (21)

where the factor Bi = βi (1− μ) q0 − αiμ (1− q1) is positive by (4). By Stirling’s
formula, µ

2m

m

¶
=
(2m)!

(m!)2
=

4m√
πm

(1 + o(m))

so the right-hand side of (21) is approximated by

(1 + o(m)) · 4m

Bi(2m+ 1)
√
πm

·
£
αiμq

m
1 (1− q1)

m+1 − βi (1− μ) qm+10 (1− q0)
m¤

≤ (1 + o(m)) · 2αiμ (1− q1)

Bi

√
π

[4q1(1− q1)]
m
√
m ≤ (1 + o(m)) · Ci

Bi
· am
√
m

where Ci = 2αiμ (1− q1) /
√
π and a = 4q1(1− q1) < 1. Hence, (21) is met if

ε

1− ε
>

Ci

Bi
(1 + o(m))am

√
m

A sufficient condition for this to hold is that

ε >
Ci

Bi
(1 + o(m))am

√
m (22)

The preference boundedness condition (3) together with the hypothesis that the
signal informativeness condition is uniformly met implies that Ci/Bi is uniformly
bounded: there exists a D ∈ R such that Ci/Bi < D for all i.23 Let ε = bm with

23To see this, note that Ci/Bi ≤ D iff

1

γi
· q0
1− q1

− 1 ≥ 1

D

and let η = D/ (D + 1).
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a < b < 1. Then ε→ 0 as m→ +∞. Moreover, sinceµ
b

a

¶m
1√
m
→ +∞ as m→∞,

(22) holds for all m large enough, irrespective of how large D is.
The same reasoning applies to the expected utility upon receiving the signal si = 1.

This proves claim (i) for ε = bm, for any b such that

max{4q0(1− q0), 4q1(1− q1)} < b < 1

where we note that lower bound indeed is less than 1 since q0, q1 > 1/2.

9.8. Corollary 4. Suppose first that ω = 0 and consider informative voting under
fn, for n = 2m+1 ∈ N fixed. The probability that committee member i votes si = 1
is, by definition 1− q0. If the collective decision is taken by majority rule applied to
all n votes, the probability of a wrong decision, Xn = 1, is some number Qn. So the
probability of a wrong decision, given ω = 0, is

Pr [Xn = 1 | ω = 0] = εn(1− q0) + (1− εn)Qn

The probability of a wrong decision in state ω = 0 thus tends to 0 if Qn → 0 as
n→∞ since εn → 0. It thus remains to prove that Qn → 0. We proceed just as in
the proof of Condorcet’s jury theorem. First note that, since n is odd:

Qn = Pr

"
nX
i=1

si >
n

2
| ω = 0

#

Conditional upon ω = 0, the signals si are independent, with the same Bernoulli
distribution. Hence, according to the Central Limit Theorem, 1

n

Pn
i=1 si, given ω = 0,

converges in distribution to the normal distribution with mean 1 − q0 and variance
q0(1− q0)/n. Since q0 > 1

2
:

lim
m→∞

Pr

"
1

n

nX
i=1

si >
1

2
| ω = 0

#
= 0.

The same argument applies to the case ω = 1.
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9.9. Claim (i) in Theorem 5. In order to establish that informative voting
constitutes a strict Nash equilibrium, consider, first, a voter who has received the
signal 0. Under majority rule applied to n = 2m + 1 voters, the expected utility
difference between voting 0 and 1 is given by (17). Focusing on large n and applying
Stirling’s formula,

m! =
√
2πm · (m/e)m · (1 + o(m)),

we have µ
2m

m

¶
=
(2m)!

