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Abstract

Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the
extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the
epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the
vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, juvenile development time varies
between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic
environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-
spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is
based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to
other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that
environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of
development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence,
and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated
risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent
parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of
increasingly unpredictable environmental variations as a result of global climate change and human interventions such as
habitat destruction or vector control.
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Introduction

Environmental stochasticity is a major factor responsible for

fluctuations in the density of populations, and possibly their

extinction, and on an evolutionary timescale it strongly influences

organisms’ life histories [1,2]. Environmental stochasticity typically

affects all individuals of a same cohort, developmental stage or

population the same way, contrary to demographic stochasticity

which may affect each individual differently [3]. Insects are

particularly sensitive to variations in environmental factors such as

temperature, which impacts their development rate [4,5], rainfall,

which determines the availability of larval habitats in mosquitoes

[6], predation or habitat destruction. Unpredictable environmen-

tal variations are likely to increase as a result of global climate

change [7] and other human interventions such as deforestations

or pest and vector control. It is thus a fundamental question to

what extent environmental stochasticity affects the distribution,

epidemics, virulence and evolution of vector-borne diseases, i.e.,

diseases transmitted between hosts by blood-sucking arthropods,

which are a major health threat in tropical and subtropical areas

[8].

Several theoretical works have investigated the influence of

different sources of random variability on the epidemiology and

evolution of diseases. Demographic stochasticity in transmission

rates and its effect on the epidemiology and evolution of directly-

transmitted and vector-borne diseases have been well studied

theoretically [9,10], and efforts have also been made to account for

demographic stochasticity in vector biodemographic rates in
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vector-borne diseases [11]. Climate-based transmission models

that integrate explicit relationships between climatic factors and

insect life-history traits such as development time have been

developed to investigate the effect of climatic variations on the

population dynamics of vectors and, in turn, on the epidemiology

of vector-borne diseases [12–15]. However, to our knowledge, the

possible impacts of environmental stochasticity on the evolution of

vector-borne diseases have never been investigated.

Insects are well known to display specific behavioral and life-

history strategies to face environmental uncertainty [16–18]. Life-

history theory in stochastic environments predicts that strategies

which spread the risk of encountering unfavorable conditions over

time or space should be selected for in unpredictable environments

[1,2,19,20]. Density-dependent factors have also been shown to

favor the evolution of risk-spreading (i.e., diversified bet-hedging)

strategies [21], because they amplify population size variation and,

in turn, the effects of environmental stochasticity. Iteroparity,

which consists in reproducing multiple times over an organism’s

lifetime, and inter-individual variability of juvenile development

times due to dormancy variation are usual risk-spreading strategies

reducing the probability of lineage extinction [22–24]. Such risk-

spreading strategies exhibited by vector insects in stochastic

environments could potentially affect the epidemiology, evolution

and control of insect-borne diseases. This has been largely

overlooked, except in a recent study suggesting that several species

of triatomines, the vectors of Trypanosoma cruzi, the etiological agent

of Chagas’ disease, exhibit, even under the same environmental

conditions, an inter-individual variability of juvenile development

times, and that such variability could have been selected as a

response to environmental stochasticity [25]. The consequences of

the variability in tick diapause duration on the epidemiology of

tick-borne diseases have also been questioned [14]. However, the

influence of such vector strategies on the prevalence and evolution

of pathogen virulence has not been studied yet.

The epidemiology and evolution of parasites are affected by

their hosts’ physiology, life-history traits, population biology and

environment. In the case of vector-borne diseases, the availability

of both hosts and vectors is likely to affect disease epidemiology

and evolution [26–28]. Understanding how the interaction of

these multiple factors affects parasite evolution, in particular their

virulence, could permit the prediction of their impact on both

humans and animals and help set up effective control strategies

[29]. Theoretical and empirical works suggest that pathogens

should evolve toward intermediate levels of virulence to their

hosts, on the grounds that increasing replication rate within the

host is beneficial in terms of increasing transmission probability,

but also costly as it increases the level of damage to the host and

therefore shortens the infectious period [29–38]. This compromise

is referred to as the trade-off hypothesis between virulence and

transmission [33,34].

To what extent and how classical vector life-history traits such

as developmental time, fecundity or survival could affect the

evolution of parasite virulence to hosts is still not completely clear.

Vector life-history traits do not seem to affect the long-term

evolution of parasite virulence to hosts in a deterministic setting

[39]. However, under stochastic settings, more complex host and

vector population dynamics and extinctions might create ecolog-

ical conditions favoring different parasite virulence strategies. In

the case of a directly-transmitted disease submitted to demo-

graphic stochasticity, large host populations have been suggested

to favor more virulent parasites as it seems less costly to harm one’s

hosts when available hosts are numerous [40]. Environmental

stochasticity associated to vector risk-spreading strategies could

lead to similar results among vector-borne diseases.

Our work uses a theoretical modeling framework to test whether

environmental stochasticity in interaction with vector life-history

traits, in particular risk-spreading strategies, influences the

epidemiology and evolution of vector-borne diseases. Our

objective is to provide a general framework including only key

demographic and transmission processes which could potentially

apply to several vector-borne diseases [41]. We nevertheless have

based our model on the specific example of triatomine biodemo-

graphy, in particular the variability they display in the duration of

their juvenile stage [25,42–45]. Chagas’ disease is a chronic

infection caused by the parasite Trypanosoma cruzi and transmitted

to humans and other vertebrate hosts by blood-sucking triatomine

insects [46]. This disease is a complex zoonosis covering a huge

geographical area, submitted to diverse ecological and climatic

conditions, and involving numerous host and vector species.

Whereas it has long been restricted to rural Latin America areas

where it is responsible for thousands of deaths each year, it is now

a worldwide health threat because of increasing migratory flows,

blood donations, organ transplants, and potential displacements of

triatomines as a result of human activities and global climatic

changes [47–49].