(m!)2
=

4m√
πm

(1 + o(m))

and obtain

lim
m→∞

∆u0i = δ0i + lim
m→∞

4m√
πm

· βi (1− μ) q0 [q0 (1− q0)]
m − αiμ (1− q1) [q1 (1− q1)]

m

(1− μ) q0 + μ (1− q1)

≥ δ0i − lim
m→∞

1√
πm

· αiμ (1− q1) [4q1 (1− q1)]
m

(1− μ) q0 + μ (1− q1)

= δ0i − lim
m→∞

1√
πm

· αiμ (1− q1)

(1− μ) q0 + μ (1− q1)
· am = δ0i − 0 = δ0i ≥ δ > 0,

because 1/2 < q1 < 1 implies that a = 4q1 (1− q1) < 1. The same holds for a voter
who has received the signal 1. Claim (i) is thus obtained in much the same way as
claim (i) in Theorem 4, namely, for a sequence of δ-values decreasing in n at the rate
bm, for m = (n− 1) /2, where max{4q0(1− q0), 4q1(1− q1)} < b < 1.

9.10. Claim (ii) in Theorems 4 and 5. We here show that all equilibria are
pure, under the hypotheses of Theorems 4 and 5, respectively. Consider voter strate-
gies σi : {0, 1} → [0, 1], for i = 1, ..., n, that map voter i0s signal si to a probability
pi = σi (si) for i voting on alternative 1 (and voting on alternative 0 with the com-
plementary probability, 1− σi (si)). Sincere voting thus is the strategy σi(si) ≡ si.
Consider now a given voter i who has received signal si = 0. Denote by Ti the

event of a tie among all other votes. Such a tie may arise by chance, even for given
signals, if other voters randomize their votes. However, since signals, and hence also
votes, are statistically independent conditionally upon the state ω, we have, under
any strategy profile (σ1, ..., σn):

Pr [Ti ∧ si = 0 | ω] = Pr [Ti | ω] · Pr [si = 0 | ω]

for ω = 0, 1. In the base-line model, game G (m), the difference in expected utility
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for voter i between voting 0 and 1, conditional on having received signal 0, is

∆u0i = βi Pr [Ti ∧ ω = 0 | si = 0]− αi Pr [Ti ∧ ω = 1 | si = 0]

= βi
(1− μ) q0
Pr [si = 0]

Pr [Ti | ω = 0]− αi
μ(1− q1)

Pr [si = 0]
Pr [Ti | ω = 1]

In the game Gδ (m) perturbed with the sincerity bonus δ, voting sincerely when
receiving signal 0 is optimal if and only if ∆u0i + δ ≥ 0, or, equivalently,

δPr [si = 0] + βi (1− μ) q0 Pr [Ti | ω = 0]− αiμ(1− q1) Pr [Ti | ω = 1] ≥ 0, (23)

and mixing is optimal if and only if this last equation is an equality.
Likewise, the difference in expected utility for voter i between voting 1 and 0,

conditional on having received signal 1, is

∆u1i = αi
μq1

Pr [si = 1]
Pr [Ti | ω = 1]− βi

(1− μ) (1− q0)

Pr [si = 1]
Pr [Ti | ω = 0] ,

and thus sincere voting in this case is optimal if only if

δPr [si = 1] + αiμq1 Pr [Ti | ω = 1]− βi (1− μ) (1− q0) Pr [Ti | ω = 0] ≥ 0, (24)

and mixing is optimal if and only if this last equation is an equality.
Summing the right hand sides of (23) and (24) yields:

δ + βi (1− μ) (2q0 − 1)Pr [Ti | ω = 0] + αiμ (2q1 − 1)Pr [Ti | ω = 1] ,

Because q0 and q1 are larger than 1/2, this is a strictly positive number as soon as
δ is strictly positive. Therefore at least one of the two inequalities (23) and (24) is
strict, which means that each voter must be voting sincerely on (at least) one signal.
In particular no voter can be strictly mixing on both signals. The same argument
works in games Φε(m) and it is worth noticing this fact:

Fact: Each voter is voting sincerely on at least one signal.