We developed a SI (i.e., Susceptible-Infected, with no recovery)

vector-borne epidemiological model which considers for simplicity

a single type of vectors and hosts, both regulated by density-

dependent processes. Vectors in our model are structured in two

explicit stages, a juvenile and an adult stage, both able to transmit

the infection (Fig. 1, Fig. S1). Following previous work on

triatomines’ developmental delay, we considered that vectors

could display variable development times and that the juvenile

stage was more resistant to environmental stress than the adult

stage [25]. To create conditions under which displaying variable

development times could lower vector population extinction

probability, only adult vectors were subjected to environmental

stochasticity. This generated risk-spreading strategies in vectors

and we tested their influence on parasite epidemiology and

evolution. Numerical simulations were carried out to compare the

predictions of the model in a deterministic and a stochastic setting,

in order to infer the role of environment stochasticity, as well as to

be able to compare our results with other results obtained with

deterministic models.

Results

The Influence of Vector Life-history Traits and
Environmental Stochasticity on Vector Density and
Parasite Prevalence

As expected, vector life-history traits affect vector population

density and, in turn, influence prevalence among vectors and

hosts. Sensitivity analyses suggested that such effects were very

similar whatever the level of parasite virulence to hosts a (results

not shown). The virulence of the parasite introduced in the

susceptible host - vector population was therefore set to ar = 0.008

in the entire epidemiological analysis. This value was selected as it

corresponds to the typical level of virulence toward which the

system converges after a long evolutionary time (see section

‘‘Virulence evolution’’ below). Among all possible combinations of

vector life-history traits, we chose a sample of scenarios (Fig. 2)

which accurately captures the diversity of the results observed in

the whole study.

How do vector life-history traits affect vector

density?. In the deterministic case, increasing the proportion

Pj of juvenile vectors prolonging the juvenile stage Pj decreased of

total vector density (Fig. 2, red lines). This result also held for

stochastic environments, provided that the intensity of the

Vector Risk-Spreading Strategies and Epidemiology
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stochasticity was relatively low (in this case, epidemiological

patterns were, in general, very similar to the deterministic case,

results not shown), or that vector life-history traits such as adult

survival and fecundity were high enough to allow a high

persistence of vector populations (Fig. 2d, black lines). Fewer

juveniles molting into adults most likely lessens adult vector density

and therefore the production of juveniles, which decreases total

vector density. A decrease in other vector life-history traits (i.e.,

juvenile and adult survival and adult fecundity) led to a similar

decrease in total vector density.

How does vector density affect parasite

prevalence?. When vectors were relatively abundant, i.e.,

mostly in deterministic environments, and in stochastic environ-

ments when adult survival and fecundity were high (and as a

consequence vector population persistence always high irrespec-

tive of Pj), any decrease in vector density according to Pj resulted in

an increase of parasite prevalence in vectors but no (or limited)

increase of prevalence in hosts (Fig. 2a, red lines, Svj high, Pj low;

Figs. 2b and 2d, red lines; Fig. 2c, red lines, Svj intermediate to

high; Fig. 2d, black lines, Svj high, or Svj low but only for Pj low).

This unusual result can be explained by the fact that our model

incorporates density-dependent mechanisms regulating vector

population density. As vectors rely on blood meals and therefore

compete for host access, decreasing vector density lessens the

intensity of competitive interactions between vectors. This

enhances the per-vector biting rate and seems to increase parasite

prevalence among vectors. Conversely, at relatively low vector

densities, decreasing vector density can reduce parasite prevalence

among vectors and hosts (Fig. 2a, red lines, except for Svj = 0.95).

Parasite prevalence among hosts obviously collapses when vector

density approaches zero, even if parasite prevalence among the

few remaining vectors could be relatively high (Fig. 2c, red lines,

when Pj higher than 0.6 and Svj lower than 0.95; Fig. 2d, black

lines, Svj = 0.6 and Pj = 0.9).

In stochastic cases, where Pj drastically affects vector population

persistence probability, the relationships between vector density

and prevalence among vectors and hosts according to Pj are more

complex as no monotone patterns can be observed (Figs. 2b and

2c, black lines). These patterns are described in detail in the next

section but we can already notice that great changes in vector or

host prevalence can occur without major changes in vector density

according to Pj.

Risk-spreading strategies enhance parasite prevalence in

stochastic environments. Risk-spreading strategies are de-

fined as life histories maximizing the probability of persistence in

unpredictable environments. Such risk-spreading strategies were

observed in stochastic environments for combinations of vector

life-history trait values depicted in black lines, in Figs. 2b and 2c.

Under these conditions, we observed classical patterns of insect

populations’ persistence according to risk spreading strategy [e.g.

1,2,24] (Figs. 2b and 2c, grey lines in graphs showing vector

densities). This confirms that variable development times (i.e.,

Pj?0 and Pj?1) decrease the extinction risk when environmental

stochasticity affects vector adult survival. Vector risk-spreading

arose clearly for intermediate to high Pj values, when either Sva was

relatively high and wv relatively low (Fig. 2b, dashed and solid grey

lines) or Sva relatively low and wv relatively high (Fig. 2c, dashed

and solid grey lines). Under these conditions, low Pj values always

resulted in vector population extinction. For intermediate Svj, very

high Pj values also led to vector population extinction, as vector

density became very low and eventually null (Figs. 2b and 2c,

dashed grey lines). When Sva, Svj and wv were too low, vector

populations did not persist at any Pj values (Fig. 2a, grey lines:

vector persistence probability always null whatever Svj, and Figs. 2b

and 2c, grey dotted lines: vector persistence probability always null

when Svj = 0.6).

Vector risk-spreading strategies observed for intermediate to

high Pj values resulted in an increase in parasite transmission.

Indeed, the prevalence according to Pj followed the same patterns

as vector population persistence probability: prevalence among

hosts is maximal for intermediate or high values of Pj (Figs. 2b and

2c, dashed and solid black lines). Note that when vector risk-

spreading occurs, patterns of prevalence among hosts are very

different than those among vectors. As a consequence, the latter

cannot be used as a predictor of parasite prevalence among hosts.

Environmental stochasticity can enhance parasite

prevalence as compared to deterministic

contexts. Parasite prevalence among vectors was generally

always slightly higher in the stochastic compared to the

deterministic case (provided that vector persistence probability

was not too low which resulted in very low to null prevalence).

This can be explained by the fact that environmental stochasticity

decreases vector density, and that when vector density is too high,

this decrease results in higher parasite transmission. This result

held for parasite prevalence among hosts in a few cases only.

When vectors displayed no risk-spreading strategy, prevalence

among hosts was always null or very low in the stochastic case, and

Figure 1. Schematic representation of the one-parasite-strain
version of the model. Because vectors are divided into two stages
(juvenile and adult), and that both stages can get and transmit the
parasite, we present first a simplified vector-borne epidemiological
model with only one stage for vectors (panel a) and then the vector life-
cycle (panel b). Hosts are represented with dashed lines and vectors
with solid lines (a) Susceptible hosts Hs get infected through contacts
with infected vectors Vi with probability Wh, and susceptible vectors Vs
through contacts with infected hosts Hi with probability Wv. Susceptible
and infected vectors and hosts give birth to susceptible vectors and
hosts. Infected host survival Shi is a function of parasite virulence a.
Environmental stochasticity is applied to vector survival (only adults,
see below) with intensity es. (b) Susceptible and infected adult vectors
Vas and Vai give birth to susceptible juvenile vectors Vjs. Susceptible and
infected juvenile vectors Vjs and Vji remain in the juvenile stage with
probability Pj and mature into adults with probability (1-Pj). Only adult
survival Sva is submitted to stochasticity with intensity es. See text,
Table 1, Appendix S1 in File S1 and Fig. S1 for further details.
doi:10.1371/journal.pone.0070830.g001
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therefore substantially inferior to the deterministic case (Figs. 2a,

2b and 2c). When vectors adopted risk-spreading strategies,

prevalence among hosts remained lower in the stochastic case at

intermediate Pj values (Figs. 2b and 2c, dashed and solid lines), but

reached values similar to the deterministic case when both Pj and

Svj were high (Figs. 2b and 2c, solid lines). When both Sva and wv

were high, prevalence among hosts was the same whatever the

kind of environment (deterministic or stochastic) at low Pj values,

and at higher Pj values was then slightly superior in the stochastic

than in the deterministic case (Fig. 2d). In the same context, but

with less stochasticity, prevalence among hosts was always slightly

superior in the stochastic compared to the deterministic case

independently of Pj (results not shown).

The Influence of Vector Risk-spreading Strategies on the
Evolution of Parasite Virulence

Neither the proportion of juvenile vectors prolonging the

juvenile stage Pj, nor the other vector life-history traits and their

interactions markedly influenced the value of the Continuously

Stable Strategy (CSS) toward which parasite virulence converged

over long evolutionary times. Furthermore, the CSS reached

under the stochastic and deterministic settings were nearly the

same. Nevertheless, the invasion speed of the mutant was affected

by the interaction between the environment (i.e., stochastic or

deterministic) and Pj, which suggests that risk-spreading strategies

in stochastic environments can affect the evolution of parasite

virulence on shorter evolutionary timescales.

Effect of vector life-history traits and environmental

stochasticity on the long-term evolution of parasite

virulence. Simulations of the competition of resident and

mutant parasites were carried out for all the demographic and

epidemiological scenarios presented in the result section ‘‘Epide-

miology’’. Three types of environments were studied: deterministic,

stochastic with relatively low stochasticity (eS = 0.3) and stochastic

with relatively high stochasticity (eS = 0.1). In each environment,

we considered all combinations of Pj and other vector life-history

trait values leading to a vector population persistence probability

strictly superior to 5% (see Fig. 2), and a large range of ar/am
virulence couples (see the ‘‘Model’’ section). In all the tested cases,

virulence always converged to an asymptotic CSS value of

approximately a= 0.008 (result illustrated for a specific example

in Appendix S2 in File S1 and Fig. S2). Therefore, vector life-

history traits and vector risk-spreading strategies in stochastic

environments do not influence the long-term evolution of parasite

virulence. The virulence value obtained (a= 0.008) corresponds to

an average life expectancy of 1 year and 5 months for infected

hosts as compared to healthy hosts, which live an average of 3

years.

However, the time needed to reach mutant fixation appeared to

vary between the cases studied (see Appendix S2 in File S1 and

Fig. S2). As a consequence, we analyzed in more detail how the

transient dynamics of mutant invasion was affected by vector risk-

spreading strategies (see below).

Vector risk-spreading strategies affect the transient

dynamics of mutant invasion. We analyzed the transient

dynamics of mutant invasion for two cases for which vector risk-

spreading strategies were previously identified: one corresponding

to a relatively efficient Pj (i.e., enhancing very significantly vector

population persistence probability in stochastic environments) and

the other one corresponding to a less efficient Pj (see Figs. 2b and

2c, dashed and solid grey lines), in the stochastic versus

deterministic case. We set mutant virulence am to the CSS

strategy of 0.008, so that the mutant is always expected to invade

the resident in the long term, and we slightly varied ar around the

mutant CSS strategy. We observed that environmental stochas-

Table 1. Definition and values of the parameters used in the model.

Parameter Definition Value (or range of values) used in the model

Shs Proportion of hosts surviving at each time step. 0.994

vh Maximal number of offspring per host per time step. 0.05

g Density dependence factor for hosts: number of hosts at which host fecundity
is reduced by two.

100

Sva Proportion of adult vectors surviving at each time step (parameter submitted
to stochastic variations).

variable (from 0.6 to 0.95)

Svj Proportion of juvenile vectors surviving at each time step. variable (from 0.6 to 0.95)

Pj Proportion of juvenile vectors prolonging the juvenile stage at each time step. variable (from 0 to 0.9)

vv Maximal number of eggs per vector per time step. variable (1; 2.5) [58,59]

q Density dependence factor for vectors: V/H ratio at which vector fecundity
and biting rate is divided by two.