From this it follows that there exists one signal , say signal s = 0, such that at
least half of the population vote sincerely when receiving this signal. Without loss of
generality we may take the point of view of individual i = 2m+ 1 and suppose that
individuals j = 1, ...,m vote vj = 0 when receiving signal sj = 0. Let N0 denote the
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random variable “number of votes 0 among voters 1, ..., 2m, conditionally on ω = 0”.
Then:

Pr [Ti | ω = 0] = Pr[N0 = m].

One can decompose the variable N0 as:

N0 = X0 + Y0

X0 =
mX
j=1

1{sj = 0 | ω = 0}

Y0 =
mX
j=1

1{sj = 1 ∧ vj = 0 | ω = 0}+
2mX

j=m+1

1{vj = 0 | ω = 0}

Notice that

Pr[N0 = m] =
mX
k=0

Pr[X0 = k] · Pr[Y0 = m− k]

≤ max
0≤k≤m

Pr[X0 = k]

We do not know the probability distribution of Y0, because of possible mixing, but we

know that X0 is binomial with parameter q0 and m. Therefore max0≤k≤m Pr[X0 = k]

is equal to Pr[X0 = bq0mc] where bq0mc denotes the integer part of q0m. If q0m is an
integer, then we obtain:

Pr[N0 = m] ≤ Pr[X0 = q0m] =

µ
q0m

m

¶
qq0m0 (1− q0)

m−q0m,

and, after using Stirling’s formula:

Pr[X0 = q0m] ∼
1p

2πmq0(1− q0)
.

This last property can be shown to actually hold even if q0m is not an integer but we
leave this technical point to the interested reader. To have a majorization, we may
note for instance that it follows that there exists an A (which only depends on q0)
such that for all m > A, Pr [T2m+1 | ω = 0] < B/

√
m, for B = 1/

p
q0(1− q0). Thus,

looking again at the condition (24) one can see that, for m > A and

δ >
1

Pr[s = 1]
βi(1− μ)(1− q0)

B√
m
=

βi(1− μ)(1− q0)

(1− q1)μ+ (1− μ)(1− q0)

B√
m
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(24) is a strict inequality, which means that sincere voting on signal s = 1 is strictly
optimal for the considered voter i = 2m + 1. Then it follows that there exists
a B0 (which depends on all the parameters q, α, β, μ) such that for m > A and
δ > B0/

√
m, sincere voting on signal s = 1 is strictly optimal for all voters. The

values of the parameters αi, βi, μ for different voters are bounded, so we can take B
0

to be a constant of the model, independent of the population size.
If all voters vote sincerely on signal s = 1, the number N1 of votes 1 among voters

j = 1, ...2m, conditionally on ω = 1 can be decomposed as:

N1 = X1 + Y1 for

X1 =
2mX
j=1

1{sj = 1 | ω = 1}

Y1 =
2mX
j=1

1{sj = 0 ∧ vj = 1 | ω = 1}

with X1 binomial (2m, q1). Again we note that

Pr [Ti | ω = 1] = Pr[N1 = m] = Pr[X1 + Y1 = m]

=
mX
k=0

Pr[X1 = k] · Pr[Y1 = m− k]

≤ max
0≤k≤m

Pr[X1 = k]

The mode of the binomial distribution of X1 is reached at the integer part of the
real number 2q1m, a number that exceeds m. It follows that

max
0≤k≤m

Pr[X1 = k] = Pr[X1 = m] =

µ
m

2m

¶
qm0 (1− q0)

m.