50

bmax Maximal (preferred) biting rate of vectors (in bites per vector per time step). 1 [62]

ak Probability of the host to die as a result of an infection by the parasite strain k
(virulence).

0.008 in the epidemiological approach; variable according to
parasite strain in the evolutionary approach

bh Stercorarian* transmission probability (host infection probability) (in infected hosts
per bite).

0.005

c Shape of the function linking virulence and transmission rate. 0.01

eS(t) Quantity by which vector adult survival is multiplied (eS = 1 during ‘‘good’’ periods
and 0# es #1 during ‘‘bad’’ periods), or intensity of stochasticity.

variable (0.1; 0.3)

pB Probability that a bad period occurs. 0.2

r Autocorrelation coefficient among good and bad periods. 0.5

*transmission of the parasite to the host via the feces of the infected vector.
doi:10.1371/journal.pone.0070830.t001
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ticity and the level of efficiency of risk-spreading strategies can

affect the transient dynamics of mutant invasion.

When ar.am, the proportion of infections by the mutant

parasite among all infected hosts during the transient phase of

mutant invasion, or in other words, mutant invasion speed, was

always higher in the stochastic (black lines) compared to the

deterministic (red lines) case whatever the efficiency of vector risk-

spreading strategy (Figs. 3b, 3c, 3e and 3f). Under stochastic

environments, mutant invasion speed was also higher when vectors

played a less efficient risk-spreading strategy (dashed black lines) as

compared to a more efficient one (solid black lines, Figs. 3b, 3c, 3e

and 3f).

Conversely, when ar,am, mutant invasion was always slower in

stochastic contexts in which vectors played a less efficient risk-

spreading strategy (dashed black lines) compared to other contexts

(Figs. 3a and 3d). Then, the invasion of the mutant in stochastic

contexts in which vectors played a more efficient risk-spreading

strategy (solid black lines) was either faster (Fig. 3d) or similar

(Fig. 3a) than in deterministic environments (red lines). The

difference in the results between Fig. 3a and Fig. 3d can be

explained as follows: in the Sva = 0.6/wv = 2.5 context (i.e., Fig. 3a),

vector density at the time of mutant introduction when vectors

adopted the efficient risk-spreading strategy (i.e., Pj = 0.8) is

approximately one half in the stochastic as compared to the

Figure 2. Influence of vector life-history traits on vector population dynamics and parasite prevalence. In each panel, the upper, middle
and lower graphs display, respectively: total vector density, parasite prevalence in vectors, and parasite prevalence in hosts, according to the
proportion of juvenile vectors prolonging the juvenile stage Pj. Red and black lines correspond, respectively, to simulation results in the deterministic
(shown at t= 150,000 weeks) and stochastic (shown at t= 10,000 weeks as median values over the 100 simulations, plotted only if the number of
simulations without extinction is $5) case; dotted lines (open circles), dashed lines (closed circles) and solid lines (triangles) to a relatively low
(Svj = 0.6), intermediate (Svj = 0.8) and high (Svj = 0.95) juvenile survival. Left and right panels correspond, respectively, to a relatively low (Sva = 0.6;
panels a, c) and relatively high (Sva = 0.95; panels b, d) adult survival; upper and lower panels to a relatively low (wv = 1; panels a, b) and relatively high
(wv = 2.5; panels c, d) fecundity. The persistence probability of vector populations (proportion of simulations for which vector density does not
collapse before the end of the simulation), is given in grey in the upper graphs showing vector density. For prevalence among hosts, all simulations
(including those for which vector populations collapse) are taken into account. For vectors (density and prevalence), only simulations for which vector
population persisted until the end of the simulation are considered. Other parameters values are: ar = 0.008, b= 0.005, c= 0.01, Shs = 0.994, wh = 0.05,
g= 100, q= 50, bmax = 1, r= 0.5, pb = 0.2, eS = 0.1.
doi:10.1371/journal.pone.0070830.g002

Figure 3. Dynamics of mutant invasion (proportion of mutants among infections according to time after mutant introduction).
Proportion of the mutant is calculated as the number of hosts infected by the mutant parasite divided by the total number of infected hosts, and
given as a median among all simulations for which the vector density did not collapse at the simulation time considered. Red and black lines
correspond, respectively, to results in the deterministic and stochastic case (grey lines: persistence probability of vector populations); solid lines (solid
circles) and dashed lines (open circles) to a relatively efficient and less efficient risk-spreading strategy. Panels a, b, c: Sva = 0.6, wv = 2.5, less efficient
risk-spreading strategy: Pj = 0.3, more efficient: Pj = 0.8; panels d, e, f: Sva = 0.95, wv = 1, less efficient risk-spreading strategy: Pj = 0.4, more efficient:
Pj = 0.8. Other parameters values are: b= 0.005, c= 0.01, Shs = 0.994, wh = 0.05, g= 100, q= 50, bmax = 1, r= 0.5, pb = 0.2, eS = 0.1, Svj = 0.95, am = 0.008.
doi:10.1371/journal.pone.0070830.g003
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deterministic environment (see epidemiological results on Fig. 2c),

while in the Sva = 0.95/wv = 1 context (i.e., Fig. 3d), it is

approximately one tenth, which most likely boosted mutant

invasion speed.

These results show that a mutant parasite less virulent than the

resident invades faster under ecological contexts leading to a

relatively high extinction probability of vector populations (i.e., in

stochastic compared to deterministic environments, and with a less

efficient compared to more efficient risk-spreading strategy).

Conversely, a mutant parasite more virulent than the resident

invades faster under ecological contexts leading to a relatively

good persistence of vector populations (i.e., in deterministic

environments and in stochastic environments with efficient risk-

spreading strategies). This suggests that over relatively short

evolutionary times, efficient risk-spreading strategies can favor

more virulent parasites by enhancing vector population persistence

probability.

Discussion

Insects are sensitive to variations in environmental factors such

as temperature, rainfall, predation, vector control, habitat change

(e.g., pollution) or destruction. Climate variability and the

frequency of extreme climatic events are most likely increasing

with global climate change (e.g. [6,7]). We therefore expect that

insect risk-spreading strategies, that is, strategies able to reduce

extinction risk in stochastic environments, will become more

widespread in the future. Our work investigates theoretically, for

the first time, the influence of environmental stochasticity and

vector risk-spreading strategies, on both the epidemiology and

evolution of vector-borne diseases. We showed that vector risk-

spreading strategy in stochastic environments, defined here as an

increase in the inter-individual variability in vector development

time, can enhance parasite prevalence among both vectors and

hosts (these changes being influenced by other vector life-history

traits), but does not affect the long-term evolution of parasite

virulence. On shorter timescales, they nevertheless affect the

invasion speed of the mutant, less virulent parasites invading faster

when the extinction risk of vector populations is high (i.e., in

stochastic environments when vectors do not adopt efficient risk-

spreading strategies), and more virulent parasites invading faster

when vector population extinction risk is low (i.e., in deterministic

environments, or when vectors adopt efficient risk-spreading

strategies in stochastic environments). Our work therefore shows

that environmental stochasticity and vector risk-spreading strate-

gies are major factors that must be considered to understand both

the epidemiology and short-term evolution of vector-borne

diseases. It also strengthens the idea that vector biodemography

in general has drastic consequences on the epidemiology of vector-

borne diseases [41].

Vector Risk-spreading Strategies in Stochastic
Environments can Enhance Parasite Prevalence

Risk-spreading strategies are common and well described

among insects (e.g. [22–24]) and seem to be displayed by

triatomines, the vectors of the parasite Trypanosoma cruzi respon-

sible for Chagas’ disease [25]. Our study shows that intermediate

to high values of the vector development time parameter Pj
increase vector population persistence in stochastic environments,

as they spread the risk that vectors reach the adult stage when a

bad environmental event occurs. We showed that such risk-

spreading strategies increase parasite prevalence among hosts

compared to non risk-spreading strategies. More generally in our

study, prevalence was either smaller or higher in stochastic

compared to deterministic environments, depending on the values

of vector life-history traits. Therefore, neglecting vector risk-

spreading life histories may result in underestimating the

epidemiological risk in stochastic environments, and deterministic

models in general could lead to both over- and under-estimations

of this risk.

Efficient risk-spreading strategies could be achieved in our

model because only adult vectors were subjected to environmental

stochasticity. Several lines of evidence suggest that triatomines’

juvenile stage, in particular the 5th instar, could be more resistant

than the adult stage to environmental stress such as starvation or

insecticide exposure [see 25]. Smaller juveniles could also easily

hide in small cracks in walls or in the ground and thus better resist

stochastic events such as insecticide spraying, physical removal of

vectors from human habitats, or predation. Such risk-spreading

strategies and their epidemiological consequences may not be

specific to triatomine vectors and Chagas’ disease. Indeed,

variability in diapause duration, described in ticks and having a

strong effect on tick population dynamics [14] could also possibly

influence tick-borne disease transmission. Overall, our results

suggest that vector temporal dispersion strategies and environ-

mental stochasticity may play a role in the global increase of

vector-borne disease epidemics and reemergence, such as the ones

described in malaria [6].

Risk-spreading Strategies Increase the Invasion Speed of
more Virulent Parasites

Over a long evolutionary time, the vector life-history traits

considered in our study do not influence the evolution of parasite

virulence to hosts in either the deterministic or the stochastic

settings. In this regard, our study is consistent with a previous

modeling study conducted on dengue in a deterministic setting

which showed that vector life-history traits do not influence the

long-term evolution of virulence to hosts [39]. Our work extends

this result to the stochastic context, includes juvenile variable

development time, and considers a density-frequency-dependent

evolutionary process, which is different from this existing study

that has used a ‘‘R0 optimization approach’’ (see [29]). In vector-

borne diseases, in the same manner as in directly-transmitted

disease systems, the only life-history trait which seems to influence

the long-term evolution of virulence to hosts is host background

mortality, long-lived hosts giving rise to long-lasting infections and

selecting for less virulent pathogens, and short-lived hosts selecting

for more virulent pathogens [39,71–73]. We reached the same

conclusion with our model: an increase in host survival decreased

the value of the evolutionary stable virulence (results not shown).

Further work, which falls beyond the scope of the present study,

should look in more detail at the determinants of T. cruzi virulence,

in particular under the influence of host biodemography.

The study of the initial stages of the competition between

pathogen strains is very relevant in the context of emerging

diseases (e.g. [40]), but also when extinctions driven by stochastic

processes preclude looking at the asymptotic strategies reached

after long evolutionary times, as is traditionally done in

deterministic models. Our analysis of the transient dynamics of

the invasion of a mutant parasite reinforces this idea. Indeed, we

showed that vector risk-spreading strategies in stochastic environ-

ments differentially affect, on relatively short timescales, the

invasion speed of parasite strains depending on their virulence

level. In particular, when vector population extinction risk is high,

the invasion speed of less virulent parasites (i.e., less harmful to the

hosts) is increased. More important, our model also predicts that

efficient vector risk-spreading strategies create favorable conditions

for the rapid invasion of more virulent pathogen strains, as they
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improve vector persistence probability. A similar conclusion could

be reached with a directly-transmitted disease model including

demographic stochasticity: dense host populations that provide less

restrictive conditions for pathogen invasion selected for increased

virulence [40].

Pathogen extinction rates in vector-borne systems, for which

vectors are more severely subjected to environmental stochasticity

than hosts, is probably lower than in directly-transmitted disease

systems, because hosts might provide reservoirs for the pathogen

[74]. Lastly, vector metapopulation dynamics, in particular their

immigration and/or recolonization of treated areas can have

drastic consequences on vector persistence [75–79] and pathogen

transmission [40,80,81], and might also be used as a strategy to

decrease vector extinction risk. Similarly, vector immigration

might select for more virulent pathogens, as it decreases the local

risk of extinction [82].