Using Stirling’s approximation formula, one finds again that this number is decreasing
(this time exponentially) with m. The same reasoning as before can now take place
with respect to equation (23): the negative term, −αiμ(1 − q1) Pr [Ti | ω = 1], is
asymptotically small and we conclude that there exist numbers A0 and B00 such that
if m > A0 and δ > B0/

√
m, inequalities (23) and (24) are both strict for all i, which

means that all voters vote sincerely on both signals. Point (ii) in Theorem 4 follows
immediately. The reasoning is the same for Theorem 5.
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9.11. Proposition 3. Let n = 2m + 1, μ = 1/2 and q0 = q1 = q. In order to
prove the first claim in the proposition, let p (λ) be the conditional probability for
any given committee member i’s vote to be pivotal, conditional upon the event that
i is not a noise voter. For λ = 0 we have, from the calculations in our baseline model,

p (0) =

µ
2m
m

¶
· [q (1− q)]m

For λ > 0:

p (λ) =
λ

(1− λ)n+ λ
p (1) +

(1− λ)n

(1− λ)n+ λ
p (0)

so it remains to identify p (1). We obtain

p (1) =
1

2

µ
2m− 1

m

¶£
qm (1− q)m−1 + qm−1 (1− q)m

¤
=

µ
2m− 1

m

¶
· [q (1− q)]m

2
·
µ

1

1− q
+
1

q

¶
=

=

µ
2m− 1

m

¶
· [q (1− q)]m−1

2

Hence, for any m ≥ 1:
p (1)

p (0)
=

1

4q (1− q)

and thus p (λ) /p (0) ≥ 1 for all q ∈ [1/2, 1] with strict inequality when q > 1/2. This
proves the first claim in the proposition.
In order to prove the second claim, suppose that voter i is an informed voter

with signal si = 0. Conditional upon being pivotal under majority rule, what is the
conditional probability for each state? Assume first that λ = 0. We are then back in
the standard model and the conditional probability for state ω = 0, conditional upon
i’s signal si = 0 and being pivotal under sincere voting, is q (the m other signals 0
cancel the m other signals 1, because μ = 1/2 and q0 = q1). Secondly, assume that
λ = 1. Being pivotal, i knows that there are either m signals 0 and m − 1 signals
1, or m − 1 signals 0 and m signals 1, with equal probability for both events (since
the noise voter randomizes uniformly). The conditional probability for state ω = 0,
conditional upon i’s signal being si = 0 and upon i’s vote being pivotal under sincere
voting, is no less than q. To see this, let T be the event of a tie among the 2m
other committee members (including the noise voter), let N0 and N1 be the (random)
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numbers of signals 0 and 1 among the other 2m− 1 informed voters:

Pr [ω = 0 | T ∧ si = 0] =
1

2
Pr [ω = 0 | si = 0 ∧N0 = m ∧N1 = m− 1] +

+
1

2
Pr [ω = 0 | si = 0 ∧N0 = m− 1 ∧N1 = m]

=
1

2
Pr [ω = 0 | (m+ 1 signals 0) ∧ (m− 1 signals 1)] +

+
1

2
Pr [ω = 0 | (m signals 0) ∧ (m signals 1)]

=
1

2
Pr [ω = 0 | (m+ 1 signals 0) ∧ (m− 1 signals 1)] + 1

2

Moreover,

Pr [ω = 0 | m+ 1 signals 0 ∧m− 1 signals 1] = qm+1 (1− q)m−1

2 · Pr [(m+ 1 signals 0) ∧ (m− 1 signals 1)]

and

Pr [(m+ 1 signals 0) ∧ (m− 1 signals 1)] = 1

2

£
qm+1 (1− q)m−1 + (1− q)m+1 qm−1

¤
Hence,

Pr [ω = 0 | T ∧ si = 0] =
1

2
+
1

2
· qm+1 (1− q)m−1

qm+1 (1− q)m−1 + (1− q)m+1 qm−1

=
1

2
+
1

2
· q2

q2 + (1− q)2

It is not difficult to verify that the quantity on the right-hand side exceeds q whenever
1/2 ≤ q < 1, and equals q when q = 1.
A similar calculation, quantitatively identical due to the assumed symmetry, holds

for the case when si = 1. Hence, the potential presence of a noise voter among the
others enhances the predictive power of one’s own signal in case of a tie among the
others. Hence, the expected-utility difference between sincere and insincere voting is
increased.
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