Decreasing Vector Abundance Usually Increases Parasite
Transmission, via a Decrease in Vectors’ Competition for
Host Access

The inclusion in our model of a density-dependent mechanism

for regulating vector populations revealed novel aspects of the

effects of vector demography on parasite prevalence. Most

previous epidemiological models assume that transmission rate is

an increasing function of host density. Vector-borne models

traditionally assume that the vector per host ratio affects

transmission rates, but that hosts are numerous and therefore do

not constitute a limiting resource for vectors which can feed at

their preferred rate (e.g. [26,27]). However, in Chagas’ disease, as

probably in other vector-borne diseases, vectors are known to

compete for host access, and this most likely regulates vector

populations [53–56]. The vector per host ratio and processes of

saturation in contacts between hosts and vectors have a strong

influence on the transmission dynamics [28,60,61] and the

evolution of the parasite (at least in the specific case of the

evolution of transmission modes, see [83]).

Here we showed that as a result of vector competition for host

access, decreasing vector density can increase parasite prevalence

in vectors and hosts (unless vector density is too low). Conse-

quently, because environmental stochasticity results in a decrease

in vector density, prevalence among vectors is often higher in the

stochastic version of our model compared to the deterministic one,

and there are a few cases for which prevalence among hosts is also

slightly higher. This contrasts with previous models including

demographic stochasticity that usually lead to lower prevalence

compared to deterministic models (e.g. [9]). Few comparisons

between the predictions of stochastic versus deterministic epide-

miological models have been carried out, especially among models

with an evolutionary component (but see [10]), and our work is

original in this respect.

Our model assumes that vector biting rate increases when

vector density relative to hosts decreases and that the quantity of

blood ingested is constant. As an alternative, we could have

considered that when vectors are too numerous relative to hosts,

host defensive behaviors interrupt blood meals and therefore

reduce their size. This would reduce the infectivity of the bites

because parasite transmission requires that feces are deposited in

the vicinity of the bite. This alternative should therefore lead to

similar predictions because infection probability would increase

when the competition between vectors decreases.

Conclusion
Our work is the first to investigate the epidemiological and

evolutionary consequences of the interaction between vector risk-

spreading strategies and environmental stochasticity. Our results

show they must be taken into account in epidemiological and

evolutionary studies on vector-borne diseases and strengthen the

idea that vector-borne diseases are strongly affected by vector

biodemography [41]. Our model bears properties specific to the

Chagas’ disease system, the main one being that both juvenile and

adult stages are able to transmit the parasite. This applies also to

tick-borne diseases as all ticks’ developmental stages are infective.

We believe that a global approach, taking into account adaptive

biodemographic responses of vectors to environmental stochasti-

city when trying to understand the epidemiology and evolution of

vector-borne diseases, should be considered and applied more

widely to other systems.

Methods

We built a discrete-time SI model describing triatomines’ life-

cycle (juvenile and adult stage) and vector-borne transmission of T.

cruzi to a single host species. To investigate the epidemiological

dynamics of the model, and in particular the influence of vector

life-history traits on disease prevalence in hosts and vectors, a one-

parasite-strain model was used. This model has a total of 6 classes

(Fig. 1). To investigate the evolutionary dynamics of parasite

virulence, we used a two-parasite-strain version of the model

considering that a resident r and a mutant m compete for host

access (no co-infection was considered). This model has a total of 9

classes. The equations of the two-parasite-strain model are given in

Appendix S1 in File S1. We first describe the deterministic form of

the model, and then explain how environmental stochasticity was

applied.

We used a time step of 1 week as triatomines feed once about

every five-ten days under optimal, laboratory conditions (see [50]

and below). At each time step, a certain proportion of hosts and

vectors first survive, then produce newborns (host and vector

newborn mortality is incorporated in the fecundity), and then

eventually become infected by one of the two parasite strains (see

schematic sequence of events of the one-parasite-strain version of

the model in Fig. S1). Vectors are divided into a juvenile and an

adult stage and, at each time step, a proportion Pj of juvenile

vectors remain in the juvenile stage. Both triatomine larvae and

adults are haematophagous, and consequently both are able to

contract and transmit the infection. For simplicity, we assume that

there is no difference in the two stages’ infectivity and susceptibility

to infection. Hosts and vectors produce susceptible offspring even

if infected. Even if vertical transmission has been reported in a few

host species (e.g. in mice [51]; in humans [52]), we consider its role

in the transmission of Chagas’ disease to be negligible. For

simplicity, we also assume that hosts and vectors turn infective

immediately after becoming infected and that their infectivity

remains unchanged whatever the time since infection.

Host Biodemography
T. cruzi infects numerous vertebrate hosts (sylvatic and domestic)

that show contrasted life-history trait values (e.g. life expectancy,

fecundity). Taking into account multiple host populations was

technically difficult and our work focuses on the biodemography of

vectors. We therefore considered a single ‘‘hypothetical’’ host for

which T. cruzi is pathogenic, i.e. the parasite generates a mortality

cost. The proportion of susceptible hosts surviving at each time

step is assumed to be Shs = 0.994 (which corresponds, in terms of

probabilities, to an approximate life expectancy of 1/0.006 = 167
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weeks or 3.1 years) (see Table 1 for all parameter values used in the

model). The survival probability of infected hosts is the probability

that they survive from ‘‘natural causes’’, Shs, and the probability

that they survive from the infection. We define virulence a as the

probability to die as a result of the infection. By extension, and

because in our model, virulence is assumed to vary according to

the parasite strain (resident or mutant), the proportion of infected

hosts surviving at each time step is considered to be:

Shi(ak)~Shs 1{akð Þ

with k referring to the resident or mutant strain. In our model, and

as is commonly assumed in models of pathogen virulence,

virulence is therefore defined as an additive mortality cost.

Susceptible and infected hosts are assumed to display the same

density-dependent fecundity, Fh(t):

Fh(t)~
vh

1z
HT (t)

g

where vh is the maximum number of offspring produced per host

and per time step, g the density of hosts at which host fecundity is

divided by two, and HT(t) the total host density, i.e., the sum of

susceptible and infected (whatever the parasite strain) host density.

We assume that each female host produces a maximum of 5

newborns per year (approximately 0.1 per week). Both males and

females are considered in our model, and assuming a 0.5 sex-ratio,

vh = 0.05.

Vector Biodemography
Contrary to hosts, vectors do not usually suffer a mortality cost

when infected by T. cruzi (see [46] for a review). The proportion of

adult and juvenile vectors surviving at each time step are Sva and

Svj, respectively, and the proportion of juvenile vectors prolonging

the juvenile stage is Pj (see Table 1 for the range of parameter

values used). A value for Pj strictly between 0 and 1 creates a

temporal variability in the time at which juveniles reach the adult

stage. Increasing Pj increases both the average and variability of

the juvenile stage duration. To survive (and for adult vectors, to

reproduce as well), vectors need to ingest blood from hosts (these

host-vector contacts may result in parasite transmission when one

of two partners is susceptible and the other one infected, see

below). Hosts cannot tolerate an unlimited amount of bites: they

are known to become irritable and defend themselves against

vectors when they receive too many bites [53–56]. Increasing the

vector per host ratio Q(t) =VT(t)/HT(t) (VT(t) being the total vector

density including all infection status and developmental stages)

could therefore result either in blood meals being interrupted by

host defensive behaviors, which would lessen the average quantity

of blood ingested, or in a global reduction in the average vector

biting rate if access to hosts is made difficult. Because triatomines

cannot produce eggs without ingesting blood meals but can

undergo long starving periods, we assume, following [57], that the

vector per host ratio Q(t) affects vector fecundity but not survival.

Triatomines’ fecundity is therefore assumed to be a decreasing

function of Q(t) and is expressed as:

Fv(t)~
vv

1z Q(t)
q

,

with vv being the maximum number of eggs produced per vector

and per week and q the Q ratio for which vector fecundity is

divided by two. Under laboratory conditions, fecundity estimates

from triatomines of the genus Triatoma vary between 2 and 6

female eggs per female per week (e.g. [58,59]). To take into

account the sex-ratio and egg mortality, we set vv to either 1 or 2.5

in our analysis (see Table 1 for the parameter values used in the

model).

Infection Dynamics
Vector-borne models, and in particular models of Chagas’

disease transmission (e.g. [27]) usually follow the assumption

developed by Ross [26] on malaria that hosts are always numerous

and vectors feed at their preferred rate. As reported above, hosts

can however constitute a limited resource when the number of

vectors per host is large. We assumed for simplicity that the

quantity of blood ingested was unaffected by the vector per host

ratio and that the per-vector biting rate (in number of bites per

vector per time step) saturates for low Q values and decreases

gradually as Q increases [28,60,61], which leads to the following

expression:

b(t)~
bmax

1z Q(t)
q

,

with bmax being the maximum (preferred) vector biting rate (in

number of bites per vector per time step). Data on triatomine

spontaneous drive for food in the field are lacking and are likely to

be highly variable among triatomine species. In the laboratory,

when triatomines are offered a host daily, the preferred feeding

frequency averages one blood meal every 5–10 days for species of

the triatomine genus Rhodnius [62]. For simplicity, and because in

the laboratory feeding conditions are optimal for the insects, we set

bmax = 1, i.e., vectors feed at a maximum rate of one time per week.

New infections in hosts require a contact between a susceptible

host and an infected vector. The number of new hosts infected by

a parasite strain k at each time step is thus calculated as the

product of the total number of blood meals per time step,

b(Q(t))VT(t), the proportion of contacts involving a susceptible host

Hs(t)/HT(t), the proportion of contacts involving a vector (either

adult or juvenile) infected by the strain k, Vik(t)/VT(t), and the

probability bh that such a contact gives rise to an infection in the

host (in infected hosts per bite) [28]:

Lhk(t)Hs(t)~b Q(t)ð ÞVT (t)
Hs(t)

HT (t)

Vik(t)

VT (t)
bh

~b Q(t)ð Þbh
Vik(t)

HT (t)
Hs(t),

Lhk(t) being the rate of new host infections by the parasite strain k.

The total probability for a host to become infected by one of the

two strains (resident r and mutant m) is therefore:

wh(t)~1{e{ Lhr(t)zLhm(t)ð ÞT

with T being time in weekly units. To keep this total bounded

between 0 and 1, and to avoid coinfections, we define the

probability for a host to become infected by strain k as:
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whk(t)~
Lhk(t)

Lhr(t)zLhm(t)
1{e{ Lhr(t)zLhm(t)ð ÞT

� �
:

In a similar way, new infections in vectors require contacts

between susceptible vectors and infected hosts. If we set bv as the

probability that such a contact gives rise to an infection in the

vector (in infected vectors per bite), the number of new vectors

infected by a parasite strain k per time step is:

Lvk(t)Vs(t)~b Q(t)ð ÞVT (t)
Vs(t)

VT (t)

Hik(t)

HT (t)
bv~b Q(t)ð Þbv

Hik(t)

HT (t)
Vs(t):

This leads to the following expression for the probability for a

vector to become infected by strain k:

wvk(t)~
Lvk(t)

Lvr(t)zLvm(t)
1{e{ Lvr(t)zLvm(t)ð ÞT

� �
:

Resident and mutant parasites are assumed to differ in the

intensity of the harm they induce to their host, i.e. virulence a
(defined in our model as an additive mortality cost to natural

mortality). It is well accepted in the literature that virulence is

correlated to the growth rate of the parasite inside the host, i.e. to

the total number of pathogen particles present in the host.

Increasing virulence therefore typically leads to an increase of

pathogen transmission probability from infected hosts to vectors

bv, up to a certain threshold [30–32]. In our model, we therefore

expressed bv as a simple increasing function of a with decreasing

benefits, as has been traditionally done in the literature (e.g.

[29,33]):

bv~
a

azc
,

c being the shape parameter of this function.

Environmental Stochasticity
Our main objective is to study the combined influence of vector

risk-spreading strategies and environmental stochasticity on the

epidemiology and evolution of the disease. Because risk-spreading

strategies most likely occur at the juvenile stage in triatomines [25],

and in order to create conditions under which variability in the

juvenile stage duration decreases extinction risk under unpredict-

able environmental conditions, only adult vectors are subjected to

environmental stochasticity in our model. We chose to expose

adult vector survival rather than fecundity to stochasticity. Indeed,

as triatomines are iteroparous (i.e. they have several reproductive

periods during their lifetime), subjecting their reproduction to

stochasticity has only a limited impact on vector population

densities.

In the stochastic version of our model, a stochastic sequence of

‘‘good’’ and ‘‘bad’’ periods was considered, ‘‘bad’’ periods

occurring with probability pB. Because the time step of one week

chosen here is relatively small, and switching from a ‘‘good’’ to a

‘‘bad’’ period every week might be unrealistic, we define a

parameter r, between 0 and 1, controlling the intensity of the

autocorrelation between periods. The probability to switch from a

‘‘good’’ to a ‘‘bad’’ period is set to pB.(1-r) and from a ‘‘bad’’ to a

‘‘good’’ period to (1-pB).(1-r) [63]. The greater r is, the more

difficult it is to switch from one type of period to another. At each

time step of the simulation process, a number was sampled from a

uniform distribution (0,1), and switching occurred when it was

strictly less than the corresponding switching probability (as given

above). r and pB have been set to the values 0.5 and 0.2,

respectively, as calibrations showed that the sequence of ‘‘good’’

and ‘‘bad’’ periods under these parameter values corresponds

roughly to seasonal variations. At each time step, the proportion

Sva of adult vectors surviving is multiplied by eS(t), which is set to 1

during ‘‘good’’ periods and to a value 0#eS,1 during ‘‘bad’’

periods. eS therefore controls the intensity of the environmental

stochasticity (with eS = 0 leading to the death of adults when a

‘‘bad’’ period occurs, see Table 1 for the parameter values used in

the model).

Analysis of the Influence of Vector Life-history Traits on
Parasite Epidemiology

To assess how vector life-history traits influence infection

dynamics (and in a second step the parasite’s evolutionary

dynamics, see below), numerical simulations were performed in

both deterministic and stochastic settings. For the epidemiological

analysis, a single individual infected by a resident parasite was

introduced in a susceptible host – vector population. Juvenile

vectors were always chosen as the class in which parasites arise

(both resident and mutant), as simulations showed that the system

converged toward the same prevalence and evolutionary strategy

regardless of the class in which the mutation was introduced

(results not shown). Susceptible host, adult and juvenile vector

initial densities (i.e., numbers per unit area) have been set to 100,

100 and 200, respectively, for all simulations. The spatial unit used

is on the order of 1 km2. The output variables of the

epidemiological analysis are the prevalence of the parasite (among

vectors and hosts) and the population densities at t= tm = 10,000

time-steps in the stochastic and t= tm = 150,000 time-steps in the

deterministic case (tm being the time at which the mutant is

introduced, see below). Preliminary work not shown here

determined that these time frames were long enough in the

stochastic case for the disease to spread in the population and short

enough to avoid all vector populations collapsing (host populations

never collapse as they are not exposed to stochasticity), and long

enough for the equilibrium state to be reached in the deterministic

case. For each parameter combination tested, 100 simulations

were performed in the stochastic case. During all simulations in

our study (for both epidemiological and evolutionary steps), we

avoided unrealistic situations in which extremely small population

densities (e.g. on the order of 10210) persisted over very long times

by replacing by 0 all densities falling below an arbitrary value of

1025. Furthermore, at the end of the simulation times, we

considered populations were extinct if their density was less than

1023.

Analysis of the Influence of Vector Life-history Traits on
Parasite Evolution

To assess whether vector life-history traits influence the

evolutionary dynamics of parasite virulence, we followed the

Adaptive Dynamics framework [29,64–66], and introduced a

mutant at time tm, in the host – vector population already infected

by the resident parasite. This second (evolutionary) step consists of

a competitive interaction between a mutant and a resident parasite

for infection of susceptible hosts and vectors. We assessed the

evolutionary dynamics of parasite virulence strategy by analyzing

the outcome of the competition for combinations of resident and
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mutant virulence strategies (ar and am were varied from 0 to 0.016

with a 0.002 step, a range corresponding to the same average life

expectancy to a life expectancy divided by almost 4, for infected

hosts compared to healthy hosts). An Evolutionarily Stable

Strategy (ESS) is defined as a strategy that cannot be invaded by

any other strategy [67], and a convergent-stable strategy as a

strategy attainable throughout the course of evolution via small

mutational steps [68]. A strategy verifying both properties is a

Continuously Stable Strategy (CSS, [69]; see [70] for further

details). Compared to a ‘‘R0 optimization approach’’ in which the

evolutionary stable strategy is sought as the strategy which

maximizes the basic reproduction number R0, or parasite fitness,

this approach considers that the adaptive value of a strategy

depends on the strategies played by other individuals (here,

parasites), and the frequency of these strategies (see [29] for further

details). Because during the first (epidemiological) step involving

the resident only, some vector populations collapsed among the

100 initial simulations, we increased, when necessary, the number

of initial simulations in order to have always 100 simulations at the

time of introduction of the mutant tm. In our analysis of the long-

term evolution of virulence (see section ‘‘Results’’), the outcomes of

the competition between mutant and resident parasite strains for

all ar/am virulence couples were captured at t= tm+20,000,

t= tm+50,000, t= tm+80,000 and t= tm+170,000 weeks in the

stochastic case (in order to find the best balance between stochastic

extinctions and parasite strain fixations), and at t= tm+170,000

weeks in the deterministic case. In our analysis of the dynamics of

mutant invasion on a relatively shorter term (see section ‘‘Results’’),

outcomes of the competition between mutant and resident

parasites were captured, in both the deterministic and stochastic

cases, at times varying from t= tm+20,000 to t= tm+170,000, using

steps of 30,000 weeks.
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